xref: /freebsd/lib/libprocstat/libprocstat.c (revision f0574f5cf69e168cc4ea71ebbe5fdec9ec9a3dfe)
1 /*-
2  * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
3  * Copyright (c) 1988, 1993
4  *      The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by the University of
17  *      California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/elf.h>
40 #include <sys/time.h>
41 #include <sys/resourcevar.h>
42 #define	_WANT_UCRED
43 #include <sys/ucred.h>
44 #undef _WANT_UCRED
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/stat.h>
48 #include <sys/vnode.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/domain.h>
52 #include <sys/protosw.h>
53 #include <sys/un.h>
54 #include <sys/unpcb.h>
55 #include <sys/sysctl.h>
56 #include <sys/tty.h>
57 #include <sys/filedesc.h>
58 #include <sys/queue.h>
59 #define	_WANT_FILE
60 #include <sys/file.h>
61 #include <sys/conf.h>
62 #include <sys/ksem.h>
63 #include <sys/mman.h>
64 #include <sys/capsicum.h>
65 #define	_KERNEL
66 #include <sys/mount.h>
67 #include <sys/pipe.h>
68 #include <ufs/ufs/quota.h>
69 #include <ufs/ufs/inode.h>
70 #include <fs/devfs/devfs.h>
71 #include <fs/devfs/devfs_int.h>
72 #undef _KERNEL
73 #include <nfs/nfsproto.h>
74 #include <nfsclient/nfs.h>
75 #include <nfsclient/nfsnode.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 
81 #include <net/route.h>
82 #include <netinet/in.h>
83 #include <netinet/in_systm.h>
84 #include <netinet/ip.h>
85 #define	_WANT_INPCB
86 #include <netinet/in_pcb.h>
87 
88 #include <assert.h>
89 #include <ctype.h>
90 #include <err.h>
91 #include <fcntl.h>
92 #include <kvm.h>
93 #include <libutil.h>
94 #include <limits.h>
95 #include <paths.h>
96 #include <pwd.h>
97 #include <stdio.h>
98 #include <stdlib.h>
99 #include <stddef.h>
100 #include <string.h>
101 #include <unistd.h>
102 #include <netdb.h>
103 
104 #include <libprocstat.h>
105 #include "libprocstat_internal.h"
106 #include "common_kvm.h"
107 #include "core.h"
108 
109 int     statfs(const char *, struct statfs *);	/* XXX */
110 
111 #define	PROCSTAT_KVM	1
112 #define	PROCSTAT_SYSCTL	2
113 #define	PROCSTAT_CORE	3
114 
115 static char	**getargv(struct procstat *procstat, struct kinfo_proc *kp,
116     size_t nchr, int env);
117 static char	*getmnton(kvm_t *kd, struct mount *m);
118 static struct kinfo_vmentry *	kinfo_getvmmap_core(struct procstat_core *core,
119     int *cntp);
120 static Elf_Auxinfo	*procstat_getauxv_core(struct procstat_core *core,
121     unsigned int *cntp);
122 static Elf_Auxinfo	*procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
123 static struct filestat_list	*procstat_getfiles_kvm(
124     struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
125 static struct filestat_list	*procstat_getfiles_sysctl(
126     struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
127 static int	procstat_get_pipe_info_sysctl(struct filestat *fst,
128     struct pipestat *pipe, char *errbuf);
129 static int	procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
130     struct pipestat *pipe, char *errbuf);
131 static int	procstat_get_pts_info_sysctl(struct filestat *fst,
132     struct ptsstat *pts, char *errbuf);
133 static int	procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
134     struct ptsstat *pts, char *errbuf);
135 static int	procstat_get_sem_info_sysctl(struct filestat *fst,
136     struct semstat *sem, char *errbuf);
137 static int	procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
138     struct semstat *sem, char *errbuf);
139 static int	procstat_get_shm_info_sysctl(struct filestat *fst,
140     struct shmstat *shm, char *errbuf);
141 static int	procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
142     struct shmstat *shm, char *errbuf);
143 static int	procstat_get_socket_info_sysctl(struct filestat *fst,
144     struct sockstat *sock, char *errbuf);
145 static int	procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
146     struct sockstat *sock, char *errbuf);
147 static int	to_filestat_flags(int flags);
148 static int	procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
149     struct vnstat *vn, char *errbuf);
150 static int	procstat_get_vnode_info_sysctl(struct filestat *fst,
151     struct vnstat *vn, char *errbuf);
152 static gid_t	*procstat_getgroups_core(struct procstat_core *core,
153     unsigned int *count);
154 static gid_t *	procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
155     unsigned int *count);
156 static gid_t	*procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
157 static struct kinfo_kstack	*procstat_getkstack_sysctl(pid_t pid,
158     int *cntp);
159 static int	procstat_getosrel_core(struct procstat_core *core,
160     int *osrelp);
161 static int	procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
162     int *osrelp);
163 static int	procstat_getosrel_sysctl(pid_t pid, int *osrelp);
164 static int	procstat_getpathname_core(struct procstat_core *core,
165     char *pathname, size_t maxlen);
166 static int	procstat_getpathname_sysctl(pid_t pid, char *pathname,
167     size_t maxlen);
168 static int	procstat_getrlimit_core(struct procstat_core *core, int which,
169     struct rlimit* rlimit);
170 static int	procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
171     int which, struct rlimit* rlimit);
172 static int	procstat_getrlimit_sysctl(pid_t pid, int which,
173     struct rlimit* rlimit);
174 static int	procstat_getumask_core(struct procstat_core *core,
175     unsigned short *maskp);
176 static int	procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
177     unsigned short *maskp);
178 static int	procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
179 static int	vntype2psfsttype(int type);
180 
181 void
182 procstat_close(struct procstat *procstat)
183 {
184 
185 	assert(procstat);
186 	if (procstat->type == PROCSTAT_KVM)
187 		kvm_close(procstat->kd);
188 	else if (procstat->type == PROCSTAT_CORE)
189 		procstat_core_close(procstat->core);
190 	procstat_freeargv(procstat);
191 	procstat_freeenvv(procstat);
192 	free(procstat);
193 }
194 
195 struct procstat *
196 procstat_open_sysctl(void)
197 {
198 	struct procstat *procstat;
199 
200 	procstat = calloc(1, sizeof(*procstat));
201 	if (procstat == NULL) {
202 		warn("malloc()");
203 		return (NULL);
204 	}
205 	procstat->type = PROCSTAT_SYSCTL;
206 	return (procstat);
207 }
208 
209 struct procstat *
210 procstat_open_kvm(const char *nlistf, const char *memf)
211 {
212 	struct procstat *procstat;
213 	kvm_t *kd;
214 	char buf[_POSIX2_LINE_MAX];
215 
216 	procstat = calloc(1, sizeof(*procstat));
217 	if (procstat == NULL) {
218 		warn("malloc()");
219 		return (NULL);
220 	}
221 	kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
222 	if (kd == NULL) {
223 		warnx("kvm_openfiles(): %s", buf);
224 		free(procstat);
225 		return (NULL);
226 	}
227 	procstat->type = PROCSTAT_KVM;
228 	procstat->kd = kd;
229 	return (procstat);
230 }
231 
232 struct procstat *
233 procstat_open_core(const char *filename)
234 {
235 	struct procstat *procstat;
236 	struct procstat_core *core;
237 
238 	procstat = calloc(1, sizeof(*procstat));
239 	if (procstat == NULL) {
240 		warn("malloc()");
241 		return (NULL);
242 	}
243 	core = procstat_core_open(filename);
244 	if (core == NULL) {
245 		free(procstat);
246 		return (NULL);
247 	}
248 	procstat->type = PROCSTAT_CORE;
249 	procstat->core = core;
250 	return (procstat);
251 }
252 
253 struct kinfo_proc *
254 procstat_getprocs(struct procstat *procstat, int what, int arg,
255     unsigned int *count)
256 {
257 	struct kinfo_proc *p0, *p;
258 	size_t len, olen;
259 	int name[4];
260 	int cnt;
261 	int error;
262 
263 	assert(procstat);
264 	assert(count);
265 	p = NULL;
266 	if (procstat->type == PROCSTAT_KVM) {
267 		*count = 0;
268 		p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
269 		if (p0 == NULL || cnt <= 0)
270 			return (NULL);
271 		*count = cnt;
272 		len = *count * sizeof(*p);
273 		p = malloc(len);
274 		if (p == NULL) {
275 			warnx("malloc(%zu)", len);
276 			goto fail;
277 		}
278 		bcopy(p0, p, len);
279 		return (p);
280 	} else if (procstat->type == PROCSTAT_SYSCTL) {
281 		len = 0;
282 		name[0] = CTL_KERN;
283 		name[1] = KERN_PROC;
284 		name[2] = what;
285 		name[3] = arg;
286 		error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
287 		if (error < 0 && errno != EPERM) {
288 			warn("sysctl(kern.proc)");
289 			goto fail;
290 		}
291 		if (len == 0) {
292 			warnx("no processes?");
293 			goto fail;
294 		}
295 		do {
296 			len += len / 10;
297 			p = reallocf(p, len);
298 			if (p == NULL) {
299 				warnx("reallocf(%zu)", len);
300 				goto fail;
301 			}
302 			olen = len;
303 			error = sysctl(name, nitems(name), p, &len, NULL, 0);
304 		} while (error < 0 && errno == ENOMEM && olen == len);
305 		if (error < 0 && errno != EPERM) {
306 			warn("sysctl(kern.proc)");
307 			goto fail;
308 		}
309 		/* Perform simple consistency checks. */
310 		if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
311 			warnx("kinfo_proc structure size mismatch (len = %zu)", len);
312 			goto fail;
313 		}
314 		*count = len / sizeof(*p);
315 		return (p);
316 	} else if (procstat->type == PROCSTAT_CORE) {
