1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org> 6 * Copyright (c) 1988, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/elf.h> 43 #include <sys/time.h> 44 #include <sys/resourcevar.h> 45 #define _WANT_UCRED 46 #include <sys/ucred.h> 47 #undef _WANT_UCRED 48 #include <sys/proc.h> 49 #include <sys/user.h> 50 #include <sys/stat.h> 51 #include <sys/vnode.h> 52 #include <sys/socket.h> 53 #define _WANT_SOCKET 54 #include <sys/socketvar.h> 55 #include <sys/domain.h> 56 #include <sys/protosw.h> 57 #include <sys/un.h> 58 #define _WANT_UNPCB 59 #include <sys/unpcb.h> 60 #include <sys/sysctl.h> 61 #include <sys/tty.h> 62 #include <sys/filedesc.h> 63 #include <sys/queue.h> 64 #define _WANT_FILE 65 #include <sys/file.h> 66 #include <sys/conf.h> 67 #include <sys/ksem.h> 68 #include <sys/mman.h> 69 #include <sys/capsicum.h> 70 #include <sys/ptrace.h> 71 #define _KERNEL 72 #include <sys/mount.h> 73 #include <sys/filedesc.h> 74 #include <sys/pipe.h> 75 #include <ufs/ufs/quota.h> 76 #include <ufs/ufs/inode.h> 77 #include <fs/devfs/devfs.h> 78 #include <fs/devfs/devfs_int.h> 79 #undef _KERNEL 80 #include <nfs/nfsproto.h> 81 #include <nfsclient/nfs.h> 82 #include <nfsclient/nfsnode.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 88 #include <net/route.h> 89 #include <netinet/in.h> 90 #include <netinet/in_systm.h> 91 #include <netinet/ip.h> 92 #define _WANT_INPCB 93 #include <netinet/in_pcb.h> 94 95 #include <assert.h> 96 #include <ctype.h> 97 #include <err.h> 98 #include <fcntl.h> 99 #include <kvm.h> 100 #include <libutil.h> 101 #include <limits.h> 102 #include <paths.h> 103 #include <pwd.h> 104 #include <stdio.h> 105 #include <stdlib.h> 106 #include <stddef.h> 107 #include <string.h> 108 #include <unistd.h> 109 #include <netdb.h> 110 111 #include <libprocstat.h> 112 #include "libprocstat_internal.h" 113 #include "common_kvm.h" 114 #include "core.h" 115 116 int statfs(const char *, struct statfs *); /* XXX */ 117 118 #define PROCSTAT_KVM 1 119 #define PROCSTAT_SYSCTL 2 120 #define PROCSTAT_CORE 3 121 122 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, 123 size_t nchr, int env); 124 static char *getmnton(kvm_t *kd, struct mount *m); 125 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, 126 int *cntp); 127 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, 128 unsigned int *cntp); 129 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); 130 static struct filestat_list *procstat_getfiles_kvm( 131 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 132 static struct filestat_list *procstat_getfiles_sysctl( 133 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 134 static int procstat_get_pipe_info_sysctl(struct filestat *fst, 135 struct pipestat *pipe, char *errbuf); 136 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 137 struct pipestat *pipe, char *errbuf); 138 static int procstat_get_pts_info_sysctl(struct filestat *fst, 139 struct ptsstat *pts, char *errbuf); 140 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 141 struct ptsstat *pts, char *errbuf); 142 static int procstat_get_sem_info_sysctl(struct filestat *fst, 143 struct semstat *sem, char *errbuf); 144 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 145 struct semstat *sem, char *errbuf); 146 static int procstat_get_shm_info_sysctl(struct filestat *fst, 147 struct shmstat *shm, char *errbuf); 148 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 149 struct shmstat *shm, char *errbuf); 150 static int procstat_get_socket_info_sysctl(struct filestat *fst, 151 struct sockstat *sock, char *errbuf); 152 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 153 struct sockstat *sock, char *errbuf); 154 static int to_filestat_flags(int flags); 155 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 156 struct vnstat *vn, char *errbuf); 157 static int procstat_get_vnode_info_sysctl(struct filestat *fst, 158 struct vnstat *vn, char *errbuf); 159 static gid_t *procstat_getgroups_core(struct procstat_core *core, 160 unsigned int *count); 161 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, 162 unsigned int *count); 163 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); 164 