xref: /freebsd/lib/libprocstat/libprocstat.c (revision aa906e2a4957db700d9e6cc60857e1afe1aecc85)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
6  * Copyright (c) 1988, 1993
7  *      The Regents of the University of California.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include <sys/param.h>
42 #include <sys/elf.h>
43 #include <sys/time.h>
44 #include <sys/resourcevar.h>
45 #define	_WANT_UCRED
46 #include <sys/ucred.h>
47 #undef _WANT_UCRED
48 #include <sys/proc.h>
49 #include <sys/user.h>
50 #include <sys/stat.h>
51 #include <sys/vnode.h>
52 #include <sys/socket.h>
53 #define	_WANT_SOCKET
54 #include <sys/socketvar.h>
55 #include <sys/domain.h>
56 #include <sys/protosw.h>
57 #include <sys/un.h>
58 #define	_WANT_UNPCB
59 #include <sys/unpcb.h>
60 #include <sys/sysctl.h>
61 #include <sys/tty.h>
62 #include <sys/filedesc.h>
63 #include <sys/queue.h>
64 #define	_WANT_FILE
65 #include <sys/file.h>
66 #include <sys/conf.h>
67 #include <sys/ksem.h>
68 #include <sys/mman.h>
69 #include <sys/capsicum.h>
70 #include <sys/ptrace.h>
71 #define	_KERNEL
72 #include <sys/mount.h>
73 #include <sys/filedesc.h>
74 #include <sys/pipe.h>
75 #include <ufs/ufs/quota.h>
76 #include <ufs/ufs/inode.h>
77 #include <fs/devfs/devfs.h>
78 #include <fs/devfs/devfs_int.h>
79 #undef _KERNEL
80 #include <nfs/nfsproto.h>
81 #include <nfsclient/nfs.h>
82 #include <nfsclient/nfsnode.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_object.h>
87 
88 #include <net/route.h>
89 #include <netinet/in.h>
90 #include <netinet/in_systm.h>
91 #include <netinet/ip.h>
92 #define	_WANT_INPCB
93 #include <netinet/in_pcb.h>
94 
95 #include <assert.h>
96 #include <ctype.h>
97 #include <err.h>
98 #include <fcntl.h>
99 #include <kvm.h>
100 #include <libutil.h>
101 #include <limits.h>
102 #include <paths.h>
103 #include <pwd.h>
104 #include <stdio.h>
105 #include <stdlib.h>
106 #include <stddef.h>
107 #include <string.h>
108 #include <unistd.h>
109 #include <netdb.h>
110 
111 #include <libprocstat.h>
112 #include "libprocstat_internal.h"
113 #include "common_kvm.h"
114 #include "core.h"
115 
116 int     statfs(const char *, struct statfs *);	/* XXX */
117 
118 #define	PROCSTAT_KVM	1
119 #define	PROCSTAT_SYSCTL	2
120 #define	PROCSTAT_CORE	3
121 
122 static char	**getargv(struct procstat *procstat, struct kinfo_proc *kp,
123     size_t nchr, int env);
124 static char	*getmnton(kvm_t *kd, struct mount *m);
125 static struct kinfo_vmentry *	kinfo_getvmmap_core(struct procstat_core *core,
126     int *cntp);
127 static Elf_Auxinfo	*procstat_getauxv_core(struct procstat_core *core,
128     unsigned int *cntp);
129 static Elf_Auxinfo	*procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
130 static struct filestat_list	*procstat_getfiles_kvm(
131     struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
132 static struct filestat_list	*procstat_getfiles_sysctl(
133     struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
134 static int	procstat_get_pipe_info_sysctl(struct filestat *fst,
135     struct pipestat *pipe, char *errbuf);
136 static int	procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
137     struct pipestat *pipe, char *errbuf);
138 static int	procstat_get_pts_info_sysctl(struct filestat *fst,
139     struct ptsstat *pts, char *errbuf);
140 static int	procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
141     struct ptsstat *pts, char *errbuf);
142 static int	procstat_get_sem_info_sysctl(struct filestat *fst,
143     struct semstat *sem, char *errbuf);
144 static int	procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
145     struct semstat *sem, char *errbuf);
146 static int	procstat_get_shm_info_sysctl(struct filestat *fst,
147     struct shmstat *shm, char *errbuf);
148 static int	procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
149     struct shmstat *shm, char *errbuf);
150 static int	procstat_get_socket_info_sysctl(struct filestat *fst,
151     struct sockstat *sock, char *errbuf);
152 static int	procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
153     struct sockstat *sock, char *errbuf);
154 static int	to_filestat_flags(int flags);
155 static int	procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
156     struct vnstat *vn, char *errbuf);
157 static int	procstat_get_vnode_info_sysctl(struct filestat *fst,
158     struct vnstat *vn, char *errbuf);
159 static gid_t	*procstat_getgroups_core(struct procstat_core *core,
160     unsigned int *count);
161 static gid_t *	procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
162     unsigned int *count);
163 static gid_t	*procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
164 static struct kinfo_kstack	*procstat_getkstack_sysctl(pid_t pid,
165     int *cntp);
166 static int	procstat_getosrel_core(struct procstat_core *core,
167     int *osrelp);
168 static int	procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
169     int *osrelp);
170 static int	procstat_getosrel_sysctl(pid_t pid, int *osrelp);
171 static int	procstat_getpathname_core(struct procstat_core *core,
172     char *pathname, size_t maxlen);
173 static int	procstat_getpathname_sysctl(pid_t pid, char *pathname,
174     size_t maxlen);
175 static int	procstat_getrlimit_core(struct procstat_core *core, int which,
176     struct rlimit* rlimit);
177 static int	procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
178     int which, struct rlimit* rlimit);
179 static int	procstat_getrlimit_sysctl(pid_t pid, int which,
180     struct rlimit* rlimit);
181 static int	procstat_getumask_core(struct procstat_core *core,
182     unsigned short *maskp);
183 static int	procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
184     unsigned short *maskp);
185 static int	procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
186 static int	vntype2psfsttype(int type);
187 
188 void
189 procstat_close(struct procstat *procstat)
190 {
191 
192 	assert(procstat);
193 	if (procstat->type == PROCSTAT_KVM)
194 		kvm_close(procstat->kd);
195 	else if (procstat->type == PROCSTAT_CORE)
196 		procstat_core_close(procstat->core);
197 	procstat_freeargv(procstat);
198 	procstat_freeenvv(procstat);
199 	free(procstat);
200 }
201 
202 struct procstat *
203 procstat_open_sysctl(void)
204 {
205 	struct procstat *procstat;
206 
207 	procstat = calloc(1, sizeof(*procstat));
208 	if (procstat == NULL) {
209 		warn("malloc()");
210 		return (NULL);
211 	}
212 	procstat->type = PROCSTAT_SYSCTL;
213 	return (procstat);
214 }
215 
216 struct procstat *
217 procstat_open_kvm(const char *nlistf, const char *memf)
218 {
219 	struct procstat *procstat;
220 	kvm_t *kd;
221 	char buf[_POSIX2_LINE_MAX];
222 
223 	procstat = calloc(1, sizeof(*procstat));
224 	if (procstat == NULL) {
225 		warn("malloc()");
226 		return (NULL);
227 	}
228 	kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
229 	if (kd == NULL) {
230 		warnx("kvm_openfiles(): %s", buf);
231 		free(procstat);
232 		return (NULL);
233 	}
234 	procstat->type = PROCSTAT_KVM;
235 	procstat->kd = kd;
236 	return (procstat);
237 }
238 
239 struct procstat *
240 procstat_open_core(const char *filename)
241 {
242 	struct procstat *procstat;
243 	struct procstat_core *core;
244 
245 	procstat = calloc(1, sizeof(*procstat));
246 	if (procstat == NULL) {
247 		warn("malloc()");
248 		return (NULL);
249 	}
250 	core = procstat_core_open(filename);
251 	if (core == NULL) {
252 		free(procstat);
253 		return (NULL);
254 	}
255 	procstat->type = PROCSTAT_CORE;
256 	procstat->core = core;
257 	return (procstat);
258 }
259 
260 struct kinfo_proc *
261 procstat_getprocs(struct procstat *procstat, int what, int arg,
262     unsigned int *count)
263 {
264 	struct kinfo_proc *p0, *p;
265 	size_t len, olen;
266 	int name[4];
267 	int cnt;
268 	int error;
269 
270 	assert(procstat);
271 	assert(count);
272 	p = NULL;
273 	if (procstat->type == PROCSTAT_KVM) {
274 		*count = 0;
275 		p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
276 		if (p0 == NULL || cnt <= 0)
277 			return (NULL);
278 		*count = cnt;
279 		len = *count * sizeof(*p);
280 		p = malloc(len);
281 		if (p == NULL) {
282 			warnx("malloc(%zu)", len);
283 			goto fail;
284 		}
285 		bcopy(p0, p, len);
286 		return (p);
287 	} else if (procstat->type == PROCSTAT_SYSCTL) {
288 		len = 0;
289 		name[0] = CTL_KERN;
290 		name[1] = KERN_PROC;
291 		name[2] = what;
292 		name[3] = arg;
293 		error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
294 		if (error < 0 && errno != EPERM) {
295 			warn("sysctl(kern.proc)");
296 			goto fail;
297 		}
298 		if (len == 0) {
299 			warnx("no processes?");
300 			goto fail;
301 		}
302 		do {
303 			len += len / 10;
304 			p = reallocf(p, len);
305 			if (p == NULL) {
306 				warnx("reallocf(%zu)", len);
307 				goto fail;
308 			}
309 			olen = len;
310 			error = sysctl(name, nitems(name), p, &len, NULL, 0);
311 		} while (error < 0 && errno == ENOMEM && olen == len);
312 		if (error < 0 && errno != EPERM) {
313 			warn("sysctl(kern.proc)");
314 			goto fail;
315 		}
316 		/* Perform simple consistency checks. */
317 		if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
318 			warnx("kinfo_proc structure size mismatch (len = %zu)", len);
319 			goto fail;
320 		}
321 		*count = len / sizeof(*p);
322 		return (p);
323 	} else if (procstat->type == PROCSTAT_CORE) {
324 		p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
325 		    &len);
326 		if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
327 			warnx("kinfo_proc structure size mismatch");
328 			goto fail;
329 		}
330 		*count = len / sizeof(*p);
331 		return (p);
332 	} else {
333 		warnx("unknown access method: %d", procstat->type);
334 		return (NULL);
335 	}
336 fail:
337 	if (p)
338 		free(p);
339 	return (NULL);
340 }
341 
342 void
343 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
344 {
345 
346 	if (p != NULL)
347 		free(p);
348 	p = NULL;
349 }