317 		p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
318 		    &len);
319 		if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
320 			warnx("kinfo_proc structure size mismatch");
321 			goto fail;
322 		}
323 		*count = len / sizeof(*p);
324 		return (p);
325 	} else {
326 		warnx("unknown access method: %d", procstat->type);
327 		return (NULL);
328 	}
329 fail:
330 	if (p)
331 		free(p);
332 	return (NULL);
333 }
334 
335 void
336 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
337 {
338 
339 	if (p != NULL)
340 		free(p);
341 	p = NULL;
342 }
343 
344 struct filestat_list *
345 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
346 {
347 
348 	switch(procstat->type) {
349 	case PROCSTAT_KVM:
350 		return (procstat_getfiles_kvm(procstat, kp, mmapped));
351 	case PROCSTAT_SYSCTL:
352 	case PROCSTAT_CORE:
353 		return (procstat_getfiles_sysctl(procstat, kp, mmapped));
354 	default:
355 		warnx("unknown access method: %d", procstat->type);
356 		return (NULL);
357 	}
358 }
359 
360 void
361 procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
362 {
363 	struct filestat *fst, *tmp;
364 
365 	STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
366 		if (fst->fs_path != NULL)
367 			free(fst->fs_path);
368 		free(fst);
369 	}
370 	free(head);
371 	if (procstat->vmentries != NULL) {
372 		free(procstat->vmentries);
373 		procstat->vmentries = NULL;
374 	}
375 	if (procstat->files != NULL) {
376 		free(procstat->files);
377 		procstat->files = NULL;
378 	}
379 }
380 
381 static struct filestat *
382 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
383     int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
384 {
385 	struct filestat *entry;
386 
387 	entry = calloc(1, sizeof(*entry));
388 	if (entry == NULL) {
389 		warn("malloc()");
390 		return (NULL);
391 	}
392 	entry->fs_typedep = typedep;
393 	entry->fs_fflags = fflags;
394 	entry->fs_uflags = uflags;
395 	entry->fs_fd = fd;
396 	entry->fs_type = type;
397 	entry->fs_ref_count = refcount;
398 	entry->fs_offset = offset;
399 	entry->fs_path = path;
400 	if (cap_rightsp != NULL)
401 		entry->fs_cap_rights = *cap_rightsp;
402 	else
403 		cap_rights_init(&entry->fs_cap_rights);
404 	return (entry);
405 }
406 
407 static struct vnode *
408 getctty(kvm_t *kd, struct kinfo_proc *kp)
409 {
410 	struct pgrp pgrp;
411 	struct proc proc;
412 	struct session sess;
413 	int error;
414 
415 	assert(kp);
416 	error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
417 	    sizeof(proc));
418 	if (error == 0) {
419 		warnx("can't read proc struct at %p for pid %d",
420 		    kp->ki_paddr, kp->ki_pid);
421 		return (NULL);
422 	}
423 	if (proc.p_pgrp == NULL)
424 		return (NULL);
425 	error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
426 	    sizeof(pgrp));
427 	if (error == 0) {
428 		warnx("can't read pgrp struct at %p for pid %d",
429 		    proc.p_pgrp, kp->ki_pid);
430 		return (NULL);
431 	}
432 	error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
433 	    sizeof(sess));
434 	if (error == 0) {
435 		warnx("can't read session struct at %p for pid %d",
436 		    pgrp.pg_session, kp->ki_pid);
437 		return (NULL);
438 	}
439 	return (sess.s_ttyvp);
440 }
441 
442 static struct filestat_list *
443 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
444 {
445 	struct file file;
446 	struct filedesc filed;
447 	struct vm_map_entry vmentry;
448 	struct vm_object object;
449 	struct vmspace vmspace;
450 	vm_map_entry_t entryp;
451 	vm_map_t map;
452 	vm_object_t objp;
453 	struct vnode *vp;
454 	struct file **ofiles;
455 	struct filestat *entry;
456 	struct filestat_list *head;
457 	kvm_t *kd;
458 	void *data;
459 	int i, fflags;
460 	int prot, type;
461 	unsigned int nfiles;
462 
463 	assert(procstat);
464 	kd = procstat->kd;
465 	if (kd == NULL)
466 		return (NULL);
467 	if (kp->ki_fd == NULL)
468 		return (NULL);
469 	if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
470 	    sizeof(filed))) {
471 		warnx("can't read filedesc at %p", (void *)kp->ki_fd);
472 		return (NULL);
473 	}
474 
475 	/*
476 	 * Allocate list head.
477 	 */
478 	head = malloc(sizeof(*head));
479 	if (head == NULL)
480 		return (NULL);
481 	STAILQ_INIT(head);
482 
483 	/* root directory vnode, if one. */
484 	if (filed.fd_rdir) {
485 		entry = filestat_new_entry(filed.fd_rdir, PS_FST_TYPE_VNODE, -1,
486 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL);
487 		if (entry != NULL)
488 			STAILQ_INSERT_TAIL(head, entry, next);
489 	}
490 	/* current working directory vnode. */
491 	if (filed.fd_cdir) {
492 		entry = filestat_new_entry(filed.fd_cdir, PS_FST_TYPE_VNODE, -1,
493 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL);
494 		if (entry != NULL)
495 			STAILQ_INSERT_TAIL(head, entry, next);
496 	}
497 	/* jail root, if any. */
498 	if (filed.fd_jdir) {
499 		entry = filestat_new_entry(filed.fd_jdir, PS_FST_TYPE_VNODE, -1,
500 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL);
501 		if (entry != NULL)
502 			STAILQ_INSERT_TAIL(head, entry, next);
503 	}
504 	/* ktrace vnode, if one */
505 	if (kp->ki_tracep) {
506 		entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
507 		    PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
508 		    PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL);
509 		if (entry != NULL)
510 			STAILQ_INSERT_TAIL(head, entry, next);
511 	}
512 	/* text vnode, if one */
513 	if (kp->ki_textvp) {
514 		entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
515 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL);
516 		if (entry != NULL)
517 			STAILQ_INSERT_TAIL(head, entry, next);
518 	}
519 	/* Controlling terminal. */
520 	if ((vp = getctty(kd, kp)) != NULL) {
521 		entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
522 		    PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
523 		    PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL);
524 		if (entry != NULL)
525 			STAILQ_INSERT_TAIL(head, entry, next);
526 	}
527 
528 	nfiles = filed.fd_lastfile + 1;
529 	ofiles = malloc(nfiles * sizeof(struct file *));
530 	if (ofiles == NULL) {
531 		warn("malloc(%zu)", nfiles * sizeof(struct file *));
532 		goto do_mmapped;
533 	}
534 	if (!kvm_read_all(kd, (unsigned long)filed.fd_ofiles, ofiles,
535 	    nfiles * sizeof(struct file *))) {
536 		warnx("cannot read file structures at %p",
537 		    (void *)filed.fd_ofiles);
538 		free(ofiles);
539 		goto do_mmapped;
540 	}
541 	for (i = 0; i <= filed.fd_lastfile; i++) {
542 		if (ofiles[i] == NULL)
543 			continue;
544 		if (!kvm_read_all(kd, (unsigned long)ofiles[i], &file,
545 		    sizeof(struct file))) {
546 			warnx("can't read file %d at %p", i,
547 			    (void *)ofiles[i]);
548 			continue;
549 		}
550 		switch (file.f_type) {
551 		case DTYPE_VNODE:
552 			type = PS_FST_TYPE_VNODE;
553 			data = file.f_vnode;
554 			break;
555 		case DTYPE_SOCKET:
556 			type = PS_FST_TYPE_SOCKET;
557 			data = file.f_data;
558 			break;
559 		case DTYPE_PIPE:
560 			type = PS_FST_TYPE_PIPE;
561 			data = file.f_data;
562 			break;
563 		case DTYPE_FIFO:
564 			type = PS_FST_TYPE_FIFO;
565 			data = file.f_vnode;
566 			break;
567 #ifdef DTYPE_PTS
568 		case DTYPE_PTS:
569 			type = PS_FST_TYPE_PTS;
570 			data = file.f_data;
571 			break;
572 #endif
573 		case DTYPE_SEM:
574 			type = PS_FST_TYPE_SEM;
575 			data = file.f_data;
576 			break;
577 		case DTYPE_SHM:
578 			type = PS_FST_TYPE_SHM;
579 			data = file.f_data;
580 			break;
581 		default:
582 			continue;
583 		}
584 		/* XXXRW: No capability rights support for kvm yet. */
585 		entry = filestat_new_entry(data, type, i,
586 		    to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL);
587 		if (entry != NULL)
588 			STAILQ_INSERT_TAIL(head, entry, next);
589 	}
590 	free(ofiles);
591 
592 do_mmapped:
593 
594 	/*
595 	 * Process mmapped files if requested.
596 	 */
597 	if (mmapped) {
598 		if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
599 		    sizeof(vmspace))) {
600 			warnx("can't read vmspace at %p",
601 			    (void *)kp->ki_vmspace);
602 			goto exit;
603 		}
604 		map = &vmspace.vm_map;
605 
606 		for (entryp = map->header.next;
607 		    entryp != &kp->ki_vmspace->vm_map.header;
608 		    entryp = vmentry.next) {
609 			if (!kvm_read_all(kd, (unsigned long)entryp, &vmentry,
610 			    sizeof(vmentry))) {
611 				warnx("can't read vm_map_entry at %p",
612 				    (void *)entryp);
613 				continue;
614 			}
615 			if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
616 				continue;
617 			if ((objp = vmentry.object.vm_object) == NULL)
618 				continue;
619 			for (; objp; objp = object.backing_object) {
620 				if (!kvm_read_all(kd, (unsigned long)objp,
621 				    &object, sizeof(object))) {
622 					warnx("can't read vm_object at %p",
623 					    (void *)objp);
624 					break;
625 				}
626 			}
627 
628 			/* We want only vnode objects. */
629 			if (object.type != OBJT_VNODE)
630 				continue;
631 
632 			prot = vmentry.protection;
633 			fflags = 0;
634 			if (prot & VM_PROT_READ)
635 				fflags = PS_FST_FFLAG_READ;
636 			if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
637 			    prot & VM_PROT_WRITE)
638 				fflags |= PS_FST_FFLAG_WRITE;
639 
640 			/*
641 			 * Create filestat entry.