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, 165 int *cntp); 166 static int procstat_getosrel_core(struct procstat_core *core, 167 int *osrelp); 168 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, 169 int *osrelp); 170 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); 171 static int procstat_getpathname_core(struct procstat_core *core, 172 char *pathname, size_t maxlen); 173 static int procstat_getpathname_sysctl(pid_t pid, char *pathname, 174 size_t maxlen); 175 static int procstat_getrlimit_core(struct procstat_core *core, int which, 176 struct rlimit* rlimit); 177 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, 178 int which, struct rlimit* rlimit); 179 static int procstat_getrlimit_sysctl(pid_t pid, int which, 180 struct rlimit* rlimit); 181 static int procstat_getumask_core(struct procstat_core *core, 182 unsigned short *maskp); 183 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, 184 unsigned short *maskp); 185 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); 186 static int vntype2psfsttype(int type); 187 188 void 189 procstat_close(struct procstat *procstat) 190 { 191 192 assert(procstat); 193 if (procstat->type == PROCSTAT_KVM) 194 kvm_close(procstat->kd); 195 else if (procstat->type == PROCSTAT_CORE) 196 procstat_core_close(procstat->core); 197 procstat_freeargv(procstat); 198 procstat_freeenvv(procstat); 199 free(procstat); 200 } 201 202 struct procstat * 203 procstat_open_sysctl(void) 204 { 205 struct procstat *procstat; 206 207 procstat = calloc(1, sizeof(*procstat)); 208 if (procstat == NULL) { 209 warn("malloc()"); 210 return (NULL); 211 } 212 procstat->type = PROCSTAT_SYSCTL; 213 return (procstat); 214 } 215 216 struct procstat * 217 procstat_open_kvm(const char *nlistf, const char *memf) 218 { 219 struct procstat *procstat; 220 kvm_t *kd; 221 char buf[_POSIX2_LINE_MAX]; 222 223 procstat = calloc(1, sizeof(*procstat)); 224 if (procstat == NULL) { 225 warn("malloc()"); 226 return (NULL); 227 } 228 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); 229 if (kd == NULL) { 230 warnx("kvm_openfiles(): %s", buf); 231 free(procstat); 232 return (NULL); 233 } 234 procstat->type = PROCSTAT_KVM; 235 procstat->kd = kd; 236 return (procstat); 237 } 238 239 struct procstat * 240 procstat_open_core(const char *filename) 241 { 242 struct procstat *procstat; 243 struct procstat_core *core; 244 245 procstat = calloc(1, sizeof(*procstat)); 246 if (procstat == NULL) { 247 warn("malloc()"); 248 return (NULL); 249 } 250 core = procstat_core_open(filename); 251 if (core == NULL) { 252 free(procstat); 253 return (NULL); 254 } 255 procstat->type = PROCSTAT_CORE; 256 procstat->core = core; 257 return (procstat); 258 } 259 260 struct kinfo_proc * 261 procstat_getprocs(struct procstat *procstat, int what, int arg, 262 unsigned int *count) 263 { 264 struct kinfo_proc *p0, *p; 265 size_t len, olen; 266 int name[4]; 267 int cnt; 268 int error; 269 270 assert(procstat); 271 assert(count); 272 p = NULL; 273 if (procstat->type == PROCSTAT_KVM) { 274 *count = 0; 275 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); 276 if (p0 == NULL || cnt <= 0) 277 return (NULL); 278 *count = cnt; 279 len = *count * sizeof(*p); 280 p = malloc(len); 281 if (p == NULL) { 282 warnx("malloc(%zu)", len); 283 goto fail; 284 } 285 bcopy(p0, p, len); 286 return (p); 287 } else if (procstat->type == PROCSTAT_SYSCTL) { 288 len = 0; 289 name[0] = CTL_KERN; 290 name[1] = KERN_PROC; 291 name[2] = what; 292 name[3] = arg; 293 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 294 if (error < 0 && errno != EPERM) { 295 warn("sysctl(kern.proc)"); 296 goto fail; 297 } 298 if (len == 0) { 299 warnx("no processes?"); 300 goto fail; 301 } 302 do { 303 len += len / 10; 304 p = reallocf(p, len); 305 if (p == NULL) { 306 warnx("reallocf(%zu)", len); 307 goto fail; 308 } 309 olen = len; 310 error = sysctl(name, nitems(name), p, &len, NULL, 0); 311 } while (error < 0 && errno == ENOMEM && olen == len); 312 if (error < 0 && errno != EPERM) { 313 warn("sysctl(kern.proc)"); 314 goto fail; 315 } 316 /* Perform simple consistency checks. */ 317 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 318 