350 
351 struct filestat_list *
352 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
353 {
354 
355 	switch(procstat->type) {
356 	case PROCSTAT_KVM:
357 		return (procstat_getfiles_kvm(procstat, kp, mmapped));
358 	case PROCSTAT_SYSCTL:
359 	case PROCSTAT_CORE:
360 		return (procstat_getfiles_sysctl(procstat, kp, mmapped));
361 	default:
362 		warnx("unknown access method: %d", procstat->type);
363 		return (NULL);
364 	}
365 }
366 
367 void
368 procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
369 {
370 	struct filestat *fst, *tmp;
371 
372 	STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
373 		if (fst->fs_path != NULL)
374 			free(fst->fs_path);
375 		free(fst);
376 	}
377 	free(head);
378 	if (procstat->vmentries != NULL) {
379 		free(procstat->vmentries);
380 		procstat->vmentries = NULL;
381 	}
382 	if (procstat->files != NULL) {
383 		free(procstat->files);
384 		procstat->files = NULL;
385 	}
386 }
387 
388 static struct filestat *
389 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
390     int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
391 {
392 	struct filestat *entry;
393 
394 	entry = calloc(1, sizeof(*entry));
395 	if (entry == NULL) {
396 		warn("malloc()");
397 		return (NULL);
398 	}
399 	entry->fs_typedep = typedep;
400 	entry->fs_fflags = fflags;
401 	entry->fs_uflags = uflags;
402 	entry->fs_fd = fd;
403 	entry->fs_type = type;
404 	entry->fs_ref_count = refcount;
405 	entry->fs_offset = offset;
406 	entry->fs_path = path;
407 	if (cap_rightsp != NULL)
408 		entry->fs_cap_rights = *cap_rightsp;
409 	else
410 		cap_rights_init(&entry->fs_cap_rights);
411 	return (entry);
412 }
413 
414 static struct vnode *
415 getctty(kvm_t *kd, struct kinfo_proc *kp)
416 {
417 	struct pgrp pgrp;
418 	struct proc proc;
419 	struct session sess;
420 	int error;
421 
422 	assert(kp);
423 	error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
424 	    sizeof(proc));
425 	if (error == 0) {
426 		warnx("can't read proc struct at %p for pid %d",
427 		    kp->ki_paddr, kp->ki_pid);
428 		return (NULL);
429 	}
430 	if (proc.p_pgrp == NULL)
431 		return (NULL);
432 	error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
433 	    sizeof(pgrp));
434 	if (error == 0) {
435 		warnx("can't read pgrp struct at %p for pid %d",
436 		    proc.p_pgrp, kp->ki_pid);
437 		return (NULL);
438 	}
439 	error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
440 	    sizeof(sess));
441 	if (error == 0) {
442 		warnx("can't read session struct at %p for pid %d",
443 		    pgrp.pg_session, kp->ki_pid);
444 		return (NULL);
445 	}
446 	return (sess.s_ttyvp);
447 }
448 
449 static int
450 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest)
451 {
452 	kvm_t *kd;
453 
454 	kd = (kvm_t *)token;
455 	return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest)));
456 }
457 
458 static struct filestat_list *
459 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
460 {
461 	struct file file;
462 	struct filedesc filed;
463 	struct pwddesc pathsd;
464 	struct fdescenttbl *fdt;
465 	struct pwd pwd;
466 	unsigned long pwd_addr;
467 	struct vm_map_entry vmentry;
468 	struct vm_object object;
469 	struct vmspace vmspace;
470 	vm_map_entry_t entryp;
471 	vm_object_t objp;
472 	struct vnode *vp;
473 	struct filestat *entry;
474 	struct filestat_list *head;
475 	kvm_t *kd;
476 	void *data;
477 	int fflags;
478 	unsigned int i;
479 	int prot, type;
480 	size_t fdt_size;
481 	unsigned int nfiles;
482 	bool haspwd;
483 
484 	assert(procstat);
485 	kd = procstat->kd;
486 	if (kd == NULL)
487 		return (NULL);
488 	if (kp->ki_fd == NULL || kp->ki_pd == NULL)
489 		return (NULL);
490 	if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
491 	    sizeof(filed))) {
492 		warnx("can't read filedesc at %p", (void *)kp->ki_fd);
493 		return (NULL);
494 	}
495 	if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd,
496 	    sizeof(pathsd))) {
497 		warnx("can't read pwddesc at %p", (void *)kp->ki_pd);
498 		return (NULL);
499 	}
500 	haspwd = false;
501 	pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd));
502 	if (pwd_addr != 0) {
503 		if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) {
504 			warnx("can't read fd_pwd at %p", (void *)pwd_addr);
505 			return (NULL);
506 		}
507 		haspwd = true;
508 	}
509 
510 	/*
511 	 * Allocate list head.
512 	 */
513 	head = malloc(sizeof(*head));
514 	if (head == NULL)
515 		return (NULL);
516 	STAILQ_INIT(head);
517 
518 	/* root directory vnode, if one. */
519 	if (haspwd) {
520 		if (pwd.pwd_rdir) {
521 			entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1,
522 			    PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL);
523 			if (entry != NULL)
524 				STAILQ_INSERT_TAIL(head, entry, next);
525 		}
526 		/* current working directory vnode. */
527 		if (pwd.pwd_cdir) {
528 			entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1,
529 			    PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL);
530 			if (entry != NULL)
531 				STAILQ_INSERT_TAIL(head, entry, next);
532 		}
533 		/* jail root, if any. */
534 		if (pwd.pwd_jdir) {
535 			entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1,
536 			    PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL);
537 			if (entry != NULL)
538 				STAILQ_INSERT_TAIL(head, entry, next);
539 		}
540 	}
541 	/* ktrace vnode, if one */
542 	if (kp->ki_tracep) {
543 		entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
544 		    PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
545 		    PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL);
546 		if (entry != NULL)
547 			STAILQ_INSERT_TAIL(head, entry, next);
548 	}
549 	/* text vnode, if one */
550 	if (kp->ki_textvp) {
551 		entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
552 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL);
553 		if (entry != NULL)
554 			STAILQ_INSERT_TAIL(head, entry, next);
555 	}
556 	/* Controlling terminal. */
557 	if ((vp = getctty(kd, kp)) != NULL) {
558 		entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
559 		    PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
560 		    PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL);
561 		if (entry != NULL)
562 			STAILQ_INSERT_TAIL(head, entry, next);
563 	}
564 
565 	if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles,
566 	    sizeof(nfiles))) {
567 		warnx("can't read fd_files at %p", (void *)filed.fd_files);
568 		return (NULL);
569 	}
570 
571 	fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent);
572 	fdt = malloc(fdt_size);
573 	if (fdt == NULL) {
574 		warn("malloc(%zu)", fdt_size);
575 		goto do_mmapped;
576 	}
577 	if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) {
578 		warnx("cannot read file structures at %p", (void *)filed.fd_files);
579 		free(fdt);
580 		goto do_mmapped;
581 	}
582 	for (i = 0; i < nfiles; i++) {
583 		if (fdt->fdt_ofiles[i].fde_file == NULL) {
584 			continue;
585 		}
586 		if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file,
587 		    sizeof(struct file))) {
588 			warnx("can't read file %d at %p", i,
589 			    (void *)fdt->fdt_ofiles[i].fde_file);
590 			continue;
591 		}
592 		switch (file.f_type) {
593 		case DTYPE_VNODE:
594 			type = PS_FST_TYPE_VNODE;
595 			data = file.f_vnode;
596 			break;
597 		case DTYPE_SOCKET:
598 			type = PS_FST_TYPE_SOCKET;
599 			data = file.f_data;
600 			break;
601 		case DTYPE_PIPE:
602 			type = PS_FST_TYPE_PIPE;
603 			data = file.f_data;
604 			break;
605 		case DTYPE_FIFO:
606 			type = PS_FST_TYPE_FIFO;
607 			data = file.f_vnode;
608 			break;
609 #ifdef DTYPE_PTS
610 		case DTYPE_PTS:
611 			type = PS_FST_TYPE_PTS;
612 			data = file.f_data;
613 			break;
614 #endif
615 		case DTYPE_SEM:
616 			type = PS_FST_TYPE_SEM;
617 			data = file.f_data;
618 			break;
619 		case DTYPE_SHM:
620 			type = PS_FST_TYPE_SHM;
621 			data = file.f_data;
622 			break;
623 		case DTYPE_PROCDESC:
624 			type = PS_FST_TYPE_PROCDESC;
625 			data = file.f_data;
626 			break;
627 		case DTYPE_DEV:
628 			type = PS_FST_TYPE_DEV;
629 			data = file.f_data;
630 			break;
631 		case DTYPE_EVENTFD:
632 			type = PS_FST_TYPE_EVENTFD;
633 			data = file.f_data;
634 			break;
635 		default:
636 			continue;
637 		}
638 		/* XXXRW: No capability rights support for kvm yet. */
639 		entry = filestat_new_entry(data, type, i,
640 		    to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL);
641 		if (entry != NULL)
642 			STAILQ_INSERT_TAIL(head, entry, next);
643 	}
644 	free(fdt);
645 
646 do_mmapped:
647 
648 	/*
649 	 * Process mmapped files if requested.
650 	 */
651 	if (mmapped) {
652 		if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
653 		    sizeof(vmspace))) {
654 			warnx("can't read vmspace at %p",
655 			    (void *)kp->ki_vmspace);
656 			goto exit;
657 		}
658 
659 		vmentry = vmspace.vm_map.header;
660 		for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader);
661 		    entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header;
662 		     entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) {
663 			if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
664 				continue;
665 			if ((objp = vmentry.object.vm_object) == NULL)
666 				continue;
667 			for (; objp; objp = object.backing_object) {
668 				if (!kvm_read_all(kd, (unsigned long)objp,
669 				    &object, sizeof(object))) {
670 					warnx("can't read vm_object at %p",
671 					    (void *)objp);
672 					break;
673 				}
674 			}
675 
676 			/* We want only vnode objects. */
677 			if (object.type != OBJT_VNODE)
678 				continue;
679 
680 			prot = vmentry.protection;
681 			fflags = 0;
682 			if (prot & VM_PROT_READ)
683 				fflags = PS_FST_FFLAG_READ;
684 			if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
685 			    prot & VM_PROT_WRITE)
686 				fflags |= PS_FST_FFLAG_WRITE;
687 
688 			/*
689 			 * Create filestat entry.