642 			 */
643 			entry = filestat_new_entry(object.handle,
644 			    PS_FST_TYPE_VNODE, -1, fflags,
645 			    PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL);
646 			if (entry != NULL)
647 				STAILQ_INSERT_TAIL(head, entry, next);
648 		}
649 	}
650 exit:
651 	return (head);
652 }
653 
654 /*
655  * kinfo types to filestat translation.
656  */
657 static int
658 kinfo_type2fst(int kftype)
659 {
660 	static struct {
661 		int	kf_type;
662 		int	fst_type;
663 	} kftypes2fst[] = {
664 		{ KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO },
665 		{ KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
666 		{ KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
667 		{ KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
668 		{ KF_TYPE_NONE, PS_FST_TYPE_NONE },
669 		{ KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
670 		{ KF_TYPE_PTS, PS_FST_TYPE_PTS },
671 		{ KF_TYPE_SEM, PS_FST_TYPE_SEM },
672 		{ KF_TYPE_SHM, PS_FST_TYPE_SHM },
673 		{ KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
674 		{ KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
675 		{ KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
676 	};
677 #define NKFTYPES	(sizeof(kftypes2fst) / sizeof(*kftypes2fst))
678 	unsigned int i;
679 
680 	for (i = 0; i < NKFTYPES; i++)
681 		if (kftypes2fst[i].kf_type == kftype)
682 			break;
683 	if (i == NKFTYPES)
684 		return (PS_FST_TYPE_UNKNOWN);
685 	return (kftypes2fst[i].fst_type);
686 }
687 
688 /*
689  * kinfo flags to filestat translation.
690  */
691 static int
692 kinfo_fflags2fst(int kfflags)
693 {
694 	static struct {
695 		int	kf_flag;
696 		int	fst_flag;
697 	} kfflags2fst[] = {
698 		{ KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
699 		{ KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
700 		{ KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
701 		{ KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
702 		{ KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
703 		{ KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
704 		{ KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
705 		{ KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
706 		{ KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
707 		{ KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
708 		{ KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
709 		{ KF_FLAG_READ, PS_FST_FFLAG_READ },
710 		{ KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
711 		{ KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
712 		{ KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
713 	};
714 #define NKFFLAGS	(sizeof(kfflags2fst) / sizeof(*kfflags2fst))
715 	unsigned int i;
716 	int flags;
717 
718 	flags = 0;
719 	for (i = 0; i < NKFFLAGS; i++)
720 		if ((kfflags & kfflags2fst[i].kf_flag) != 0)
721 			flags |= kfflags2fst[i].fst_flag;
722 	return (flags);
723 }
724 
725 static int
726 kinfo_uflags2fst(int fd)
727 {
728 
729 	switch (fd) {
730 	case KF_FD_TYPE_CTTY:
731 		return (PS_FST_UFLAG_CTTY);
732 	case KF_FD_TYPE_CWD:
733 		return (PS_FST_UFLAG_CDIR);
734 	case KF_FD_TYPE_JAIL:
735 		return (PS_FST_UFLAG_JAIL);
736 	case KF_FD_TYPE_TEXT:
737 		return (PS_FST_UFLAG_TEXT);
738 	case KF_FD_TYPE_TRACE:
739 		return (PS_FST_UFLAG_TRACE);
740 	case KF_FD_TYPE_ROOT:
741 		return (PS_FST_UFLAG_RDIR);
742 	}
743 	return (0);
744 }
745 
746 static struct kinfo_file *
747 kinfo_getfile_core(struct procstat_core *core, int *cntp)
748 {
749 	int cnt;
750 	size_t len;
751 	char *buf, *bp, *eb;
752 	struct kinfo_file *kif, *kp, *kf;
753 
754 	buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
755 	if (buf == NULL)
756 		return (NULL);
757 	/*
758 	 * XXXMG: The code below is just copy&past from libutil.
759 	 * The code duplication can be avoided if libutil
760 	 * is extended to provide something like:
761 	 *   struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
762 	 *       size_t len, int *cntp);
763 	 */
764 
765 	/* Pass 1: count items */
766 	cnt = 0;
767 	bp = buf;
768 	eb = buf + len;
769 	while (bp < eb) {
770 		kf = (struct kinfo_file *)(uintptr_t)bp;
771 		if (kf->kf_structsize == 0)
772 			break;
773 		bp += kf->kf_structsize;
774 		cnt++;
775 	}
776 
777 	kif = calloc(cnt, sizeof(*kif));
778 	if (kif == NULL) {
779 		free(buf);
780 		return (NULL);
781 	}
782 	bp = buf;
783 	eb = buf + len;
784 	kp = kif;
785 	/* Pass 2: unpack */
786 	while (bp < eb) {
787 		kf = (struct kinfo_file *)(uintptr_t)bp;
788 		if (kf->kf_structsize == 0)
789 			break;
790 		/* Copy/expand into pre-zeroed buffer */
791 		memcpy(kp, kf, kf->kf_structsize);
792 		/* Advance to next packed record */
793 		bp += kf->kf_structsize;
794 		/* Set field size to fixed length, advance */
795 		kp->kf_structsize = sizeof(*kp);
796 		kp++;
797 	}
798 	free(buf);
799 	*cntp = cnt;
800 	return (kif);	/* Caller must free() return value */
801 }
802 
803 static struct filestat_list *
804 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
805     int mmapped)
806 {
807 	struct kinfo_file *kif, *files;
808 	struct kinfo_vmentry *kve, *vmentries;
809 	struct filestat_list *head;
810 	struct filestat *entry;
811 	char *path;
812 	off_t offset;
813 	int cnt, fd, fflags;
814 	int i, type, uflags;
815 	int refcount;
816 	cap_rights_t cap_rights;
817 
818 	assert(kp);
819 	if (kp->ki_fd == NULL)
820 		return (NULL);
821 	switch(procstat->type) {
822 	case PROCSTAT_SYSCTL:
823 		files = kinfo_getfile(kp->ki_pid, &cnt);
824 		break;
825 	case PROCSTAT_CORE:
826 		files = kinfo_getfile_core(procstat->core, &cnt);
827 		break;
828 	default:
829 		assert(!"invalid type");
830 	}
831 	if (files == NULL && errno != EPERM) {
832 		warn("kinfo_getfile()");
833 		return (NULL);
834 	}
835 	procstat->files = files;
836 
837 	/*
838 	 * Allocate list head.
839 	 */
840 	head = malloc(sizeof(*head));
841 	if (head == NULL)
842 		return (NULL);
843 	STAILQ_INIT(head);
844 	for (i = 0; i < cnt; i++) {
845 		kif = &files[i];
846 
847 		type = kinfo_type2fst(kif->kf_type);
848 		fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
849 		fflags = kinfo_fflags2fst(kif->kf_flags);
850 		uflags = kinfo_uflags2fst(kif->kf_fd);
851 		refcount = kif->kf_ref_count;
852 		offset = kif->kf_offset;
853 		if (*kif->kf_path != '\0')
854 			path = strdup(kif->kf_path);
855 		else
856 			path = NULL;
857 		cap_rights = kif->kf_cap_rights;
858 
859 		/*
860 		 * Create filestat entry.