warnx("kinfo_proc structure size mismatch (len = %zu)", len); 319 goto fail; 320 } 321 *count = len / sizeof(*p); 322 return (p); 323 } else if (procstat->type == PROCSTAT_CORE) { 324 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, 325 &len); 326 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 327 warnx("kinfo_proc structure size mismatch"); 328 goto fail; 329 } 330 *count = len / sizeof(*p); 331 return (p); 332 } else { 333 warnx("unknown access method: %d", procstat->type); 334 return (NULL); 335 } 336 fail: 337 if (p) 338 free(p); 339 return (NULL); 340 } 341 342 void 343 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) 344 { 345 346 if (p != NULL) 347 free(p); 348 p = NULL; 349 } 350 351 struct filestat_list * 352 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 353 { 354 355 switch(procstat->type) { 356 case PROCSTAT_KVM: 357 return (procstat_getfiles_kvm(procstat, kp, mmapped)); 358 case PROCSTAT_SYSCTL: 359 case PROCSTAT_CORE: 360 return (procstat_getfiles_sysctl(procstat, kp, mmapped)); 361 default: 362 warnx("unknown access method: %d", procstat->type); 363 return (NULL); 364 } 365 } 366 367 void 368 procstat_freefiles(struct procstat *procstat, struct filestat_list *head) 369 { 370 struct filestat *fst, *tmp; 371 372 STAILQ_FOREACH_SAFE(fst, head, next, tmp) { 373 if (fst->fs_path != NULL) 374 free(fst->fs_path); 375 free(fst); 376 } 377 free(head); 378 if (procstat->vmentries != NULL) { 379 free(procstat->vmentries); 380 procstat->vmentries = NULL; 381 } 382 if (procstat->files != NULL) { 383 free(procstat->files); 384 procstat->files = NULL; 385 } 386 } 387 388 static struct filestat * 389 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, 390 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp) 391 { 392 struct filestat *entry; 393 394 entry = calloc(1, sizeof(*entry)); 395 if (entry == NULL) { 396 warn("malloc()"); 397 return (NULL); 398 } 399 entry->fs_typedep = typedep; 400 entry->fs_fflags = fflags; 401 entry->fs_uflags = uflags; 402 entry->fs_fd = fd; 403 entry->fs_type = type; 404 entry->fs_ref_count = refcount; 405 entry->fs_offset = offset; 406 entry->fs_path = path; 407 if (cap_rightsp != NULL) 408 entry->fs_cap_rights = *cap_rightsp; 409 else 410 cap_rights_init(&entry->fs_cap_rights); 411 return (entry); 412 } 413 414 static struct vnode * 415 getctty(kvm_t *kd, struct kinfo_proc *kp) 416 { 417 struct pgrp pgrp; 418 struct proc proc; 419 struct session sess; 420 int error; 421 422 assert(kp); 423 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 424 sizeof(proc)); 425 if (error == 0) { 426 warnx("can't read proc struct at %p for pid %d", 427 kp->ki_paddr, kp->ki_pid); 428 return (NULL); 429 } 430 if (proc.p_pgrp == NULL) 431 return (NULL); 432 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, 433 sizeof(pgrp)); 434 if (error == 0) { 435 warnx("can't read pgrp struct at %p for pid %d", 436 proc.p_pgrp, kp->ki_pid); 437 return (NULL); 438 } 439 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, 440 sizeof(sess)); 441 if (error == 0) { 442 warnx("can't read session struct at %p for pid %d", 443 pgrp.pg_session, kp->ki_pid); 444 return (NULL); 445 } 446 return (sess.s_ttyvp); 447 } 448 449 static int 450 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest) 451 { 452 kvm_t *kd; 453 454 kd = (kvm_t *)token; 455 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest))); 456 } 457 458 static struct filestat_list * 459 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 460 { 461 struct file file; 462 struct filedesc filed; 463 struct pwddesc pathsd; 464 struct fdescenttbl *fdt; 465 struct pwd pwd; 466 unsigned long pwd_addr; 467 struct vm_map_entry vmentry; 468 struct vm_object object; 469 struct vmspace vmspace; 470 vm_map_entry_t entryp; 471 vm_object_t objp; 472 struct vnode *vp; 473 struct filestat *entry; 474 struct filestat_list *head; 475 kvm_t *kd; 476 void *data; 477 int fflags; 478 unsigned int i; 479 int prot, type; 480 size_t fdt_size; 481 unsigned int nfiles; 482 bool haspwd; 483 484 assert(procstat); 485 kd = procstat->kd; 486 if (kd == NULL) 487 return (NULL); 488 if (kp->ki_fd == NULL || kp->ki_pd == NULL) 