690 			 */
691 			entry = filestat_new_entry(object.handle,
692 			    PS_FST_TYPE_VNODE, -1, fflags,
693 			    PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL);
694 			if (entry != NULL)
695 				STAILQ_INSERT_TAIL(head, entry, next);
696 		}
697 		if (entryp == NULL)
698 			warnx("can't read vm_map_entry");
699 	}
700 exit:
701 	return (head);
702 }
703 
704 /*
705  * kinfo types to filestat translation.
706  */
707 static int
708 kinfo_type2fst(int kftype)
709 {
710 	static struct {
711 		int	kf_type;
712 		int	fst_type;
713 	} kftypes2fst[] = {
714 		{ KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC },
715 		{ KF_TYPE_DEV, PS_FST_TYPE_DEV },
716 		{ KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
717 		{ KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
718 		{ KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
719 		{ KF_TYPE_NONE, PS_FST_TYPE_NONE },
720 		{ KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
721 		{ KF_TYPE_PTS, PS_FST_TYPE_PTS },
722 		{ KF_TYPE_SEM, PS_FST_TYPE_SEM },
723 		{ KF_TYPE_SHM, PS_FST_TYPE_SHM },
724 		{ KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
725 		{ KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
726 		{ KF_TYPE_EVENTFD, PS_FST_TYPE_EVENTFD },
727 		{ KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
728 	};
729 #define NKFTYPES	(sizeof(kftypes2fst) / sizeof(*kftypes2fst))
730 	unsigned int i;
731 
732 	for (i = 0; i < NKFTYPES; i++)
733 		if (kftypes2fst[i].kf_type == kftype)
734 			break;
735 	if (i == NKFTYPES)
736 		return (PS_FST_TYPE_UNKNOWN);
737 	return (kftypes2fst[i].fst_type);
738 }
739 
740 /*
741  * kinfo flags to filestat translation.
742  */
743 static int
744 kinfo_fflags2fst(int kfflags)
745 {
746 	static struct {
747 		int	kf_flag;
748 		int	fst_flag;
749 	} kfflags2fst[] = {
750 		{ KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
751 		{ KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
752 		{ KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
753 		{ KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
754 		{ KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
755 		{ KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
756 		{ KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
757 		{ KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
758 		{ KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
759 		{ KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
760 		{ KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
761 		{ KF_FLAG_READ, PS_FST_FFLAG_READ },
762 		{ KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
763 		{ KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
764 		{ KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
765 	};
766 #define NKFFLAGS	(sizeof(kfflags2fst) / sizeof(*kfflags2fst))
767 	unsigned int i;
768 	int flags;
769 
770 	flags = 0;
771 	for (i = 0; i < NKFFLAGS; i++)
772 		if ((kfflags & kfflags2fst[i].kf_flag) != 0)
773 			flags |= kfflags2fst[i].fst_flag;
774 	return (flags);
775 }
776 
777 static int
778 kinfo_uflags2fst(int fd)
779 {
780 
781 	switch (fd) {
782 	case KF_FD_TYPE_CTTY:
783 		return (PS_FST_UFLAG_CTTY);
784 	case KF_FD_TYPE_CWD:
785 		return (PS_FST_UFLAG_CDIR);
786 	case KF_FD_TYPE_JAIL:
787 		return (PS_FST_UFLAG_JAIL);
788 	case KF_FD_TYPE_TEXT:
789 		return (PS_FST_UFLAG_TEXT);
790 	case KF_FD_TYPE_TRACE:
791 		return (PS_FST_UFLAG_TRACE);
792 	case KF_FD_TYPE_ROOT:
793 		return (PS_FST_UFLAG_RDIR);
794 	}
795 	return (0);
796 }
797 
798 static struct kinfo_file *
799 kinfo_getfile_core(struct procstat_core *core, int *cntp)
800 {
801 	int cnt;
802 	size_t len;
803 	char *buf, *bp, *eb;
804 	struct kinfo_file *kif, *kp, *kf;
805 
806 	buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
807 	if (buf == NULL)
808 		return (NULL);
809 	/*
810 	 * XXXMG: The code below is just copy&past from libutil.
811 	 * The code duplication can be avoided if libutil
812 	 * is extended to provide something like:
813 	 *   struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
814 	 *       size_t len, int *cntp);
815 	 */
816 
817 	/* Pass 1: count items */
818 	cnt = 0;
819 	bp = buf;
820 	eb = buf + len;
821 	while (bp < eb) {
822 		kf = (struct kinfo_file *)(uintptr_t)bp;
823 		if (kf->kf_structsize == 0)
824 			break;
825 		bp += kf->kf_structsize;
826 		cnt++;
827 	}
828 
829 	kif = calloc(cnt, sizeof(*kif));
830 	if (kif == NULL) {
831 		free(buf);
832 		return (NULL);
833 	}
834 	bp = buf;
835 	eb = buf + len;
836 	kp = kif;
837 	/* Pass 2: unpack */
838 	while (bp < eb) {
839 		kf = (struct kinfo_file *)(uintptr_t)bp;
840 		if (kf->kf_structsize == 0)
841 			break;
842 		/* Copy/expand into pre-zeroed buffer */
843 		memcpy(kp, kf, kf->kf_structsize);
844 		/* Advance to next packed record */
845 		bp += kf->kf_structsize;
846 		/* Set field size to fixed length, advance */
847 		kp->kf_structsize = sizeof(*kp);
848 		kp++;
849 	}
850 	free(buf);
851 	*cntp = cnt;
852 	return (kif);	/* Caller must free() return value */
853 }
854 
855 static struct filestat_list *
856 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
857     int mmapped)
858 {
859 	struct kinfo_file *kif, *files;
860 	struct kinfo_vmentry *kve, *vmentries;
861 	struct filestat_list *head;
862 	struct filestat *entry;
863 	char *path;
864 	off_t offset;
865 	int cnt, fd, fflags;
866 	int i, type, uflags;
867 	int refcount;
868 	cap_rights_t cap_rights;
869 
870 	assert(kp);
871 	if (kp->ki_fd == NULL)
872 		return (NULL);
873 	switch(procstat->type) {
874 	case PROCSTAT_SYSCTL:
875 		files = kinfo_getfile(kp->ki_pid, &cnt);
876 		break;
877 	case PROCSTAT_CORE:
878 		files = kinfo_getfile_core(procstat->core, &cnt);
879 		break;
880 	default:
881 		assert(!"invalid type");
882 	}
883 	if (files == NULL && errno != EPERM) {
884 		warn("kinfo_getfile()");
885 		return (NULL);
886 	}
887 	procstat->files = files;
888 
889 	/*
890 	 * Allocate list head.
891 	 */
892 	head = malloc(sizeof(*head));
893 	if (head == NULL)
894 		return (NULL);
895 	STAILQ_INIT(head);
896 	for (i = 0; i < cnt; i++) {
897 		kif = &files[i];
898 
899 		type = kinfo_type2fst(kif->kf_type);
900 		fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
901 		fflags = kinfo_fflags2fst(kif->kf_flags);
902 		uflags = kinfo_uflags2fst(kif->kf_fd);
903 		refcount = kif->kf_ref_count;
904 		offset = kif->kf_offset;
905 		if (*kif->kf_path != '\0')
906 			path = strdup(kif->kf_path);
907 		else
908 			path = NULL;
909 		cap_rights = kif->kf_cap_rights;
910 
911 		/*
912 		 * Create filestat entry.