861 		 */
862 		entry = filestat_new_entry(kif, type, fd, fflags, uflags,
863 		    refcount, offset, path, &cap_rights);
864 		if (entry != NULL)
865 			STAILQ_INSERT_TAIL(head, entry, next);
866 	}
867 	if (mmapped != 0) {
868 		vmentries = procstat_getvmmap(procstat, kp, &cnt);
869 		procstat->vmentries = vmentries;
870 		if (vmentries == NULL || cnt == 0)
871 			goto fail;
872 		for (i = 0; i < cnt; i++) {
873 			kve = &vmentries[i];
874 			if (kve->kve_type != KVME_TYPE_VNODE)
875 				continue;
876 			fflags = 0;
877 			if (kve->kve_protection & KVME_PROT_READ)
878 				fflags = PS_FST_FFLAG_READ;
879 			if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
880 			    kve->kve_protection & KVME_PROT_WRITE)
881 				fflags |= PS_FST_FFLAG_WRITE;
882 			offset = kve->kve_offset;
883 			refcount = kve->kve_ref_count;
884 			if (*kve->kve_path != '\0')
885 				path = strdup(kve->kve_path);
886 			else
887 				path = NULL;
888 			entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
889 			    fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
890 			    NULL);
891 			if (entry != NULL)
892 				STAILQ_INSERT_TAIL(head, entry, next);
893 		}
894 	}
895 fail:
896 	return (head);
897 }
898 
899 int
900 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
901     struct pipestat *ps, char *errbuf)
902 {
903 
904 	assert(ps);
905 	if (procstat->type == PROCSTAT_KVM) {
906 		return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
907 		    errbuf));
908 	} else if (procstat->type == PROCSTAT_SYSCTL ||
909 		procstat->type == PROCSTAT_CORE) {
910 		return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
911 	} else {
912 		warnx("unknown access method: %d", procstat->type);
913 		if (errbuf != NULL)
914 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
915 		return (1);
916 	}
917 }
918 
919 static int
920 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
921     struct pipestat *ps, char *errbuf)
922 {
923 	struct pipe pi;
924 	void *pipep;
925 
926 	assert(kd);
927 	assert(ps);
928 	assert(fst);
929 	bzero(ps, sizeof(*ps));
930 	pipep = fst->fs_typedep;
931 	if (pipep == NULL)
932 		goto fail;
933 	if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
934 		warnx("can't read pipe at %p", (void *)pipep);
935 		goto fail;
936 	}
937 	ps->addr = (uintptr_t)pipep;
938 	ps->peer = (uintptr_t)pi.pipe_peer;
939 	ps->buffer_cnt = pi.pipe_buffer.cnt;
940 	return (0);
941 
942 fail:
943 	if (errbuf != NULL)
944 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
945 	return (1);
946 }
947 
948 static int
949 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
950     char *errbuf __unused)
951 {
952 	struct kinfo_file *kif;
953 
954 	assert(ps);
955 	assert(fst);
956 	bzero(ps, sizeof(*ps));
957 	kif = fst->fs_typedep;
958 	if (kif == NULL)
959 		return (1);
960 	ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
961 	ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
962 	ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
963 	return (0);
964 }
965 
966 int
967 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
968     struct ptsstat *pts, char *errbuf)
969 {
970 
971 	assert(pts);
972 	if (procstat->type == PROCSTAT_KVM) {
973 		return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
974 		    errbuf));
975 	} else if (procstat->type == PROCSTAT_SYSCTL ||
976 		procstat->type == PROCSTAT_CORE) {
977 		return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
978 	} else {
979 		warnx("unknown access method: %d", procstat->type);
980 		if (errbuf != NULL)
981 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
982 		return (1);
983 	}
984 }
985 
986 static int
987 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
988     struct ptsstat *pts, char *errbuf)
989 {
990 	struct tty tty;
991 	void *ttyp;
992 
993 	assert(kd);
994 	assert(pts);
995 	assert(fst);
996 	bzero(pts, sizeof(*pts));
997 	ttyp = fst->fs_typedep;
998 	if (ttyp == NULL)
999 		goto fail;
1000 	if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
1001 		warnx("can't read tty at %p", (void *)ttyp);
1002 		goto fail;
1003 	}
1004 	pts->dev = dev2udev(kd, tty.t_dev);
1005 	(void)kdevtoname(kd, tty.t_dev, pts->devname);
1006 	return (0);
1007 
1008 fail:
1009 	if (errbuf != NULL)
1010 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1011 	return (1);
1012 }
1013 
1014 static int
1015 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
1016     char *errbuf __unused)
1017 {
1018 	struct kinfo_file *kif;
1019 
1020 	assert(pts);
1021 	assert(fst);
1022 	bzero(pts, sizeof(*pts));
1023 	kif = fst->fs_typedep;
1024 	if (kif == NULL)
1025 		return (0);
1026 	pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
1027 	strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
1028 	return (0);
1029 }
1030 
1031 int
1032 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
1033     struct semstat *sem, char *errbuf)
1034 {
1035 
1036 	assert(sem);
1037 	if (procstat->type == PROCSTAT_KVM) {
1038 		return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
1039 		    errbuf));
1040 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1041 	    procstat->type == PROCSTAT_CORE) {
1042 		return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
1043 	} else {
1044 		warnx("unknown access method: %d", procstat->type);
1045 		if (errbuf != NULL)
1046 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1047 		return (1);
1048 	}
1049 }
1050 
1051 static int
1052 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
1053     struct semstat *sem, char *errbuf)
1054 {
1055 	struct ksem ksem;
1056 	void *ksemp;
1057 	char *path;
1058 	int i;
1059 
1060 	assert(kd);
1061 	assert(sem);
1062 	assert(fst);
1063 	bzero(sem, sizeof(*sem));
1064 	ksemp = fst->fs_typedep;
1065 	if (ksemp == NULL)
1066 		goto fail;
1067 	if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
1068 	    sizeof(struct ksem))) {
1069 		warnx("can't read ksem at %p", (void *)ksemp);
1070 		goto fail;
1071 	}
1072 	sem->mode = S_IFREG | ksem.ks_mode;
1073 	sem->value = ksem.ks_value;
1074 	if (fst->fs_path == NULL && ksem.ks_path != NULL) {
1075 		path = malloc(MAXPATHLEN);
1076 		for (i = 0; i < MAXPATHLEN - 1; i++) {
1077 			if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
1078 			    path + i, 1))
1079 				break;
1080 			if (path[i] == '\0')
1081 				break;
1082 		}
1083 		path[i] = '\0';
1084 		if (i == 0)
1085 			free(path);
1086 		else
1087 			fst->fs_path = path;
1088 	}
1089 	return (0);
1090 
1091 fail:
1092 	if (errbuf != NULL)
1093 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1094 	return (1);
1095 }
1096 
1097 static int
1098 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
1099     char *errbuf __unused)
1100 {
1101 	struct kinfo_file *kif;
1102 
1103 	assert(sem);
1104 	assert(fst);
1105 	bzero(sem, sizeof(*sem));
1106 	kif = fst->fs_typedep;
1107 	if (kif == NULL)
1108 		return (0);
1109 	sem->value = kif->kf_un.kf_sem.kf_sem_value;
1110 	sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
1111 	return (0);
1112 }
1113 
1114 int
1115 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
1116     struct shmstat *shm, char *errbuf)
1117 {
1118 
1119 	assert(shm);
1120 	if (procstat->type == PROCSTAT_KVM) {
1121 		return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
1122 		    errbuf));
1123 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1124 	    procstat->type == PROCSTAT_CORE) {
1125 		return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
1126 	} else {
1127 		warnx("unknown access method: %d", procstat->type);
1128 		if (errbuf != NULL)
1129 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1130 		return (1);
1131 	}
1132 }
1133 
1134 static int
1135 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
1136     struct shmstat *shm, char *errbuf)
1137 {
1138 	struct shmfd shmfd;
1139 	void *shmfdp;
1140 	char *path;
1141 	int i;
1142 
1143 	assert(kd);
1144 	assert(shm);
1145 	assert(fst);
1146 	bzero(shm, sizeof(*shm));
1147 	shmfdp = fst->fs_typedep;
1148 	if (shmfdp == NULL)
1149 		goto fail;
1150 	if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
1151 	    sizeof(struct shmfd))) {
1152 		warnx("can't read shmfd at %p", (void *)shmfdp);
1153 		goto fail;
1154 	}
1155 	shm->mode = S_IFREG | shmfd.shm_mode;
1156 	shm->size = shmfd.shm_size;
1157 	if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
1158 		path = malloc(MAXPATHLEN);
1159 		for (i = 0; i < MAXPATHLEN - 1; i++) {
1160 			if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
1161 			    path + i, 1))
1162 				break;
1163 			if (path[i] == '\0')
1164 				break;
1165 		}
1166 		path[i] = '\0';
1167 		if (i == 0)
1168 			free(path);
1169 		else
1170 			fst->fs_path = path;
1171 	}
1172 	return (0);
1173 
1174 fail:
1175 	if (errbuf != NULL)
1176 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1177 	return (1);
1178 }
1179 
1180 static int
1181 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
1182     char *errbuf __unused)
1183 {
1184 	struct kinfo_file *kif;
1185 
1186 	assert(shm);
1187 	assert(fst);
1188 	bzero(shm, sizeof(*shm));
1189 	kif = fst->fs_typedep;
1190 	if (kif == NULL)
1191 		return (0);
1192 	shm->size = kif->kf_un.kf_file.kf_file_size;
1193 	shm->mode = kif->kf_un.kf_file.kf_file_mode;
1194 	return (0);
1195 }
1196 
1197 int
1198 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
1199     struct vnstat *vn, char *errbuf)
1200 {
1201 
1202 	assert(vn);
1203 	if (procstat->type == PROCSTAT_KVM) {
1204 		return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
1205 		    errbuf));
1206 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1207 		procstat->type == PROCSTAT_CORE) {
1208 		return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
1209 	} else {
1210 		warnx("unknown access method: %d", procstat->type);
1211 		if (errbuf != NULL)
1212 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1213 		return (1);
1214 	}
1215 }
1216 
1217 static int
1218 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
1219     struct vnstat *vn, char *errbuf)
1220 {
1221 	/* Filesystem specific handlers. */
1222 	#define FSTYPE(fst)     {#fst, fst##_filestat}
1223 	struct {
1224 		const char	*tag;
1225 		int		(*handler)(kvm_t *kd, struct vnode *vp,
1226 		    struct vnstat *vn);
1227 	} fstypes[] = {
1228 		FSTYPE(devfs),
1229 		FSTYPE(isofs),
1230 		FSTYPE(msdosfs),
1231 		FSTYPE(nfs),
1232 		FSTYPE(smbfs),
1233 		FSTYPE(udf),
1234 		FSTYPE(ufs),
1235 #ifdef LIBPROCSTAT_ZFS
1236 		FSTYPE(zfs),
1237 #endif
1238 	};
1239 #define	NTYPES	(sizeof(fstypes) / sizeof(*fstypes))
1240 	struct vnode vnode;
1241 	char tagstr[12];
1242 	void *vp;
1243 	int error;
1244 	unsigned int i;
1245 
1246 	assert(kd);
1247 	assert(vn);
1248 	assert(fst);
1249 	vp = fst->fs_typedep;
1250 	if (vp == NULL)
1251 		goto fail;
1252 	error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
1253 	if (error == 0) {
1254 		warnx("can't read vnode at %p", (void *)vp);
1255 		goto fail;
1256 	}
1257 	bzero(vn, sizeof(*vn));
1258 	vn->vn_type = vntype2psfsttype(vnode.v_type);
1259 	if (vnode.v_type == VNON || vnode.v_type == VBAD)
1260 		return (0);
1261 	error = kvm_read_all(kd, (unsigned long)vnode.v_tag, tagstr,
1262 	    sizeof(tagstr));
1263 	if (error == 0) {
1264 		warnx("can't read v_tag at %p", (void *)vp);
1265 		goto fail;
1266 	}
1267 	tagstr[sizeof(tagstr) - 1] = '\0';
1268 
1269 	/*
1270 	 * Find appropriate handler.
1271 	 */
1272 	for (i = 0; i < NTYPES; i++)
1273 		if (!strcmp(fstypes[i].tag, tagstr)) {
1274 			if (fstypes[i].handler(kd, &vnode, vn) != 0) {
1275 				goto fail;
1276 			}
1277 			break;
1278 		}
1279 	if (i == NTYPES) {
1280 		if (errbuf != NULL)
1281 			snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
1282 		return (1);
1283 	}
1284 	vn->vn_mntdir = getmnton(kd, vnode.v_mount);
1285 	if ((vnode.v_type == VBLK || vnode.v_type == VCHR) &&
1286 	    vnode.v_rdev != NULL){
1287 		vn->vn_dev = dev2udev(kd, vnode.v_rdev);
1288 		(void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
1289 	} else {
1290 		vn->vn_dev = -1;
1291 	}
1292 	return (0);
1293 
1294 fail:
1295 	if (errbuf != NULL)
1296 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1297 	return (1);
1298 }
1299 
1300 /*
1301  * kinfo vnode type to filestat translation.