489 return (NULL); 490 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, 491 sizeof(filed))) { 492 warnx("can't read filedesc at %p", (void *)kp->ki_fd); 493 return (NULL); 494 } 495 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd, 496 sizeof(pathsd))) { 497 warnx("can't read pwddesc at %p", (void *)kp->ki_pd); 498 return (NULL); 499 } 500 haspwd = false; 501 pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd)); 502 if (pwd_addr != 0) { 503 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) { 504 warnx("can't read fd_pwd at %p", (void *)pwd_addr); 505 return (NULL); 506 } 507 haspwd = true; 508 } 509 510 /* 511 * Allocate list head. 512 */ 513 head = malloc(sizeof(*head)); 514 if (head == NULL) 515 return (NULL); 516 STAILQ_INIT(head); 517 518 /* root directory vnode, if one. */ 519 if (haspwd) { 520 if (pwd.pwd_rdir) { 521 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1, 522 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL); 523 if (entry != NULL) 524 STAILQ_INSERT_TAIL(head, entry, next); 525 } 526 /* current working directory vnode. */ 527 if (pwd.pwd_cdir) { 528 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1, 529 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL); 530 if (entry != NULL) 531 STAILQ_INSERT_TAIL(head, entry, next); 532 } 533 /* jail root, if any. */ 534 if (pwd.pwd_jdir) { 535 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1, 536 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL); 537 if (entry != NULL) 538 STAILQ_INSERT_TAIL(head, entry, next); 539 } 540 } 541 /* ktrace vnode, if one */ 542 if (kp->ki_tracep) { 543 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, 544 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 545 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL); 546 if (entry != NULL) 547 STAILQ_INSERT_TAIL(head, entry, next); 548 } 549 /* text vnode, if one */ 550 if (kp->ki_textvp) { 551 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, 552 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL); 553 if (entry != NULL) 554 STAILQ_INSERT_TAIL(head, entry, next); 555 } 556 /* Controlling terminal. */ 557 if ((vp = getctty(kd, kp)) != NULL) { 558 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, 559 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 560 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL); 561 if (entry != NULL) 562 STAILQ_INSERT_TAIL(head, entry, next); 563 } 564 565 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles, 566 sizeof(nfiles))) { 567 warnx("can't read fd_files at %p", (void *)filed.fd_files); 568 return (NULL); 569 } 570 571 fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent); 572 fdt = malloc(fdt_size); 573 if (fdt == NULL) { 574 warn("malloc(%zu)", fdt_size); 575 goto do_mmapped; 576 } 577 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) { 578 warnx("cannot read file structures at %p", (void *)filed.fd_files); 579 free(fdt); 580 goto do_mmapped; 581 } 582 for (i = 0; i < nfiles; i++) { 583 if (fdt->fdt_ofiles[i].fde_file == NULL) { 584 continue; 585 } 586 if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file, 587 sizeof(struct file))) { 588 warnx("can't read file %d at %p", i, 589 (void *)fdt->fdt_ofiles[i].fde_file); 590 continue; 591 } 592 switch (file.f_type) { 593 case DTYPE_VNODE: 594 type = PS_FST_TYPE_VNODE; 595 data = file.f_vnode; 596 break; 597 case DTYPE_SOCKET: 598 type = PS_FST_TYPE_SOCKET; 599 data = file.f_data; 600 break; 601 case DTYPE_PIPE: 602 type = PS_FST_TYPE_PIPE; 603 data = file.f_data; 604 break; 605 case DTYPE_FIFO: 606 type = PS_FST_TYPE_FIFO; 607 data = file.f_vnode; 608 break; 609 #ifdef DTYPE_PTS 610 case DTYPE_PTS: 611 type = PS_FST_TYPE_PTS; 612 data = file.f_data; 613 break; 614 #endif 615 case DTYPE_SEM: 616 type = PS_FST_TYPE_SEM; 617 data = file.f_data; 618 break; 619 case DTYPE_SHM: 620 type = PS_FST_TYPE_SHM; 621 data = file.f_data; 622 break; 623 case DTYPE_PROCDESC: 624 type = PS_FST_TYPE_PROCDESC; 625 data = file.f_data; 626 break; 627 case DTYPE_DEV: 628 type = PS_FST_TYPE_DEV; 629 data = file.f_data; 630 break; 631 default: 632 continue; 633 } 634 /* XXXRW: No capability rights support for kvm yet. */ 635 entry = filestat_new_entry(data, type, i, 636 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL); 637 if (entry != NULL) 638 STAILQ_INSERT_TAIL(head, entry, next); 639 } 640 free(fdt); 641 642 do_mmapped: 643 644 /* 645 * Process mmapped files if requested. 