913 		 */
914 		entry = filestat_new_entry(kif, type, fd, fflags, uflags,
915 		    refcount, offset, path, &cap_rights);
916 		if (entry != NULL)
917 			STAILQ_INSERT_TAIL(head, entry, next);
918 	}
919 	if (mmapped != 0) {
920 		vmentries = procstat_getvmmap(procstat, kp, &cnt);
921 		procstat->vmentries = vmentries;
922 		if (vmentries == NULL || cnt == 0)
923 			goto fail;
924 		for (i = 0; i < cnt; i++) {
925 			kve = &vmentries[i];
926 			if (kve->kve_type != KVME_TYPE_VNODE)
927 				continue;
928 			fflags = 0;
929 			if (kve->kve_protection & KVME_PROT_READ)
930 				fflags = PS_FST_FFLAG_READ;
931 			if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
932 			    kve->kve_protection & KVME_PROT_WRITE)
933 				fflags |= PS_FST_FFLAG_WRITE;
934 			offset = kve->kve_offset;
935 			refcount = kve->kve_ref_count;
936 			if (*kve->kve_path != '\0')
937 				path = strdup(kve->kve_path);
938 			else
939 				path = NULL;
940 			entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
941 			    fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
942 			    NULL);
943 			if (entry != NULL)
944 				STAILQ_INSERT_TAIL(head, entry, next);
945 		}
946 	}
947 fail:
948 	return (head);
949 }
950 
951 int
952 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
953     struct pipestat *ps, char *errbuf)
954 {
955 
956 	assert(ps);
957 	if (procstat->type == PROCSTAT_KVM) {
958 		return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
959 		    errbuf));
960 	} else if (procstat->type == PROCSTAT_SYSCTL ||
961 		procstat->type == PROCSTAT_CORE) {
962 		return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
963 	} else {
964 		warnx("unknown access method: %d", procstat->type);
965 		if (errbuf != NULL)
966 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
967 		return (1);
968 	}
969 }
970 
971 static int
972 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
973     struct pipestat *ps, char *errbuf)
974 {
975 	struct pipe pi;
976 	void *pipep;
977 
978 	assert(kd);
979 	assert(ps);
980 	assert(fst);
981 	bzero(ps, sizeof(*ps));
982 	pipep = fst->fs_typedep;
983 	if (pipep == NULL)
984 		goto fail;
985 	if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
986 		warnx("can't read pipe at %p", (void *)pipep);
987 		goto fail;
988 	}
989 	ps->addr = (uintptr_t)pipep;
990 	ps->peer = (uintptr_t)pi.pipe_peer;
991 	ps->buffer_cnt = pi.pipe_buffer.cnt;
992 	return (0);
993 
994 fail:
995 	if (errbuf != NULL)
996 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
997 	return (1);
998 }
999 
1000 static int
1001 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
1002     char *errbuf __unused)
1003 {
1004 	struct kinfo_file *kif;
1005 
1006 	assert(ps);
1007 	assert(fst);
1008 	bzero(ps, sizeof(*ps));
1009 	kif = fst->fs_typedep;
1010 	if (kif == NULL)
1011 		return (1);
1012 	ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
1013 	ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
1014 	ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
1015 	return (0);
1016 }
1017 
1018 int
1019 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
1020     struct ptsstat *pts, char *errbuf)
1021 {
1022 
1023 	assert(pts);
1024 	if (procstat->type == PROCSTAT_KVM) {
1025 		return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
1026 		    errbuf));
1027 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1028 		procstat->type == PROCSTAT_CORE) {
1029 		return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
1030 	} else {
1031 		warnx("unknown access method: %d", procstat->type);
1032 		if (errbuf != NULL)
1033 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1034 		return (1);
1035 	}
1036 }
1037 
1038 static int
1039 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
1040     struct ptsstat *pts, char *errbuf)
1041 {
1042 	struct tty tty;
1043 	void *ttyp;
1044 
1045 	assert(kd);
1046 	assert(pts);
1047 	assert(fst);
1048 	bzero(pts, sizeof(*pts));
1049 	ttyp = fst->fs_typedep;
1050 	if (ttyp == NULL)
1051 		goto fail;
1052 	if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
1053 		warnx("can't read tty at %p", (void *)ttyp);
1054 		goto fail;
1055 	}
1056 	pts->dev = dev2udev(kd, tty.t_dev);
1057 	(void)kdevtoname(kd, tty.t_dev, pts->devname);
1058 	return (0);
1059 
1060 fail:
1061 	if (errbuf != NULL)
1062 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1063 	return (1);
1064 }
1065 
1066 static int
1067 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
1068     char *errbuf __unused)
1069 {
1070 	struct kinfo_file *kif;
1071 
1072 	assert(pts);
1073 	assert(fst);
1074 	bzero(pts, sizeof(*pts));
1075 	kif = fst->fs_typedep;
1076 	if (kif == NULL)
1077 		return (0);
1078 	pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
1079 	strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
1080 	return (0);
1081 }
1082 
1083 int
1084 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
1085     struct semstat *sem, char *errbuf)
1086 {
1087 
1088 	assert(sem);
1089 	if (procstat->type == PROCSTAT_KVM) {
1090 		return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
1091 		    errbuf));
1092 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1093 	    procstat->type == PROCSTAT_CORE) {
1094 		return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
1095 	} else {
1096 		warnx("unknown access method: %d", procstat->type);
1097 		if (errbuf != NULL)
1098 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1099 		return (1);
1100 	}
1101 }
1102 
1103 static int
1104 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
1105     struct semstat *sem, char *errbuf)
1106 {
1107 	struct ksem ksem;
1108 	void *ksemp;
1109 	char *path;
1110 	int i;
1111 
1112 	assert(kd);
1113 	assert(sem);
1114 	assert(fst);
1115 	bzero(sem, sizeof(*sem));
1116 	ksemp = fst->fs_typedep;
1117 	if (ksemp == NULL)
1118 		goto fail;
1119 	if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
1120 	    sizeof(struct ksem))) {
1121 		warnx("can't read ksem at %p", (void *)ksemp);
1122 		goto fail;
1123 	}
1124 	sem->mode = S_IFREG | ksem.ks_mode;
1125 	sem->value = ksem.ks_value;
1126 	if (fst->fs_path == NULL && ksem.ks_path != NULL) {
1127 		path = malloc(MAXPATHLEN);
1128 		for (i = 0; i < MAXPATHLEN - 1; i++) {
1129 			if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
1130 			    path + i, 1))
1131 				break;
1132 			if (path[i] == '\0')
1133 				break;
1134 		}
1135 		path[i] = '\0';
1136 		if (i == 0)
1137 			free(path);
1138 		else
1139 			fst->fs_path = path;
1140 	}
1141 	return (0);
1142 
1143 fail:
1144 	if (errbuf != NULL)
1145 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1146 	return (1);
1147 }
1148 
1149 static int
1150 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
1151     char *errbuf __unused)
1152 {
1153 	struct kinfo_file *kif;
1154 
1155 	assert(sem);
1156 	assert(fst);
1157 	bzero(sem, sizeof(*sem));
1158 	kif = fst->fs_typedep;
1159 	if (kif == NULL)
1160 		return (0);
1161 	sem->value = kif->kf_un.kf_sem.kf_sem_value;
1162 	sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
1163 	return (0);
1164 }
1165 
1166 int
1167 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
1168     struct shmstat *shm, char *errbuf)
1169 {
1170 
1171 	assert(shm);
1172 	if (procstat->type == PROCSTAT_KVM) {
1173 		return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
1174 		    errbuf));
1175 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1176 	    procstat->type == PROCSTAT_CORE) {
1177 		return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
1178 	} else {
1179 		warnx("unknown access method: %d", procstat->type);
1180 		if (errbuf != NULL)
1181 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1182 		return (1);
1183 	}
1184 }
1185 
1186 static int
1187 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
1188     struct shmstat *shm, char *errbuf)
1189 {
1190 	struct shmfd shmfd;
1191 	void *shmfdp;
1192 	char *path;
1193 	int i;
1194 
1195 	assert(kd);
1196 	assert(shm);
1197 	assert(fst);
1198 	bzero(shm, sizeof(*shm));
1199 	shmfdp = fst->fs_typedep;
1200 	if (shmfdp == NULL)
1201 		goto fail;
1202 	if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
1203 	    sizeof(struct shmfd))) {
1204 		warnx("can't read shmfd at %p", (void *)shmfdp);
1205 		goto fail;
1206 	}
1207 	shm->mode = S_IFREG | shmfd.shm_mode;
1208 	shm->size = shmfd.shm_size;
1209 	if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
1210 		path = malloc(MAXPATHLEN);
1211 		for (i = 0; i < MAXPATHLEN - 1; i++) {
1212 			if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
1213 			    path + i, 1))
1214 				break;
1215 			if (path[i] == '\0')
1216 				break;
1217 		}
1218 		path[i] = '\0';
1219 		if (i == 0)
1220 			free(path);
1221 		else
1222 			fst->fs_path = path;
1223 	}
1224 	return (0);
1225 
1226 fail:
1227 	if (errbuf != NULL)
1228 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1229 	return (1);
1230 }
1231 
1232 static int
1233 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
1234     char *errbuf __unused)
1235 {
1236 	struct kinfo_file *kif;
1237 
1238 	assert(shm);
1239 	assert(fst);
1240 	bzero(shm, sizeof(*shm));
1241 	kif = fst->fs_typedep;
1242 	if (kif == NULL)
1243 		return (0);
1244 	shm->size = kif->kf_un.kf_file.kf_file_size;
1245 	shm->mode = kif->kf_un.kf_file.kf_file_mode;
1246 	return (0);
1247 }
1248 
1249 int
1250 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
1251     struct vnstat *vn, char *errbuf)
1252 {
1253 
1254 	assert(vn);
1255 	if (procstat->type == PROCSTAT_KVM) {
1256 		return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
1257 		    errbuf));
1258 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1259 		procstat->type == PROCSTAT_CORE) {
1260 		return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
1261 	} else {
1262 		warnx("unknown access method: %d", procstat->type);
1263 		if (errbuf != NULL)
1264 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1265 		return (1);
1266 	}
1267 }
1268 
1269 static int
1270 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
1271     struct vnstat *vn, char *errbuf)
1272 {
1273 	/* Filesystem specific handlers. */
1274 	#define FSTYPE(fst)     {#fst, fst##_filestat}
1275 	struct {
1276 		const char	*tag;
1277 		int		(*handler)(kvm_t *kd, struct vnode *vp,
1278 		    struct vnstat *vn);
1279 	} fstypes[] = {
1280 		FSTYPE(devfs),
1281 		FSTYPE(isofs),
1282 		FSTYPE(msdosfs),
1283 		FSTYPE(nfs),
1284 		FSTYPE(smbfs),
1285 		FSTYPE(udf),
1286 		FSTYPE(ufs),
1287 #ifdef LIBPROCSTAT_ZFS
1288 		FSTYPE(zfs),
1289 #endif
1290 	};
1291 #define	NTYPES	(sizeof(fstypes) / sizeof(*fstypes))
1292 	struct vnode vnode;
1293 	char tagstr[12];
1294 	void *vp;
1295 	int error;
1296 	unsigned int i;
1297 
1298 	assert(kd);
1299 	assert(vn);
1300 	assert(fst);
1301 	vp = fst->fs_typedep;
1302 	if (vp == NULL)
1303 		goto fail;
1304 	error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
1305 	if (error == 0) {
1306 		warnx("can't read vnode at %p", (void *)vp);
1307 		goto fail;
1308 	}
1309 	bzero(vn, sizeof(*vn));
1310 	vn->vn_type = vntype2psfsttype(vnode.v_type);
1311 	if (vnode.v_type == VNON || vnode.v_type == VBAD)
1312 		return (0);
1313 	error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name,
1314 	    tagstr, sizeof(tagstr));
1315 	if (error == 0) {
1316 		warnx("can't read lo_name at %p", (void *)vp);
1317 		goto fail;
1318 	}
1319 	tagstr[sizeof(tagstr) - 1] = '\0';
1320 
1321 	/*
1322 	 * Find appropriate handler.
1323 	 */
1324 	for (i = 0; i < NTYPES; i++)
1325 		if (!strcmp(fstypes[i].tag, tagstr)) {
1326 			if (fstypes[i].handler(kd, &vnode, vn) != 0) {
1327 				goto fail;
1328 			}
1329 			break;
1330 		}
1331 	if (i == NTYPES) {
1332 		if (errbuf != NULL)
1333 			snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
1334 		return (1);
1335 	}
1336 	vn->vn_mntdir = getmnton(kd, vnode.v_mount);
1337 	if ((vnode.v_type == VBLK || vnode.v_type == VCHR) &&
1338 	    vnode.v_rdev != NULL){
1339 		vn->vn_dev = dev2udev(kd, vnode.v_rdev);
1340 		(void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
1341 	} else {
1342 		vn->vn_dev = -1;
1343 	}
1344 	return (0);
1345 
1346 fail:
1347 	if (errbuf != NULL)
1348 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1349 	return (1);
1350 }
1351 
1352 /*
1353  * kinfo vnode type to filestat translation.