1302  */
1303 static int
1304 kinfo_vtype2fst(int kfvtype)
1305 {
1306 	static struct {
1307 		int	kf_vtype;
1308 		int	fst_vtype;
1309 	} kfvtypes2fst[] = {
1310 		{ KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
1311 		{ KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
1312 		{ KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
1313 		{ KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
1314 		{ KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
1315 		{ KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
1316 		{ KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
1317 		{ KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
1318 		{ KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
1319 	};
1320 #define	NKFVTYPES	(sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
1321 	unsigned int i;
1322 
1323 	for (i = 0; i < NKFVTYPES; i++)
1324 		if (kfvtypes2fst[i].kf_vtype == kfvtype)
1325 			break;
1326 	if (i == NKFVTYPES)
1327 		return (PS_FST_VTYPE_UNKNOWN);
1328 	return (kfvtypes2fst[i].fst_vtype);
1329 }
1330 
1331 static int
1332 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
1333     char *errbuf)
1334 {
1335 	struct statfs stbuf;
1336 	struct kinfo_file *kif;
1337 	struct kinfo_vmentry *kve;
1338 	uint64_t fileid;
1339 	uint64_t size;
1340 	char *name, *path;
1341 	uint32_t fsid;
1342 	uint16_t mode;
1343 	uint32_t rdev;
1344 	int vntype;
1345 	int status;
1346 
1347 	assert(fst);
1348 	assert(vn);
1349 	bzero(vn, sizeof(*vn));
1350 	if (fst->fs_typedep == NULL)
1351 		return (1);
1352 	if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
1353 		kve = fst->fs_typedep;
1354 		fileid = kve->kve_vn_fileid;
1355 		fsid = kve->kve_vn_fsid;
1356 		mode = kve->kve_vn_mode;
1357 		path = kve->kve_path;
1358 		rdev = kve->kve_vn_rdev;
1359 		size = kve->kve_vn_size;
1360 		vntype = kinfo_vtype2fst(kve->kve_vn_type);
1361 		status = kve->kve_status;
1362 	} else {
1363 		kif = fst->fs_typedep;
1364 		fileid = kif->kf_un.kf_file.kf_file_fileid;
1365 		fsid = kif->kf_un.kf_file.kf_file_fsid;
1366 		mode = kif->kf_un.kf_file.kf_file_mode;
1367 		path = kif->kf_path;
1368 		rdev = kif->kf_un.kf_file.kf_file_rdev;
1369 		size = kif->kf_un.kf_file.kf_file_size;
1370 		vntype = kinfo_vtype2fst(kif->kf_vnode_type);
1371 		status = kif->kf_status;
1372 	}
1373 	vn->vn_type = vntype;
1374 	if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
1375 		return (0);
1376 	if ((status & KF_ATTR_VALID) == 0) {
1377 		if (errbuf != NULL) {
1378 			snprintf(errbuf, _POSIX2_LINE_MAX,
1379 			    "? (no info available)");
1380 		}
1381 		return (1);
1382 	}
1383 	if (path && *path) {
1384 		statfs(path, &stbuf);
1385 		vn->vn_mntdir = strdup(stbuf.f_mntonname);
1386 	} else
1387 		vn->vn_mntdir = strdup("-");
1388 	vn->vn_dev = rdev;
1389 	if (vntype == PS_FST_VTYPE_VBLK) {
1390 		name = devname(rdev, S_IFBLK);
1391 		if (name != NULL)
1392 			strlcpy(vn->vn_devname, name,
1393 			    sizeof(vn->vn_devname));
1394 	} else if (vntype == PS_FST_VTYPE_VCHR) {
1395 		name = devname(vn->vn_dev, S_IFCHR);
1396 		if (name != NULL)
1397 			strlcpy(vn->vn_devname, name,
1398 			    sizeof(vn->vn_devname));
1399 	}
1400 	vn->vn_fsid = fsid;
1401 	vn->vn_fileid = fileid;
1402 	vn->vn_size = size;
1403 	vn->vn_mode = mode;
1404 	return (0);
1405 }
1406 
1407 int
1408 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
1409     struct sockstat *sock, char *errbuf)
1410 {
1411 
1412 	assert(sock);
1413 	if (procstat->type == PROCSTAT_KVM) {
1414 		return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
1415 		    errbuf));
1416 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1417 		procstat->type == PROCSTAT_CORE) {
1418 		return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
1419 	} else {
1420 		warnx("unknown access method: %d", procstat->type);
1421 		if (errbuf != NULL)
1422 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1423 		return (1);
1424 	}
1425 }
1426 
1427 static int
1428 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
1429     struct sockstat *sock, char *errbuf)
1430 {
1431 	struct domain dom;
1432 	struct inpcb inpcb;
1433 	struct protosw proto;
1434 	struct socket s;
1435 	struct unpcb unpcb;
1436 	ssize_t len;
1437 	void *so;
1438 
1439 	assert(kd);
1440 	assert(sock);
1441 	assert(fst);
1442 	bzero(sock, sizeof(*sock));
1443 	so = fst->fs_typedep;
1444 	if (so == NULL)
1445 		goto fail;
1446 	sock->so_addr = (uintptr_t)so;
1447 	/* fill in socket */
1448 	if (!kvm_read_all(kd, (unsigned long)so, &s,
1449 	    sizeof(struct socket))) {
1450 		warnx("can't read sock at %p", (void *)so);
1451 		goto fail;
1452 	}
1453 	/* fill in protosw entry */
1454 	if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
1455 	    sizeof(struct protosw))) {
1456 		warnx("can't read protosw at %p", (void *)s.so_proto);
1457 		goto fail;
1458 	}
1459 	/* fill in domain */
1460 	if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
1461 	    sizeof(struct domain))) {
1462 		warnx("can't read domain at %p",
1463 		    (void *)proto.pr_domain);
1464 		goto fail;
1465 	}
1466 	if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
1467 	    sizeof(sock->dname) - 1)) < 0) {
1468 		warnx("can't read domain name at %p", (void *)dom.dom_name);
1469 		sock->dname[0] = '\0';
1470 	}
1471 	else
1472 		sock->dname[len] = '\0';
1473 
1474 	/*
1475 	 * Fill in known data.
1476 	 */
1477 	sock->type = s.so_type;
1478 	sock->proto = proto.pr_protocol;
1479 	sock->dom_family = dom.dom_family;
1480 	sock->so_pcb = (uintptr_t)s.so_pcb;
1481 
1482 	/*
1483 	 * Protocol specific data.
1484 	 */
1485 	switch(dom.dom_family) {
1486 	case AF_INET:
1487 	case AF_INET6:
1488 		if (proto.pr_protocol == IPPROTO_TCP) {
1489 			if (s.so_pcb) {
1490 				if (kvm_read(kd, (u_long)s.so_pcb,
1491 				    (char *)&inpcb, sizeof(struct inpcb))
1492 				    != sizeof(struct inpcb)) {
1493 					warnx("can't read inpcb at %p",
1494 					    (void *)s.so_pcb);
1495 				} else
1496 					sock->inp_ppcb =
1497 					    (uintptr_t)inpcb.inp_ppcb;
1498 			}
1499 		}
1500 		break;
1501 	case AF_UNIX:
1502 		if (s.so_pcb) {
1503 			if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
1504 			    sizeof(struct unpcb)) != sizeof(struct unpcb)){
1505 				warnx("can't read unpcb at %p",
1506 				    (void *)s.so_pcb);
1507 			} else if (unpcb.unp_conn) {
1508 				sock->so_rcv_sb_state = s.so_rcv.sb_state;
1509 				sock->so_snd_sb_state = s.so_snd.sb_state;
1510 				sock->unp_conn = (uintptr_t)unpcb.unp_conn;
1511 			}
1512 		}
1513 		break;
1514 	default:
1515 		break;
1516 	}
1517 	return (0);
1518 
1519 fail:
1520 	if (errbuf != NULL)
1521 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1522 	return (1);
1523 }
1524 
1525 static int
1526 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
1527     char *errbuf __unused)
1528 {
1529 	struct kinfo_file *kif;
1530 
1531 	assert(sock);
1532 	assert(fst);
1533 	bzero(sock, sizeof(*sock));
1534 	kif = fst->fs_typedep;
1535 	if (kif == NULL)
1536 		return (0);
1537 
1538 	/*
1539 	 * Fill in known data.
1540 	 */
1541 	sock->type = kif->kf_sock_type;
1542 	sock->proto = kif->kf_sock_protocol;
1543 	sock->dom_family = kif->kf_sock_domain;
1544 	sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
1545 	strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
1546 	bcopy(&kif->kf_sa_local, &sock->sa_local, kif->kf_sa_local.ss_len);
1547 	bcopy(&kif->kf_sa_peer, &sock->sa_peer, kif->kf_sa_peer.ss_len);
1548 
1549 	/*
1550 	 * Protocol specific data.
1551 	 */
1552 	switch(sock->dom_family) {
1553 	case AF_INET:
1554 	case AF_INET6:
1555 		if (sock->proto == IPPROTO_TCP)
1556 			sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb;
1557 		break;
1558 	case AF_UNIX:
1559 		if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
1560 				sock->so_rcv_sb_state =
1561 				    kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
1562 				sock->so_snd_sb_state =
1563 				    kif->kf_un.kf_sock.kf_sock_snd_sb_state;
1564 				sock->unp_conn =
1565 				    kif->kf_un.kf_sock.kf_sock_unpconn;
1566 		}
1567 		break;
1568 	default:
1569 		break;
1570 	}
1571 	return (0);
1572 }
1573 
1574 /*
1575  * Descriptor flags to filestat translation.