1354  */
1355 static int
1356 kinfo_vtype2fst(int kfvtype)
1357 {
1358 	static struct {
1359 		int	kf_vtype;
1360 		int	fst_vtype;
1361 	} kfvtypes2fst[] = {
1362 		{ KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
1363 		{ KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
1364 		{ KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
1365 		{ KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
1366 		{ KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
1367 		{ KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
1368 		{ KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
1369 		{ KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
1370 		{ KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
1371 	};
1372 #define	NKFVTYPES	(sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
1373 	unsigned int i;
1374 
1375 	for (i = 0; i < NKFVTYPES; i++)
1376 		if (kfvtypes2fst[i].kf_vtype == kfvtype)
1377 			break;
1378 	if (i == NKFVTYPES)
1379 		return (PS_FST_VTYPE_UNKNOWN);
1380 	return (kfvtypes2fst[i].fst_vtype);
1381 }
1382 
1383 static int
1384 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
1385     char *errbuf)
1386 {
1387 	struct statfs stbuf;
1388 	struct kinfo_file *kif;
1389 	struct kinfo_vmentry *kve;
1390 	char *name, *path;
1391 	uint64_t fileid;
1392 	uint64_t size;
1393 	uint64_t fsid;
1394 	uint64_t rdev;
1395 	uint16_t mode;
1396 	int vntype;
1397 	int status;
1398 
1399 	assert(fst);
1400 	assert(vn);
1401 	bzero(vn, sizeof(*vn));
1402 	if (fst->fs_typedep == NULL)
1403 		return (1);
1404 	if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
1405 		kve = fst->fs_typedep;
1406 		fileid = kve->kve_vn_fileid;
1407 		fsid = kve->kve_vn_fsid;
1408 		mode = kve->kve_vn_mode;
1409 		path = kve->kve_path;
1410 		rdev = kve->kve_vn_rdev;
1411 		size = kve->kve_vn_size;
1412 		vntype = kinfo_vtype2fst(kve->kve_vn_type);
1413 		status = kve->kve_status;
1414 	} else {
1415 		kif = fst->fs_typedep;
1416 		fileid = kif->kf_un.kf_file.kf_file_fileid;
1417 		fsid = kif->kf_un.kf_file.kf_file_fsid;
1418 		mode = kif->kf_un.kf_file.kf_file_mode;
1419 		path = kif->kf_path;
1420 		rdev = kif->kf_un.kf_file.kf_file_rdev;
1421 		size = kif->kf_un.kf_file.kf_file_size;
1422 		vntype = kinfo_vtype2fst(kif->kf_vnode_type);
1423 		status = kif->kf_status;
1424 	}
1425 	vn->vn_type = vntype;
1426 	if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
1427 		return (0);
1428 	if ((status & KF_ATTR_VALID) == 0) {
1429 		if (errbuf != NULL) {
1430 			snprintf(errbuf, _POSIX2_LINE_MAX,
1431 			    "? (no info available)");
1432 		}
1433 		return (1);
1434 	}
1435 	if (path && *path) {
1436 		statfs(path, &stbuf);
1437 		vn->vn_mntdir = strdup(stbuf.f_mntonname);
1438 	} else
1439 		vn->vn_mntdir = strdup("-");
1440 	vn->vn_dev = rdev;
1441 	if (vntype == PS_FST_VTYPE_VBLK) {
1442 		name = devname(rdev, S_IFBLK);
1443 		if (name != NULL)
1444 			strlcpy(vn->vn_devname, name,
1445 			    sizeof(vn->vn_devname));
1446 	} else if (vntype == PS_FST_VTYPE_VCHR) {
1447 		name = devname(vn->vn_dev, S_IFCHR);
1448 		if (name != NULL)
1449 			strlcpy(vn->vn_devname, name,
1450 			    sizeof(vn->vn_devname));
1451 	}
1452 	vn->vn_fsid = fsid;
1453 	vn->vn_fileid = fileid;
1454 	vn->vn_size = size;
1455 	vn->vn_mode = mode;
1456 	return (0);
1457 }
1458 
1459 int
1460 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
1461     struct sockstat *sock, char *errbuf)
1462 {
1463 
1464 	assert(sock);
1465 	if (procstat->type == PROCSTAT_KVM) {
1466 		return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
1467 		    errbuf));
1468 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1469 		procstat->type == PROCSTAT_CORE) {
1470 		return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
1471 	} else {
1472 		warnx("unknown access method: %d", procstat->type);
1473 		if (errbuf != NULL)
1474 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1475 		return (1);
1476 	}
1477 }
1478 
1479 static int
1480 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
1481     struct sockstat *sock, char *errbuf)
1482 {
1483 	struct domain dom;
1484 	struct inpcb inpcb;
1485 	struct protosw proto;
1486 	struct socket s;
1487 	struct unpcb unpcb;
1488 	ssize_t len;
1489 	void *so;
1490 
1491 	assert(kd);
1492 	assert(sock);
1493 	assert(fst);
1494 	bzero(sock, sizeof(*sock));
1495 	so = fst->fs_typedep;
1496 	if (so == NULL)
1497 		goto fail;
1498 	sock->so_addr = (uintptr_t)so;
1499 	/* fill in socket */
1500 	if (!kvm_read_all(kd, (unsigned long)so, &s,
1501 	    sizeof(struct socket))) {
1502 		warnx("can't read sock at %p", (void *)so);
1503 		goto fail;
1504 	}
1505 	/* fill in protosw entry */
1506 	if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
1507 	    sizeof(struct protosw))) {
1508 		warnx("can't read protosw at %p", (void *)s.so_proto);
1509 		goto fail;
1510 	}
1511 	/* fill in domain */
1512 	if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
1513 	    sizeof(struct domain))) {
1514 		warnx("can't read domain at %p",
1515 		    (void *)proto.pr_domain);
1516 		goto fail;
1517 	}
1518 	if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
1519 	    sizeof(sock->dname) - 1)) < 0) {
1520 		warnx("can't read domain name at %p", (void *)dom.dom_name);
1521 		sock->dname[0] = '\0';
1522 	}
1523 	else
1524 		sock->dname[len] = '\0';
1525 
1526 	/*
1527 	 * Fill in known data.
1528 	 */
1529 	sock->type = s.so_type;
1530 	sock->proto = proto.pr_protocol;
1531 	sock->dom_family = dom.dom_family;
1532 	sock->so_pcb = (uintptr_t)s.so_pcb;
1533 
1534 	/*
1535 	 * Protocol specific data.
1536 	 */
1537 	switch(dom.dom_family) {
1538 	case AF_INET:
1539 	case AF_INET6:
1540 		if (proto.pr_protocol == IPPROTO_TCP) {
1541 			if (s.so_pcb) {
1542 				if (kvm_read(kd, (u_long)s.so_pcb,
1543 				    (char *)&inpcb, sizeof(struct inpcb))
1544 				    != sizeof(struct inpcb)) {
1545 					warnx("can't read inpcb at %p",
1546 					    (void *)s.so_pcb);
1547 				} else
1548 					sock->inp_ppcb =
1549 					    (uintptr_t)inpcb.inp_ppcb;
1550 				sock->sendq = s.so_snd.sb_ccc;
1551 				sock->recvq = s.so_rcv.sb_ccc;
1552 			}
1553 		}
1554 		break;
1555 	case AF_UNIX:
1556 		if (s.so_pcb) {
1557 			if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
1558 			    sizeof(struct unpcb)) != sizeof(struct unpcb)){
1559 				warnx("can't read unpcb at %p",
1560 				    (void *)s.so_pcb);
1561 			} else if (unpcb.unp_conn) {
1562 				sock->so_rcv_sb_state = s.so_rcv.sb_state;
1563 				sock->so_snd_sb_state = s.so_snd.sb_state;
1564 				sock->unp_conn = (uintptr_t)unpcb.unp_conn;
1565 				sock->sendq = s.so_snd.sb_ccc;
1566 				sock->recvq = s.so_rcv.sb_ccc;
1567 			}
1568 		}
1569 		break;
1570 	default:
1571 		break;
1572 	}
1573 	return (0);
1574 
1575 fail:
1576 	if (errbuf != NULL)
1577 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1578 	return (1);
1579 }
1580 
1581 static int
1582 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
1583     char *errbuf __unused)
1584 {
1585 	struct kinfo_file *kif;
1586 
1587 	assert(sock);
1588 	assert(fst);
1589 	bzero(sock, sizeof(*sock));
1590 	kif = fst->fs_typedep;
1591 	if (kif == NULL)
1592 		return (0);
1593 
1594 	/*
1595 	 * Fill in known data.
1596 	 */
1597 	sock->type = kif->kf_sock_type;
1598 	sock->proto = kif->kf_sock_protocol;
1599 	sock->dom_family = kif->kf_sock_domain;
1600 	sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
1601 	strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
1602 	bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local,
1603 	    kif->kf_un.kf_sock.kf_sa_local.ss_len);
1604 	bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer,
1605 	    kif->kf_un.kf_sock.kf_sa_peer.ss_len);
1606 
1607 	/*
1608 	 * Protocol specific data.
1609 	 */
1610 	switch(sock->dom_family) {
1611 	case AF_INET:
1612 	case AF_INET6:
1613 		if (sock->proto == IPPROTO_TCP) {
1614 			sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb;
1615 			sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1616 			sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1617 		}
1618 		break;
1619 	case AF_UNIX:
1620 		if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
1621 			sock->so_rcv_sb_state =
1622 			    kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
1623 			sock->so_snd_sb_state =
1624 			    kif->kf_un.kf_sock.kf_sock_snd_sb_state;
1625 			sock->unp_conn =
1626 			    kif->kf_un.kf_sock.kf_sock_unpconn;
1627 			sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1628 			sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1629 		}
1630 		break;
1631 	default:
1632 		break;
1633 	}
1634 	return (0);
1635 }
1636 
1637 /*
1638  * Descriptor flags to filestat translation.