1576  */
1577 static int
1578 to_filestat_flags(int flags)
1579 {
1580 	static struct {
1581 		int flag;
1582 		int fst_flag;
1583 	} fstflags[] = {
1584 		{ FREAD, PS_FST_FFLAG_READ },
1585 		{ FWRITE, PS_FST_FFLAG_WRITE },
1586 		{ O_APPEND, PS_FST_FFLAG_APPEND },
1587 		{ O_ASYNC, PS_FST_FFLAG_ASYNC },
1588 		{ O_CREAT, PS_FST_FFLAG_CREAT },
1589 		{ O_DIRECT, PS_FST_FFLAG_DIRECT },
1590 		{ O_EXCL, PS_FST_FFLAG_EXCL },
1591 		{ O_EXEC, PS_FST_FFLAG_EXEC },
1592 		{ O_EXLOCK, PS_FST_FFLAG_EXLOCK },
1593 		{ O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
1594 		{ O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
1595 		{ O_SHLOCK, PS_FST_FFLAG_SHLOCK },
1596 		{ O_SYNC, PS_FST_FFLAG_SYNC },
1597 		{ O_TRUNC, PS_FST_FFLAG_TRUNC }
1598 	};
1599 #define NFSTFLAGS	(sizeof(fstflags) / sizeof(*fstflags))
1600 	int fst_flags;
1601 	unsigned int i;
1602 
1603 	fst_flags = 0;
1604 	for (i = 0; i < NFSTFLAGS; i++)
1605 		if (flags & fstflags[i].flag)
1606 			fst_flags |= fstflags[i].fst_flag;
1607 	return (fst_flags);
1608 }
1609 
1610 /*
1611  * Vnode type to filestate translation.
1612  */
1613 static int
1614 vntype2psfsttype(int type)
1615 {
1616 	static struct {
1617 		int	vtype;
1618 		int	fst_vtype;
1619 	} vt2fst[] = {
1620 		{ VBAD, PS_FST_VTYPE_VBAD },
1621 		{ VBLK, PS_FST_VTYPE_VBLK },
1622 		{ VCHR, PS_FST_VTYPE_VCHR },
1623 		{ VDIR, PS_FST_VTYPE_VDIR },
1624 		{ VFIFO, PS_FST_VTYPE_VFIFO },
1625 		{ VLNK, PS_FST_VTYPE_VLNK },
1626 		{ VNON, PS_FST_VTYPE_VNON },
1627 		{ VREG, PS_FST_VTYPE_VREG },
1628 		{ VSOCK, PS_FST_VTYPE_VSOCK }
1629 	};
1630 #define	NVFTYPES	(sizeof(vt2fst) / sizeof(*vt2fst))
1631 	unsigned int i, fst_type;
1632 
1633 	fst_type = PS_FST_VTYPE_UNKNOWN;
1634 	for (i = 0; i < NVFTYPES; i++) {
1635 		if (type == vt2fst[i].vtype) {
1636 			fst_type = vt2fst[i].fst_vtype;
1637 			break;
1638 		}
1639 	}
1640 	return (fst_type);
1641 }
1642 
1643 static char *
1644 getmnton(kvm_t *kd, struct mount *m)
1645 {
1646 	struct mount mnt;
1647 	static struct mtab {
1648 		struct mtab *next;
1649 		struct mount *m;
1650 		char mntonname[MNAMELEN + 1];
1651 	} *mhead = NULL;
1652 	struct mtab *mt;
1653 
1654 	for (mt = mhead; mt != NULL; mt = mt->next)
1655 		if (m == mt->m)
1656 			return (mt->mntonname);
1657 	if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
1658 		warnx("can't read mount table at %p", (void *)m);
1659 		return (NULL);
1660 	}
1661 	if ((mt = malloc(sizeof (struct mtab))) == NULL)
1662 		err(1, NULL);
1663 	mt->m = m;
1664 	bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
1665 	mt->mntonname[MNAMELEN] = '\0';
1666 	mt->next = mhead;
1667 	mhead = mt;
1668 	return (mt->mntonname);
1669 }
1670 
1671 /*
1672  * Auxiliary structures and functions to get process environment or
1673  * command line arguments.
1674  */
1675 struct argvec {
1676 	char	*buf;
1677 	size_t	bufsize;
1678 	char	**argv;
1679 	size_t	argc;
1680 };
1681 
1682 static struct argvec *
1683 argvec_alloc(size_t bufsize)
1684 {
1685 	struct argvec *av;
1686 
1687 	av = malloc(sizeof(*av));
1688 	if (av == NULL)
1689 		return (NULL);
1690 	av->bufsize = bufsize;
1691 	av->buf = malloc(av->bufsize);
1692 	if (av->buf == NULL) {
1693 		free(av);
1694 		return (NULL);
1695 	}
1696 	av->argc = 32;
1697 	av->argv = malloc(sizeof(char *) * av->argc);
1698 	if (av->argv == NULL) {
1699 		free(av->buf);
1700 		free(av);
1701 		return (NULL);
1702 	}
1703 	return av;
1704 }
1705 
1706 static void
1707 argvec_free(struct argvec * av)
1708 {
1709 
1710 	free(av->argv);
1711 	free(av->buf);
1712 	free(av);
1713 }
1714 
1715 static char **
1716 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
1717 {
1718 	int error, name[4], argc, i;
1719 	struct argvec *av, **avp;
1720 	enum psc_type type;
1721 	size_t len;
1722 	char *p, **argv;
1723 
1724 	assert(procstat);
1725 	assert(kp);
1726 	if (procstat->type == PROCSTAT_KVM) {
1727 		warnx("can't use kvm access method");
1728 		return (NULL);
1729 	}
1730 	if (procstat->type != PROCSTAT_SYSCTL &&
1731 	    procstat->type != PROCSTAT_CORE) {
1732 		warnx("unknown access method: %d", procstat->type);
1733 		return (NULL);
1734 	}
1735 
1736 	if (nchr == 0 || nchr > ARG_MAX)
1737 		nchr = ARG_MAX;
1738 
1739 	avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
1740 	av = *avp;
1741 
1742 	if (av == NULL)
1743 	{
1744 		av = argvec_alloc(nchr);
1745 		if (av == NULL)
1746 		{
1747 			warn("malloc(%zu)", nchr);
1748 			return (NULL);
1749 		}
1750 		*avp = av;
1751 	} else if (av->bufsize < nchr) {
1752 		av->buf = reallocf(av->buf, nchr);
1753 		if (av->buf == NULL) {
1754 			warn("malloc(%zu)", nchr);
1755 			return (NULL);
1756 		}
1757 	}
1758 	if (procstat->type == PROCSTAT_SYSCTL) {
1759 		name[0] = CTL_KERN;
1760 		name[1] = KERN_PROC;
1761 		name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
1762 		name[3] = kp->ki_pid;
1763 		len = nchr;
1764 		error = sysctl(name, nitems(name), av->buf, &len, NULL, 0);
1765 		if (error != 0 && errno != ESRCH && errno != EPERM)
1766 			warn("sysctl(kern.proc.%s)", env ? "env" : "args");
1767 		if (error != 0 || len == 0)
1768 			return (NULL);
1769 	} else /* procstat->type == PROCSTAT_CORE */ {
1770 		type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
1771 		len = nchr;
1772 		if (procstat_core_get(procstat->core, type, av->buf, &len)
1773 		    == NULL) {
1774 			return (NULL);
1775 		}
1776 	}
1777 
1778 	argv = av->argv;
1779 	argc = av->argc;
1780 	i = 0;
1781 	for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
1782 		argv[i++] = p;
1783 		if (i < argc)
1784 			continue;
1785 		/* Grow argv. */
1786 		argc += argc;
1787 		argv = realloc(argv, sizeof(char *) * argc);
1788 		if (argv == NULL) {
1789 			warn("malloc(%zu)", sizeof(char *) * argc);
1790 			return (NULL);
1791 		}
1792 		av->argv = argv;
1793 		av->argc = argc;
1794 	}
1795 	argv[i] = NULL;
1796 
1797 	return (argv);
1798 }
1799 
1800 /*
1801  * Return process command line arguments.
1802  */
1803 char **
1804 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1805 {
1806 
1807 	return (getargv(procstat, p, nchr, 0));
1808 }
1809 
1810 /*
1811  * Free the buffer allocated by procstat_getargv().
1812  */
1813 void
1814 procstat_freeargv(struct procstat *procstat)
1815 {
1816 
1817 	if (procstat->argv != NULL) {
1818 		argvec_free(procstat->argv);
1819 		procstat->argv = NULL;
1820 	}
1821 }
1822 
1823 /*
1824  * Return process environment.
1825  */
1826 char **
1827 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1828 {
1829 
1830 	return (getargv(procstat, p, nchr, 1));
1831 }
1832 
1833 /*
1834  * Free the buffer allocated by procstat_getenvv().
1835  */
1836 void
1837 procstat_freeenvv(struct procstat *procstat)
1838 {
1839 	if (procstat->envv != NULL) {
1840 		argvec_free(procstat->envv);
1841 		procstat->envv = NULL;
1842 	}
1843 }
1844 
1845 static struct kinfo_vmentry *
1846 kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
1847 {
1848 	int cnt;
1849 	size_t len;
1850 	char *buf, *bp, *eb;
1851 	struct kinfo_vmentry *kiv, *kp, *kv;
1852 
1853 	buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
1854 	if (buf == NULL)
1855 		return (NULL);
1856 
1857 	/*
1858 	 * XXXMG: The code below is just copy&past from libutil.