1639  */
1640 static int
1641 to_filestat_flags(int flags)
1642 {
1643 	static struct {
1644 		int flag;
1645 		int fst_flag;
1646 	} fstflags[] = {
1647 		{ FREAD, PS_FST_FFLAG_READ },
1648 		{ FWRITE, PS_FST_FFLAG_WRITE },
1649 		{ O_APPEND, PS_FST_FFLAG_APPEND },
1650 		{ O_ASYNC, PS_FST_FFLAG_ASYNC },
1651 		{ O_CREAT, PS_FST_FFLAG_CREAT },
1652 		{ O_DIRECT, PS_FST_FFLAG_DIRECT },
1653 		{ O_EXCL, PS_FST_FFLAG_EXCL },
1654 		{ O_EXEC, PS_FST_FFLAG_EXEC },
1655 		{ O_EXLOCK, PS_FST_FFLAG_EXLOCK },
1656 		{ O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
1657 		{ O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
1658 		{ O_SHLOCK, PS_FST_FFLAG_SHLOCK },
1659 		{ O_SYNC, PS_FST_FFLAG_SYNC },
1660 		{ O_TRUNC, PS_FST_FFLAG_TRUNC }
1661 	};
1662 #define NFSTFLAGS	(sizeof(fstflags) / sizeof(*fstflags))
1663 	int fst_flags;
1664 	unsigned int i;
1665 
1666 	fst_flags = 0;
1667 	for (i = 0; i < NFSTFLAGS; i++)
1668 		if (flags & fstflags[i].flag)
1669 			fst_flags |= fstflags[i].fst_flag;
1670 	return (fst_flags);
1671 }
1672 
1673 /*
1674  * Vnode type to filestate translation.
1675  */
1676 static int
1677 vntype2psfsttype(int type)
1678 {
1679 	static struct {
1680 		int	vtype;
1681 		int	fst_vtype;
1682 	} vt2fst[] = {
1683 		{ VBAD, PS_FST_VTYPE_VBAD },
1684 		{ VBLK, PS_FST_VTYPE_VBLK },
1685 		{ VCHR, PS_FST_VTYPE_VCHR },
1686 		{ VDIR, PS_FST_VTYPE_VDIR },
1687 		{ VFIFO, PS_FST_VTYPE_VFIFO },
1688 		{ VLNK, PS_FST_VTYPE_VLNK },
1689 		{ VNON, PS_FST_VTYPE_VNON },
1690 		{ VREG, PS_FST_VTYPE_VREG },
1691 		{ VSOCK, PS_FST_VTYPE_VSOCK }
1692 	};
1693 #define	NVFTYPES	(sizeof(vt2fst) / sizeof(*vt2fst))
1694 	unsigned int i, fst_type;
1695 
1696 	fst_type = PS_FST_VTYPE_UNKNOWN;
1697 	for (i = 0; i < NVFTYPES; i++) {
1698 		if (type == vt2fst[i].vtype) {
1699 			fst_type = vt2fst[i].fst_vtype;
1700 			break;
1701 		}
1702 	}
1703 	return (fst_type);
1704 }
1705 
1706 static char *
1707 getmnton(kvm_t *kd, struct mount *m)
1708 {
1709 	struct mount mnt;
1710 	static struct mtab {
1711 		struct mtab *next;
1712 		struct mount *m;
1713 		char mntonname[MNAMELEN + 1];
1714 	} *mhead = NULL;
1715 	struct mtab *mt;
1716 
1717 	for (mt = mhead; mt != NULL; mt = mt->next)
1718 		if (m == mt->m)
1719 			return (mt->mntonname);
1720 	if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
1721 		warnx("can't read mount table at %p", (void *)m);
1722 		return (NULL);
1723 	}
1724 	if ((mt = malloc(sizeof (struct mtab))) == NULL)
1725 		err(1, NULL);
1726 	mt->m = m;
1727 	bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
1728 	mt->mntonname[MNAMELEN] = '\0';
1729 	mt->next = mhead;
1730 	mhead = mt;
1731 	return (mt->mntonname);
1732 }
1733 
1734 /*
1735  * Auxiliary structures and functions to get process environment or
1736  * command line arguments.
1737  */
1738 struct argvec {
1739 	char	*buf;
1740 	size_t	bufsize;
1741 	char	**argv;
1742 	size_t	argc;
1743 };
1744 
1745 static struct argvec *
1746 argvec_alloc(size_t bufsize)
1747 {
1748 	struct argvec *av;
1749 
1750 	av = malloc(sizeof(*av));
1751 	if (av == NULL)
1752 		return (NULL);
1753 	av->bufsize = bufsize;
1754 	av->buf = malloc(av->bufsize);
1755 	if (av->buf == NULL) {
1756 		free(av);
1757 		return (NULL);
1758 	}
1759 	av->argc = 32;
1760 	av->argv = malloc(sizeof(char *) * av->argc);
1761 	if (av->argv == NULL) {
1762 		free(av->buf);
1763 		free(av);
1764 		return (NULL);
1765 	}
1766 	return av;
1767 }
1768 
1769 static void
1770 argvec_free(struct argvec * av)
1771 {
1772 
1773 	free(av->argv);
1774 	free(av->buf);
1775 	free(av);
1776 }
1777 
1778 static char **
1779 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
1780 {
1781 	int error, name[4], argc, i;
1782 	struct argvec *av, **avp;
1783 	enum psc_type type;
1784 	size_t len;
1785 	char *p, **argv;
1786 
1787 	assert(procstat);
1788 	assert(kp);
1789 	if (procstat->type == PROCSTAT_KVM) {
1790 		warnx("can't use kvm access method");
1791 		return (NULL);
1792 	}
1793 	if (procstat->type != PROCSTAT_SYSCTL &&
1794 	    procstat->type != PROCSTAT_CORE) {
1795 		warnx("unknown access method: %d", procstat->type);
1796 		return (NULL);
1797 	}
1798 
1799 	if (nchr == 0 || nchr > ARG_MAX)
1800 		nchr = ARG_MAX;
1801 
1802 	avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
1803 	av = *avp;
1804 
1805 	if (av == NULL)
1806 	{
1807 		av = argvec_alloc(nchr);
1808 		if (av == NULL)
1809 		{
1810 			warn("malloc(%zu)", nchr);
1811 			return (NULL);
1812 		}
1813 		*avp = av;
1814 	} else if (av->bufsize < nchr) {
1815 		av->buf = reallocf(av->buf, nchr);
1816 		if (av->buf == NULL) {
1817 			warn("malloc(%zu)", nchr);
1818 			return (NULL);
1819 		}
1820 	}
1821 	if (procstat->type == PROCSTAT_SYSCTL) {
1822 		name[0] = CTL_KERN;
1823 		name[1] = KERN_PROC;
1824 		name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
1825 		name[3] = kp->ki_pid;
1826 		len = nchr;
1827 		error = sysctl(name, nitems(name), av->buf, &len, NULL, 0);
1828 		if (error != 0 && errno != ESRCH && errno != EPERM)
1829 			warn("sysctl(kern.proc.%s)", env ? "env" : "args");
1830 		if (error != 0 || len == 0)
1831 			return (NULL);
1832 	} else /* procstat->type == PROCSTAT_CORE */ {
1833 		type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
1834 		len = nchr;
1835 		if (procstat_core_get(procstat->core, type, av->buf, &len)
1836 		    == NULL) {
1837 			return (NULL);
1838 		}
1839 	}
1840 
1841 	argv = av->argv;
1842 	argc = av->argc;
1843 	i = 0;
1844 	for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
1845 		argv[i++] = p;
1846 		if (i < argc)
1847 			continue;
1848 		/* Grow argv. */
1849 		argc += argc;
1850 		argv = realloc(argv, sizeof(char *) * argc);
1851 		if (argv == NULL) {
1852 			warn("malloc(%zu)", sizeof(char *) * argc);
1853 			return (NULL);
1854 		}
1855 		av->argv = argv;
1856 		av->argc = argc;
1857 	}
1858 	argv[i] = NULL;
1859 
1860 	return (argv);
1861 }
1862 
1863 /*
1864  * Return process command line arguments.
1865  */
1866 char **
1867 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1868 {
1869 
1870 	return (getargv(procstat, p, nchr, 0));
1871 }
1872 
1873 /*
1874  * Free the buffer allocated by procstat_getargv().
1875  */
1876 void
1877 procstat_freeargv(struct procstat *procstat)
1878 {
1879 
1880 	if (procstat->argv != NULL) {
1881 		argvec_free(procstat->argv);
1882 		procstat->argv = NULL;
1883 	}
1884 }
1885 
1886 /*
1887  * Return process environment.
1888  */
1889 char **
1890 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1891 {
1892 
1893 	return (getargv(procstat, p, nchr, 1));
1894 }
1895 
1896 /*
1897  * Free the buffer allocated by procstat_getenvv().
1898  */
1899 void
1900 procstat_freeenvv(struct procstat *procstat)
1901 {
1902 	if (procstat->envv != NULL) {
1903 		argvec_free(procstat->envv);
1904 		procstat->envv = NULL;
1905 	}
1906 }
1907 
1908 static struct kinfo_vmentry *
1909 kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
1910 {
1911 	int cnt;
1912 	size_t len;
1913 	char *buf, *bp, *eb;
1914 	struct kinfo_vmentry *kiv, *kp, *kv;
1915 
1916 	buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
1917 	if (buf == NULL)
1918 		return (NULL);
1919 
1920 	/*
1921 	 * XXXMG: The code below is just copy&past from libutil.