1859 	 * The code duplication can be avoided if libutil
1860 	 * is extended to provide something like:
1861 	 *   struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
1862 	 *       size_t len, int *cntp);
1863 	 */
1864 
1865 	/* Pass 1: count items */
1866 	cnt = 0;
1867 	bp = buf;
1868 	eb = buf + len;
1869 	while (bp < eb) {
1870 		kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1871 		if (kv->kve_structsize == 0)
1872 			break;
1873 		bp += kv->kve_structsize;
1874 		cnt++;
1875 	}
1876 
1877 	kiv = calloc(cnt, sizeof(*kiv));
1878 	if (kiv == NULL) {
1879 		free(buf);
1880 		return (NULL);
1881 	}
1882 	bp = buf;
1883 	eb = buf + len;
1884 	kp = kiv;
1885 	/* Pass 2: unpack */
1886 	while (bp < eb) {
1887 		kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1888 		if (kv->kve_structsize == 0)
1889 			break;
1890 		/* Copy/expand into pre-zeroed buffer */
1891 		memcpy(kp, kv, kv->kve_structsize);
1892 		/* Advance to next packed record */
1893 		bp += kv->kve_structsize;
1894 		/* Set field size to fixed length, advance */
1895 		kp->kve_structsize = sizeof(*kp);
1896 		kp++;
1897 	}
1898 	free(buf);
1899 	*cntp = cnt;
1900 	return (kiv);	/* Caller must free() return value */
1901 }
1902 
1903 struct kinfo_vmentry *
1904 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
1905     unsigned int *cntp)
1906 {
1907 
1908 	switch(procstat->type) {
1909 	case PROCSTAT_KVM:
1910 		warnx("kvm method is not supported");
1911 		return (NULL);
1912 	case PROCSTAT_SYSCTL:
1913 		return (kinfo_getvmmap(kp->ki_pid, cntp));
1914 	case PROCSTAT_CORE:
1915 		return (kinfo_getvmmap_core(procstat->core, cntp));
1916 	default:
1917 		warnx("unknown access method: %d", procstat->type);
1918 		return (NULL);
1919 	}
1920 }
1921 
1922 void
1923 procstat_freevmmap(struct procstat *procstat __unused,
1924     struct kinfo_vmentry *vmmap)
1925 {
1926 
1927 	free(vmmap);
1928 }
1929 
1930 static gid_t *
1931 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
1932 {
1933 	struct proc proc;
1934 	struct ucred ucred;
1935 	gid_t *groups;
1936 	size_t len;
1937 
1938 	assert(kd != NULL);
1939 	assert(kp != NULL);
1940 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
1941 	    sizeof(proc))) {
1942 		warnx("can't read proc struct at %p for pid %d",
1943 		    kp->ki_paddr, kp->ki_pid);
1944 		return (NULL);
1945 	}
1946 	if (proc.p_ucred == NOCRED)
1947 		return (NULL);
1948 	if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
1949 	    sizeof(ucred))) {
1950 		warnx("can't read ucred struct at %p for pid %d",
1951 		    proc.p_ucred, kp->ki_pid);
1952 		return (NULL);
1953 	}
1954 	len = ucred.cr_ngroups * sizeof(gid_t);
1955 	groups = malloc(len);
1956 	if (groups == NULL) {
1957 		warn("malloc(%zu)", len);
1958 		return (NULL);
1959 	}
1960 	if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
1961 		warnx("can't read groups at %p for pid %d",
1962 		    ucred.cr_groups, kp->ki_pid);
1963 		free(groups);
1964 		return (NULL);
1965 	}
1966 	*cntp = ucred.cr_ngroups;
1967 	return (groups);
1968 }
1969 
1970 static gid_t *
1971 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
1972 {
1973 	int mib[4];
1974 	size_t len;
1975 	gid_t *groups;
1976 
1977 	mib[0] = CTL_KERN;
1978 	mib[1] = KERN_PROC;
1979 	mib[2] = KERN_PROC_GROUPS;
1980 	mib[3] = pid;
1981 	len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
1982 	groups = malloc(len);
1983 	if (groups == NULL) {
1984 		warn("malloc(%zu)", len);
1985 		return (NULL);
1986 	}
1987 	if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) {
1988 		warn("sysctl: kern.proc.groups: %d", pid);
1989 		free(groups);
1990 		return (NULL);
1991 	}
1992 	*cntp = len / sizeof(gid_t);
1993 	return (groups);
1994 }
1995 
1996 static gid_t *
1997 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
1998 {
1999 	size_t len;
2000 	gid_t *groups;
2001 
2002 	groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
2003 	if (groups == NULL)
2004 		return (NULL);
2005 	*cntp = len / sizeof(gid_t);
2006 	return (groups);
2007 }
2008 
2009 gid_t *
2010 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
2011     unsigned int *cntp)
2012 {
2013 	switch(procstat->type) {
2014 	case PROCSTAT_KVM:
2015 		return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
2016 	case PROCSTAT_SYSCTL:
2017 		return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
2018 	case PROCSTAT_CORE:
2019 		return (procstat_getgroups_core(procstat->core, cntp));
2020 	default:
2021 		warnx("unknown access method: %d", procstat->type);
2022 		return (NULL);
2023 	}
2024 }
2025 
2026 void
2027 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
2028 {
2029 
2030 	free(groups);
2031 }
2032 
2033 static int
2034 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
2035 {
2036 	struct filedesc fd;
2037 
2038 	assert(kd != NULL);
2039 	assert(kp != NULL);
2040 	if (kp->ki_fd == NULL)
2041 		return (-1);
2042 	if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) {
2043 		warnx("can't read filedesc at %p for pid %d", kp->ki_fd,
2044 		    kp->ki_pid);
2045 		return (-1);
2046 	}
2047 	*maskp = fd.fd_cmask;
2048 	return (0);
2049 }
2050 
2051 static int
2052 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
2053 {
2054 	int error;
2055 	int mib[4];
2056 	size_t len;
2057 
2058 	mib[0] = CTL_KERN;
2059 	mib[1] = KERN_PROC;
2060 	mib[2] = KERN_PROC_UMASK;
2061 	mib[3] = pid;
2062 	len = sizeof(*maskp);
2063 	error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0);
2064 	if (error != 0 && errno != ESRCH && errno != EPERM)
2065 		warn("sysctl: kern.proc.umask: %d", pid);
2066 	return (error);
2067 }
2068 
2069 static int
2070 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
2071 {
2072 	size_t len;
2073 	unsigned short *buf;
2074 
2075 	buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
2076 	if (buf == NULL)
2077 		return (-1);
2078 	if (len < sizeof(*maskp)) {
2079 		free(buf);
2080 		return (-1);
2081 	}
2082 	*maskp = *buf;
2083 	free(buf);
2084 	return (0);
2085 }
2086 
2087 int
2088 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
2089     unsigned short *maskp)
2090 {
2091 	switch(procstat->type) {
2092 	case PROCSTAT_KVM:
2093 		return (procstat_getumask_kvm(procstat->kd, kp, maskp));
2094 	case PROCSTAT_SYSCTL:
2095 		return (procstat_getumask_sysctl(kp->ki_pid, maskp));
2096 	case PROCSTAT_CORE:
2097 		return (procstat_getumask_core(procstat->core, maskp));
2098 	default:
2099 		warnx("unknown access method: %d", procstat->type);
2100 		return (-1);
2101 	}
2102 }
2103 
2104 static int
2105 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
2106     struct rlimit* rlimit)
2107 {
2108 	struct proc proc;
2109 	unsigned long offset;
2110 
2111 	assert(kd != NULL);
2112 	assert(kp != NULL);
2113 	assert(which >= 0 && which < RLIM_NLIMITS);
2114 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2115 	    sizeof(proc))) {
2116 		warnx("can't read proc struct at %p for pid %d",
2117 		    kp->ki_paddr, kp->ki_pid);
2118 		return (-1);
2119 	}
2120 	if (proc.p_limit == NULL)
2121 		return (-1);
2122 	offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
2123 	if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
2124 		warnx("can't read rlimit struct at %p for pid %d",
2125 		    (void *)offset, kp->ki_pid);
2126 		return (-1);
2127 	}
2128 	return (0);
2129 }
2130 
2131 static int
2132 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
2133 {
2134 	int error, name[5];
2135 	size_t len;
2136 
2137 	name[0] = CTL_KERN;
2138 	name[1] = KERN_PROC;
2139 	name[2] = KERN_PROC_RLIMIT;
2140 	name[3] = pid;
2141 	name[4] = which;
2142 	len = sizeof(struct rlimit);
2143 	error = sysctl(name, nitems(name), rlimit, &len, NULL, 0);
2144 	if (error < 0 && errno != ESRCH) {
2145 		warn("sysctl: kern.proc.rlimit: %d", pid);
2146 		return (-1);
2147 	}
2148 	if (error < 0 || len != sizeof(struct rlimit))
2149 		return (-1);
2150 	return (0);
2151 }
2152 
2153 static int
2154 procstat_getrlimit_core(struct procstat_core *core, int which,
2155     struct rlimit* rlimit)
2156 {
2157 	size_t len;
2158 	struct rlimit* rlimits;
2159 
2160 	if (which < 0 || which >= RLIM_NLIMITS) {
2161 		errno = EINVAL;
2162 		warn("getrlimit: which");
2163 		return (-1);
2164 	}
2165 	rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
2166 	if (rlimits == NULL)
2167 		return (-1);
2168 	if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
2169 		free(rlimits);
2170 		return (-1);
2171 	}
2172 	*rlimit = rlimits[which];
2173 	return (0);
2174 }
2175 
2176 int
2177 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
2178     struct rlimit* rlimit)
2179 {
2180 	switch(procstat->type) {
2181 	case PROCSTAT_KVM:
2182 		return (procstat_getrlimit_kvm(procstat->kd, kp, which,
2183 		    rlimit));
2184 	case PROCSTAT_SYSCTL:
2185 		return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
2186 	case PROCSTAT_CORE:
2187 		return (procstat_getrlimit_core(procstat->core, which, rlimit));
2188 	default:
2189 		warnx("unknown access method: %d", procstat->type);
2190 		return (-1);
2191 	}
2192 }
2193 
2194 static int
2195 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
2196 {