1922 	 * The code duplication can be avoided if libutil
1923 	 * is extended to provide something like:
1924 	 *   struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
1925 	 *       size_t len, int *cntp);
1926 	 */
1927 
1928 	/* Pass 1: count items */
1929 	cnt = 0;
1930 	bp = buf;
1931 	eb = buf + len;
1932 	while (bp < eb) {
1933 		kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1934 		if (kv->kve_structsize == 0)
1935 			break;
1936 		bp += kv->kve_structsize;
1937 		cnt++;
1938 	}
1939 
1940 	kiv = calloc(cnt, sizeof(*kiv));
1941 	if (kiv == NULL) {
1942 		free(buf);
1943 		return (NULL);
1944 	}
1945 	bp = buf;
1946 	eb = buf + len;
1947 	kp = kiv;
1948 	/* Pass 2: unpack */
1949 	while (bp < eb) {
1950 		kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1951 		if (kv->kve_structsize == 0)
1952 			break;
1953 		/* Copy/expand into pre-zeroed buffer */
1954 		memcpy(kp, kv, kv->kve_structsize);
1955 		/* Advance to next packed record */
1956 		bp += kv->kve_structsize;
1957 		/* Set field size to fixed length, advance */
1958 		kp->kve_structsize = sizeof(*kp);
1959 		kp++;
1960 	}
1961 	free(buf);
1962 	*cntp = cnt;
1963 	return (kiv);	/* Caller must free() return value */
1964 }
1965 
1966 struct kinfo_vmentry *
1967 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
1968     unsigned int *cntp)
1969 {
1970 
1971 	switch(procstat->type) {
1972 	case PROCSTAT_KVM:
1973 		warnx("kvm method is not supported");
1974 		return (NULL);
1975 	case PROCSTAT_SYSCTL:
1976 		return (kinfo_getvmmap(kp->ki_pid, cntp));
1977 	case PROCSTAT_CORE:
1978 		return (kinfo_getvmmap_core(procstat->core, cntp));
1979 	default:
1980 		warnx("unknown access method: %d", procstat->type);
1981 		return (NULL);
1982 	}
1983 }
1984 
1985 void
1986 procstat_freevmmap(struct procstat *procstat __unused,
1987     struct kinfo_vmentry *vmmap)
1988 {
1989 
1990 	free(vmmap);
1991 }
1992 
1993 static gid_t *
1994 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
1995 {
1996 	struct proc proc;
1997 	struct ucred ucred;
1998 	gid_t *groups;
1999 	size_t len;
2000 
2001 	assert(kd != NULL);
2002 	assert(kp != NULL);
2003 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2004 	    sizeof(proc))) {
2005 		warnx("can't read proc struct at %p for pid %d",
2006 		    kp->ki_paddr, kp->ki_pid);
2007 		return (NULL);
2008 	}
2009 	if (proc.p_ucred == NOCRED)
2010 		return (NULL);
2011 	if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
2012 	    sizeof(ucred))) {
2013 		warnx("can't read ucred struct at %p for pid %d",
2014 		    proc.p_ucred, kp->ki_pid);
2015 		return (NULL);
2016 	}
2017 	len = ucred.cr_ngroups * sizeof(gid_t);
2018 	groups = malloc(len);
2019 	if (groups == NULL) {
2020 		warn("malloc(%zu)", len);
2021 		return (NULL);
2022 	}
2023 	if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
2024 		warnx("can't read groups at %p for pid %d",
2025 		    ucred.cr_groups, kp->ki_pid);
2026 		free(groups);
2027 		return (NULL);
2028 	}
2029 	*cntp = ucred.cr_ngroups;
2030 	return (groups);
2031 }
2032 
2033 static gid_t *
2034 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
2035 {
2036 	int mib[4];
2037 	size_t len;
2038 	gid_t *groups;
2039 
2040 	mib[0] = CTL_KERN;
2041 	mib[1] = KERN_PROC;
2042 	mib[2] = KERN_PROC_GROUPS;
2043 	mib[3] = pid;
2044 	len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
2045 	groups = malloc(len);
2046 	if (groups == NULL) {
2047 		warn("malloc(%zu)", len);
2048 		return (NULL);
2049 	}
2050 	if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) {
2051 		warn("sysctl: kern.proc.groups: %d", pid);
2052 		free(groups);
2053 		return (NULL);
2054 	}
2055 	*cntp = len / sizeof(gid_t);
2056 	return (groups);
2057 }
2058 
2059 static gid_t *
2060 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
2061 {
2062 	size_t len;
2063 	gid_t *groups;
2064 
2065 	groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
2066 	if (groups == NULL)
2067 		return (NULL);
2068 	*cntp = len / sizeof(gid_t);
2069 	return (groups);
2070 }
2071 
2072 gid_t *
2073 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
2074     unsigned int *cntp)
2075 {
2076 	switch(procstat->type) {
2077 	case PROCSTAT_KVM:
2078 		return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
2079 	case PROCSTAT_SYSCTL:
2080 		return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
2081 	case PROCSTAT_CORE:
2082 		return (procstat_getgroups_core(procstat->core, cntp));
2083 	default:
2084 		warnx("unknown access method: %d", procstat->type);
2085 		return (NULL);
2086 	}
2087 }
2088 
2089 void
2090 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
2091 {
2092 
2093 	free(groups);
2094 }
2095 
2096 static int
2097 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
2098 {
2099 	struct pwddesc pd;
2100 
2101 	assert(kd != NULL);
2102 	assert(kp != NULL);
2103 	if (kp->ki_pd == NULL)
2104 		return (-1);
2105 	if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) {
2106 		warnx("can't read pwddesc at %p for pid %d", kp->ki_pd,
2107 		    kp->ki_pid);
2108 		return (-1);
2109 	}
2110 	*maskp = pd.pd_cmask;
2111 	return (0);
2112 }
2113 
2114 static int
2115 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
2116 {
2117 	int error;
2118 	int mib[4];
2119 	size_t len;
2120 
2121 	mib[0] = CTL_KERN;
2122 	mib[1] = KERN_PROC;
2123 	mib[2] = KERN_PROC_UMASK;
2124 	mib[3] = pid;
2125 	len = sizeof(*maskp);
2126 	error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0);
2127 	if (error != 0 && errno != ESRCH && errno != EPERM)
2128 		warn("sysctl: kern.proc.umask: %d", pid);
2129 	return (error);
2130 }
2131 
2132 static int
2133 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
2134 {
2135 	size_t len;
2136 	unsigned short *buf;
2137 
2138 	buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
2139 	if (buf == NULL)
2140 		return (-1);
2141 	if (len < sizeof(*maskp)) {
2142 		free(buf);
2143 		return (-1);
2144 	}
2145 	*maskp = *buf;
2146 	free(buf);
2147 	return (0);
2148 }
2149 
2150 int
2151 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
2152     unsigned short *maskp)
2153 {
2154 	switch(procstat->type) {
2155 	case PROCSTAT_KVM:
2156 		return (procstat_getumask_kvm(procstat->kd, kp, maskp));
2157 	case PROCSTAT_SYSCTL:
2158 		return (procstat_getumask_sysctl(kp->ki_pid, maskp));
2159 	case PROCSTAT_CORE:
2160 		return (procstat_getumask_core(procstat->core, maskp));
2161 	default:
2162 		warnx("unknown access method: %d", procstat->type);
2163 		return (-1);
2164 	}
2165 }
2166 
2167 static int
2168 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
2169     struct rlimit* rlimit)
2170 {
2171 	struct proc proc;
2172 	unsigned long offset;
2173 
2174 	assert(kd != NULL);
2175 	assert(kp != NULL);
2176 	assert(which >= 0 && which < RLIM_NLIMITS);
2177 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2178 	    sizeof(proc))) {
2179 		warnx("can't read proc struct at %p for pid %d",
2180 		    kp->ki_paddr, kp->ki_pid);
2181 		return (-1);
2182 	}
2183 	if (proc.p_limit == NULL)
2184 		return (-1);
2185 	offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
2186 	if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
2187 		warnx("can't read rlimit struct at %p for pid %d",
2188 		    (void *)offset, kp->ki_pid);
2189 		return (-1);
2190 	}
2191 	return (0);
2192 }
2193 
2194 static int
2195 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
2196 {
2197 	int error, name[5];
2198 	size_t len;
2199 
2200 	name[0] = CTL_KERN;
2201 	name[1] = KERN_PROC;
2202 	name[2] = KERN_PROC_RLIMIT;
2203 	name[3] = pid;
2204 	name[4] = which;
2205 	len = sizeof(struct rlimit);
2206 	error = sysctl(name, nitems(name), rlimit, &len, NULL, 0);
2207 	if (error < 0 && errno != ESRCH) {
2208 		warn("sysctl: kern.proc.rlimit: %d", pid);
2209 		return (-1);
2210 	}
2211 	if (error < 0 || len != sizeof(struct rlimit))
2212 		return (-1);
2213 	return (0);
2214 }
2215 
2216 static int
2217 procstat_getrlimit_core(struct procstat_core *core, int which,
2218     struct rlimit* rlimit)
2219 {
2220 	size_t len;
2221 	struct rlimit* rlimits;
2222 
2223 	if (which < 0 || which >= RLIM_NLIMITS) {
2224 		errno = EINVAL;
2225 		warn("getrlimit: which");
2226 		return (-1);
2227 	}
2228 	rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
2229 	if (rlimits == NULL)
2230 		return (-1);
2231 	if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
2232 		free(rlimits);
2233 		return (-1);
2234 	}
2235 	*rlimit = rlimits[which];
2236 	free(rlimits);
2237 	return (0);
2238 }
2239 
2240 int
2241 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
2242     struct rlimit* rlimit)
2243 {
2244 	switch(procstat->type) {
2245 	case PROCSTAT_KVM:
2246 		return (procstat_getrlimit_kvm(procstat->kd, kp, which,
2247 		    rlimit));
2248 	case PROCSTAT_SYSCTL:
2249 		return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
2250 	case PROCSTAT_CORE:
2251 		return (procstat_getrlimit_core(procstat->core, which, rlimit));
2252 	default:
2253 		warnx("unknown access method: %d", procstat->type);
2254 		return (-1);
2255 	}
2256 }
2257 
2258 static int
2259 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
2260 {
2261 	int error, name[4];
2262 	size_t len;
2263 
2264 	name[0] = CTL_KERN;
2265 	name[1] = KERN_PROC;
2266 	name[2] = KERN_PROC_PATHNAME;
2267 	name[3] = pid;
2268 	len = maxlen;
2269 	error = sysctl(name, nitems(name), pathname, &len, NULL, 0);
2270 	if (error != 0 && errno != ESRCH)
2271 		warn("sysctl: kern.proc.pathname: %d", pid);
2272 	if (len == 0)
2273 		pathname[0] = '\0';
2274 	return (error);
2275 }
2276 
2277 static int
2278 procstat_getpathname_core(struct procstat_core *core, char *pathname,
2279     size_t maxlen)
2280 {
2281 	struct kinfo_file *files;
2282 	int cnt, i, result;
2283 
2284 	files = kinfo_getfile_core(core, &cnt);
2285 	if (files == NULL)
2286 		return (-1);
2287 	result = -1;
2288 	for (i = 0; i < cnt; i++) {
2289 		if (files[i].kf_fd != KF_FD_TYPE_TEXT)
2290 			continue;
2291 		strncpy(pathname, files[i].kf_path, maxlen);
2292 		result = 0;
2293 		break;
2294 	}
2295 	free(files);
2296 	return (result);
2297 }
2298 
2299 int
2300 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
2301     char *pathname, size_t maxlen)
2302 {
2303 	switch(procstat->type) {
2304 	case PROCSTAT_KVM:
2305 		/* XXX: Return empty string. */
2306 		if (maxlen > 0)
2307 			pathname[0] = '\0';
2308 		return (0);
2309 	case PROCSTAT_SYSCTL:
2310 		return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
2311 		    maxlen));
2312 	case PROCSTAT_CORE:
2313 		return (procstat_getpathname_core(procstat->core, pathname,
2314 		    maxlen));
2315 	default:
2316 		warnx("unknown access method: %d", procstat->type);
2317 		return (-1);
2318 	}
2319 }
2320 
2321 static int
2322 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
2323 {
2324 	struct proc proc;
2325 
2326 	assert(kd != NULL);
2327 	assert(kp != NULL);
2328 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2329 	    sizeof(proc))) {
2330 		warnx("can't read proc struct at %p for pid %d",
2331 		    kp->ki_paddr, kp->ki_pid);
2332 		return (-1);
2333 	}
2334 	*osrelp = proc.p_osrel;
2335 	return (0);
2336 }
2337 
2338 static int
2339 procstat_getosrel_sysctl(pid_t pid, int *osrelp)
2340 {
2341 	int error, name[4];
2342 	size_t len;
2343 
2344 	name[0] = CTL_KERN;
2345 	name[1] = KERN_PROC;
2346 	name[2] = KERN_PROC_OSREL;
2347 	name[3] = pid;
2348 	len = sizeof(*osrelp);
2349 	error = sysctl(name, nitems(name), osrelp, &len, NULL, 0);
2350 	if (error != 0 && errno != ESRCH)
2351 		warn("sysctl: kern.proc.osrel: %d", pid);
2352 	return (error);
2353 }
2354 
2355 static int
2356 procstat_getosrel_core(struct procstat_core *core, int *osrelp)
2357 {
2358 	size_t len;
2359 	int *buf;
2360 
2361 	buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
2362 	if (buf == NULL)
2363 		return (-1);
2364 	if (len < sizeof(*osrelp)) {
2365 		free(buf);
2366 		return (-1);
2367 	}
2368 	*osrelp = *buf;
2369 	free(buf);
2370 	return (0);
2371 }
2372 
2373 int
2374 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
2375 {
2376 	switch(procstat->type) {
2377 	case PROCSTAT_KVM:
2378 		return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
2379 	case PROCSTAT_SYSCTL:
2380 		return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
2381 	case PROCSTAT_CORE:
2382 		return (procstat_getosrel_core(procstat->core, osrelp));
2383 	default:
2384 		warnx("unknown access method: %d", procstat->type);
2385 		return (-1);
2386 	}
2387 }
2388 
2389 #define PROC_AUXV_MAX	256
2390 
2391 #if __ELF_WORD_SIZE == 64
2392 static const char *elf32_sv_names[] = {
2393 	"Linux ELF32",
2394 	"FreeBSD ELF32",
2395 };
2396 
2397 static int
2398 is_elf32_sysctl(pid_t pid)
2399 {
2400 	int error, name[4];
2401 	size_t len, i;
2402 	static char sv_name[256];
2403 
2404 	name[0] = CTL_KERN;
2405 	name[1] = KERN_PROC;
2406 	name[2] = KERN_PROC_SV_NAME;
2407 	name[3] = pid;
2408 	len = sizeof(sv_name);
2409 	error = sysctl(name, nitems(name), sv_name, &len, NULL, 0);
2410 	if (error != 0 || len == 0)
2411 		return (0);
2412 	for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
2413 		if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
2414 			return (1);
2415 	}
2416 	return (0);
2417 }
2418 
2419 static Elf_Auxinfo *
2420 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
2421 {
2422 	Elf_Auxinfo *auxv;
2423 	Elf32_Auxinfo *auxv32;
2424 	void *ptr;
2425 	size_t len;
2426 	unsigned int i, count;
2427 	int name[4];
2428 
2429 	name[0] = CTL_KERN;
2430 	name[1] = KERN_PROC;
2431 	name[2] = KERN_PROC_AUXV;
2432 	name[3] = pid;
2433 	len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
2434 	auxv = NULL;
2435 	auxv32 = malloc(len);
2436 	if (auxv32 == NULL) {
2437 		warn("malloc(%zu)", len);
2438 		goto out;
2439 	}
2440 	if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) {
2441 		if (errno != ESRCH && errno != EPERM)
2442 			warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2443 		goto out;
2444 	}
2445 	count = len / sizeof(Elf_Auxinfo);
2446 	auxv = malloc(count  * sizeof(Elf_Auxinfo));
2447 	if (auxv == NULL) {
2448 		warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
2449 		goto out;
2450 	}
2451 	for (i = 0; i < count; i++) {
2452 		/*
2453 		 * XXX: We expect that values for a_type on a 32-bit platform
2454 		 * are directly mapped to values on 64-bit one, which is not
2455 		 * necessarily true.
2456 		 */
2457 		auxv[i].a_type = auxv32[i].a_type;
2458 		ptr = &auxv32[i].a_un;
2459 		auxv[i].a_un.a_val = *((uint32_t *)ptr);
2460 	}
2461 	*cntp = count;
2462 out:
2463 	free(auxv32);
2464 	return (auxv);
2465 }
2466 #endif /* __ELF_WORD_SIZE == 64 */
2467 
2468 static Elf_Auxinfo *
2469 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
2470 {
2471 	Elf_Auxinfo *auxv;
2472 	int name[4];
2473 	size_t len;
2474 
2475 #if __ELF_WORD_SIZE == 64
2476 	if (is_elf32_sysctl(pid))
2477 		return (procstat_getauxv32_sysctl(pid, cntp));
2478 #endif
2479 	name[0] = CTL_KERN;
2480 	name[1] = KERN_PROC;
2481 	name[2] = KERN_PROC_AUXV;
2482 	name[3] = pid;
2483 	len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
2484 	auxv = malloc(len);
2485 	if (auxv == NULL) {
2486 		warn("malloc(%zu)", len);
2487 		return (NULL);
2488 	}
2489 	if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) {
2490 		if (errno != ESRCH && errno != EPERM)
2491 			warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2492 		free(auxv);
2493 		return (NULL);
2494 	}
2495 	*cntp = len / sizeof(Elf_Auxinfo);
2496 	return (auxv);
2497 }
2498 
2499 static Elf_Auxinfo *
2500 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
2501 {
2502 	Elf_Auxinfo *auxv;
2503 	size_t len;
2504 
2505 	auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
2506 	if (auxv == NULL)
2507 		return (NULL);
2508 	*cntp = len / sizeof(Elf_Auxinfo);
2509 	return (auxv);
2510 }
2511 
2512 Elf_Auxinfo *
2513 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
2514     unsigned int *cntp)
2515 {
2516 	switch(procstat->type) {
2517 	case PROCSTAT_KVM:
2518 		warnx("kvm method is not supported");
2519 		return (NULL);
2520 	case PROCSTAT_SYSCTL:
2521 		return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
2522 	case PROCSTAT_CORE:
2523 		return (procstat_getauxv_core(procstat->core, cntp));
2524 	default:
2525 		warnx("unknown access method: %d", procstat->type);
2526 		return (NULL);
2527 	}
2528 }
2529 
2530 void
2531 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
2532 {
2533 
2534 	free(auxv);
2535 }
2536 
2537 static struct ptrace_lwpinfo *
2538 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp)
2539 {
2540 	void *buf;
2541 	struct ptrace_lwpinfo *pl;
2542 	unsigned int cnt;
2543 	size_t len;
2544 
2545 	cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO);
2546 	if (cnt == 0)
2547 		return (NULL);
2548 
2549 	len = cnt * sizeof(*pl);
2550 	buf = calloc(1, len);
2551 	pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len);
2552 	if (pl == NULL) {
2553 		free(buf);
2554 		return (NULL);
2555 	}
2556 	*cntp = len / sizeof(*pl);
2557 	return (pl);
2558 }
2559 
2560 struct ptrace_lwpinfo *
2561 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp)
2562 {
2563 	switch (procstat->type) {
2564 	case PROCSTAT_KVM:
2565 		warnx("kvm method is not supported");
2566 		return (NULL);
2567 	case PROCSTAT_SYSCTL:
2568 		warnx("sysctl method is not supported");
2569 		return (NULL);
2570 	case PROCSTAT_CORE:
2571 	 	return (procstat_getptlwpinfo_core(procstat->core, cntp));
2572 	default:
2573 		warnx("unknown access method: %d", procstat->type);
2574 		return (NULL);
2575 	}
2576 }
2577 
2578 void
2579 procstat_freeptlwpinfo(struct procstat *procstat __unused,
2580     struct ptrace_lwpinfo *pl)
2581 {
2582 	free(pl);
2583 }
2584 
2585 static struct kinfo_kstack *
2586 procstat_getkstack_sysctl(pid_t pid, int *cntp)
2587 {
2588 	struct kinfo_kstack *kkstp;
2589 	int error, name[4];
2590 	size_t len;
2591 
2592 	name[0] = CTL_KERN;
2593 	name[1] = KERN_PROC;
2594 	name[2] = KERN_PROC_KSTACK;
2595 	name[3] = pid;
2596 
2597 	len = 0;
2598 	error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2599 	if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
2600 		warn("sysctl: kern.proc.kstack: %d", pid);
2601 		return (NULL);
2602 	}
2603 	if (error == -1 && errno == ENOENT) {
2604 		warnx("sysctl: kern.proc.kstack unavailable"
2605 		    " (options DDB or options STACK required in kernel)");
2606 		return (NULL);
2607 	}
2608 	if (error == -1)
2609 		return (NULL);
2610 	kkstp = malloc(len);
2611 	if (kkstp == NULL) {
2612 		warn("malloc(%zu)", len);
2613 		return (NULL);
2614 	}
2615 	if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1) {
2616 		warn("sysctl: kern.proc.pid: %d", pid);
2617 		free(kkstp);
2618 		return (NULL);
2619 	}
2620 	*cntp = len / sizeof(*kkstp);
2621 
2622 	return (kkstp);
2623 }
2624 
2625 struct kinfo_kstack *
2626 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
2627     unsigned int *cntp)
2628 {
2629 	switch(procstat->type) {
2630 	case PROCSTAT_KVM:
2631 		warnx("kvm method is not supported");
2632 		return (NULL);
2633 	case PROCSTAT_SYSCTL:
2634 		return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
2635 	case PROCSTAT_CORE:
2636 		warnx("core method is not supported");
2637 		return (NULL);
2638 	default:
2639 		warnx("unknown access method: %d", procstat->type);
2640 		return (NULL);
2641 	}
2642 }
2643 
2644 void
2645 procstat_freekstack(struct procstat *procstat __unused,
2646     struct kinfo_kstack *kkstp)
2647 {
2648 
2649 	free(kkstp);
2650 }
2651