2197 	int error, name[4];
2198 	size_t len;
2199 
2200 	name[0] = CTL_KERN;
2201 	name[1] = KERN_PROC;
2202 	name[2] = KERN_PROC_PATHNAME;
2203 	name[3] = pid;
2204 	len = maxlen;
2205 	error = sysctl(name, nitems(name), pathname, &len, NULL, 0);
2206 	if (error != 0 && errno != ESRCH)
2207 		warn("sysctl: kern.proc.pathname: %d", pid);
2208 	if (len == 0)
2209 		pathname[0] = '\0';
2210 	return (error);
2211 }
2212 
2213 static int
2214 procstat_getpathname_core(struct procstat_core *core, char *pathname,
2215     size_t maxlen)
2216 {
2217 	struct kinfo_file *files;
2218 	int cnt, i, result;
2219 
2220 	files = kinfo_getfile_core(core, &cnt);
2221 	if (files == NULL)
2222 		return (-1);
2223 	result = -1;
2224 	for (i = 0; i < cnt; i++) {
2225 		if (files[i].kf_fd != KF_FD_TYPE_TEXT)
2226 			continue;
2227 		strncpy(pathname, files[i].kf_path, maxlen);
2228 		result = 0;
2229 		break;
2230 	}
2231 	free(files);
2232 	return (result);
2233 }
2234 
2235 int
2236 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
2237     char *pathname, size_t maxlen)
2238 {
2239 	switch(procstat->type) {
2240 	case PROCSTAT_KVM:
2241 		/* XXX: Return empty string. */
2242 		if (maxlen > 0)
2243 			pathname[0] = '\0';
2244 		return (0);
2245 	case PROCSTAT_SYSCTL:
2246 		return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
2247 		    maxlen));
2248 	case PROCSTAT_CORE:
2249 		return (procstat_getpathname_core(procstat->core, pathname,
2250 		    maxlen));
2251 	default:
2252 		warnx("unknown access method: %d", procstat->type);
2253 		return (-1);
2254 	}
2255 }
2256 
2257 static int
2258 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
2259 {
2260 	struct proc proc;
2261 
2262 	assert(kd != NULL);
2263 	assert(kp != NULL);
2264 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2265 	    sizeof(proc))) {
2266 		warnx("can't read proc struct at %p for pid %d",
2267 		    kp->ki_paddr, kp->ki_pid);
2268 		return (-1);
2269 	}
2270 	*osrelp = proc.p_osrel;
2271 	return (0);
2272 }
2273 
2274 static int
2275 procstat_getosrel_sysctl(pid_t pid, int *osrelp)
2276 {
2277 	int error, name[4];
2278 	size_t len;
2279 
2280 	name[0] = CTL_KERN;
2281 	name[1] = KERN_PROC;
2282 	name[2] = KERN_PROC_OSREL;
2283 	name[3] = pid;
2284 	len = sizeof(*osrelp);
2285 	error = sysctl(name, nitems(name), osrelp, &len, NULL, 0);
2286 	if (error != 0 && errno != ESRCH)
2287 		warn("sysctl: kern.proc.osrel: %d", pid);
2288 	return (error);
2289 }
2290 
2291 static int
2292 procstat_getosrel_core(struct procstat_core *core, int *osrelp)
2293 {
2294 	size_t len;
2295 	int *buf;
2296 
2297 	buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
2298 	if (buf == NULL)
2299 		return (-1);
2300 	if (len < sizeof(*osrelp)) {
2301 		free(buf);
2302 		return (-1);
2303 	}
2304 	*osrelp = *buf;
2305 	free(buf);
2306 	return (0);
2307 }
2308 
2309 int
2310 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
2311 {
2312 	switch(procstat->type) {
2313 	case PROCSTAT_KVM:
2314 		return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
2315 	case PROCSTAT_SYSCTL:
2316 		return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
2317 	case PROCSTAT_CORE:
2318 		return (procstat_getosrel_core(procstat->core, osrelp));
2319 	default:
2320 		warnx("unknown access method: %d", procstat->type);
2321 		return (-1);
2322 	}
2323 }
2324 
2325 #define PROC_AUXV_MAX	256
2326 
2327 #if __ELF_WORD_SIZE == 64
2328 static const char *elf32_sv_names[] = {
2329 	"Linux ELF32",
2330 	"FreeBSD ELF32",
2331 };
2332 
2333 static int
2334 is_elf32_sysctl(pid_t pid)
2335 {
2336 	int error, name[4];
2337 	size_t len, i;
2338 	static char sv_name[256];
2339 
2340 	name[0] = CTL_KERN;
2341 	name[1] = KERN_PROC;
2342 	name[2] = KERN_PROC_SV_NAME;
2343 	name[3] = pid;
2344 	len = sizeof(sv_name);
2345 	error = sysctl(name, nitems(name), sv_name, &len, NULL, 0);
2346 	if (error != 0 || len == 0)
2347 		return (0);
2348 	for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
2349 		if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
2350 			return (1);
2351 	}
2352 	return (0);
2353 }
2354 
2355 static Elf_Auxinfo *
2356 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
2357 {
2358 	Elf_Auxinfo *auxv;
2359 	Elf32_Auxinfo *auxv32;
2360 	void *ptr;
2361 	size_t len;
2362 	unsigned int i, count;
2363 	int name[4];
2364 
2365 	name[0] = CTL_KERN;
2366 	name[1] = KERN_PROC;
2367 	name[2] = KERN_PROC_AUXV;
2368 	name[3] = pid;
2369 	len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
2370 	auxv = NULL;
2371 	auxv32 = malloc(len);
2372 	if (auxv32 == NULL) {
2373 		warn("malloc(%zu)", len);
2374 		goto out;
2375 	}
2376 	if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) {
2377 		if (errno != ESRCH && errno != EPERM)
2378 			warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2379 		goto out;
2380 	}
2381 	count = len / sizeof(Elf_Auxinfo);
2382 	auxv = malloc(count  * sizeof(Elf_Auxinfo));
2383 	if (auxv == NULL) {
2384 		warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
2385 		goto out;
2386 	}
2387 	for (i = 0; i < count; i++) {
2388 		/*
2389 		 * XXX: We expect that values for a_type on a 32-bit platform
2390 		 * are directly mapped to values on 64-bit one, which is not
2391 		 * necessarily true.
2392 		 */
2393 		auxv[i].a_type = auxv32[i].a_type;
2394 		ptr = &auxv32[i].a_un;
2395 		auxv[i].a_un.a_val = *((uint32_t *)ptr);
2396 	}
2397 	*cntp = count;
2398 out:
2399 	free(auxv32);
2400 	return (auxv);
2401 }
2402 #endif /* __ELF_WORD_SIZE == 64 */
2403 
2404 static Elf_Auxinfo *
2405 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
2406 {
2407 	Elf_Auxinfo *auxv;
2408 	int name[4];
2409 	size_t len;
2410 
2411 #if __ELF_WORD_SIZE == 64
2412 	if (is_elf32_sysctl(pid))
2413 		return (procstat_getauxv32_sysctl(pid, cntp));
2414 #endif
2415 	name[0] = CTL_KERN;
2416 	name[1] = KERN_PROC;
2417 	name[2] = KERN_PROC_AUXV;
2418 	name[3] = pid;
2419 	len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
2420 	auxv = malloc(len);
2421 	if (auxv == NULL) {
2422 		warn("malloc(%zu)", len);
2423 		return (NULL);
2424 	}
2425 	if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) {
2426 		if (errno != ESRCH && errno != EPERM)
2427 			warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2428 		free(auxv);
2429 		return (NULL);
2430 	}
2431 	*cntp = len / sizeof(Elf_Auxinfo);
2432 	return (auxv);
2433 }
2434 
2435 static Elf_Auxinfo *
2436 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
2437 {
2438 	Elf_Auxinfo *auxv;
2439 	size_t len;
2440 
2441 	auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
2442 	if (auxv == NULL)
2443 		return (NULL);
2444 	*cntp = len / sizeof(Elf_Auxinfo);
2445 	return (auxv);
2446 }
2447 
2448 Elf_Auxinfo *
2449 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
2450     unsigned int *cntp)
2451 {
2452 	switch(procstat->type) {
2453 	case PROCSTAT_KVM:
2454 		warnx("kvm method is not supported");
2455 		return (NULL);
2456 	case PROCSTAT_SYSCTL:
2457 		return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
2458 	case PROCSTAT_CORE:
2459 		return (procstat_getauxv_core(procstat->core, cntp));
2460 	default:
2461 		warnx("unknown access method: %d", procstat->type);
2462 		return (NULL);
2463 	}
2464 }
2465 
2466 void
2467 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
2468 {
2469 
2470 	free(auxv);
2471 }
2472 
2473 static struct kinfo_kstack *
2474 procstat_getkstack_sysctl(pid_t pid, int *cntp)
2475 {
2476 	struct kinfo_kstack *kkstp;
2477 	int error, name[4];
2478 	size_t len;
2479 
2480 	name[0] = CTL_KERN;
2481 	name[1] = KERN_PROC;
2482 	name[2] = KERN_PROC_KSTACK;
2483 	name[3] = pid;
2484 
2485 	len = 0;
2486 	error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2487 	if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
2488 		warn("sysctl: kern.proc.kstack: %d", pid);
2489 		return (NULL);
2490 	}
2491 	if (error == -1 && errno == ENOENT) {
2492 		warnx("sysctl: kern.proc.kstack unavailable"
2493 		    " (options DDB or options STACK required in kernel)");
2494 		return (NULL);
2495 	}
2496 	if (error == -1)
2497 		return (NULL);
2498 	kkstp = malloc(len);
2499 	if (kkstp == NULL) {
2500 		warn("malloc(%zu)", len);
2501 		return (NULL);
2502 	}
2503 	if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1) {
2504 		warn("sysctl: kern.proc.pid: %d", pid);
2505 		free(kkstp);
2506 		return (NULL);
2507 	}
2508 	*cntp = len / sizeof(*kkstp);
2509 
2510 	return (kkstp);
2511 }
2512 
2513 struct kinfo_kstack *
2514 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
2515     unsigned int *cntp)
2516 {
2517 	switch(procstat->type) {
2518 	case PROCSTAT_KVM:
2519 		warnx("kvm method is not supported");
2520 		return (NULL);
2521 	case PROCSTAT_SYSCTL:
2522 		return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
2523 	case PROCSTAT_CORE:
2524 		warnx("core method is not supported");
2525 		return (NULL);
2526 	default:
2527 		warnx("unknown access method: %d", procstat->type);
2528 		return (NULL);
2529 	}
2530 }
2531 
2532 void
2533 procstat_freekstack(struct procstat *procstat __unused,
2534     struct kinfo_kstack *kkstp)
2535 {
2536 
2537 	free(kkstp);
2538 }
2539