646 */ 647 if (mmapped) { 648 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, 649 sizeof(vmspace))) { 650 warnx("can't read vmspace at %p", 651 (void *)kp->ki_vmspace); 652 goto exit; 653 } 654 655 vmentry = vmspace.vm_map.header; 656 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader); 657 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header; 658 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) { 659 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) 660 continue; 661 if ((objp = vmentry.object.vm_object) == NULL) 662 continue; 663 for (; objp; objp = object.backing_object) { 664 if (!kvm_read_all(kd, (unsigned long)objp, 665 &object, sizeof(object))) { 666 warnx("can't read vm_object at %p", 667 (void *)objp); 668 break; 669 } 670 } 671 672 /* We want only vnode objects. */ 673 if (object.type != OBJT_VNODE) 674 continue; 675 676 prot = vmentry.protection; 677 fflags = 0; 678 if (prot & VM_PROT_READ) 679 fflags = PS_FST_FFLAG_READ; 680 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && 681 prot & VM_PROT_WRITE) 682 fflags |= PS_FST_FFLAG_WRITE; 683 684 /* 685 * Create filestat entry. 686 */ 687 entry = filestat_new_entry(object.handle, 688 PS_FST_TYPE_VNODE, -1, fflags, 689 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL); 690 if (entry != NULL) 691 STAILQ_INSERT_TAIL(head, entry, next); 692 } 693 if (entryp == NULL) 694 warnx("can't read vm_map_entry"); 695 } 696 exit: 697 return (head); 698 } 699 700 /* 701 * kinfo types to filestat translation. 702 */ 703 static int 704 kinfo_type2fst(int kftype) 705 { 706 static struct { 707 int kf_type; 708 int fst_type; 709 } kftypes2fst[] = { 710 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC }, 711 { KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO }, 712 { KF_TYPE_DEV, PS_FST_TYPE_DEV }, 713 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, 714 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, 715 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, 716 { KF_TYPE_NONE, PS_FST_TYPE_NONE }, 717 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, 718 { KF_TYPE_PTS, PS_FST_TYPE_PTS }, 719 { KF_TYPE_SEM, PS_FST_TYPE_SEM }, 720 { KF_TYPE_SHM, PS_FST_TYPE_SHM }, 721 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, 722 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, 723 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } 724 }; 725 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) 726 unsigned int i; 727 728 for (i = 0; i < NKFTYPES; i++) 729 if (kftypes2fst[i].kf_type == kftype) 730 break; 731 if (i == NKFTYPES) 732 return (PS_FST_TYPE_UNKNOWN); 733 return (kftypes2fst[i].fst_type); 734 } 735 736 /* 737 * kinfo flags to filestat translation. 738 */ 739 static int 740 kinfo_fflags2fst(int kfflags) 741 { 742 static struct { 743 int kf_flag; 744 int fst_flag; 745 } kfflags2fst[] = { 746 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, 747 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, 748 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, 749 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, 750 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, 751 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, 752 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, 753 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, 754 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, 755 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 756 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 757 { KF_FLAG_READ, PS_FST_FFLAG_READ }, 758 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, 759 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, 760 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } 761 }; 762 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) 763 unsigned int i; 764 int flags; 765 766 flags = 0; 767 for (i = 0; i < NKFFLAGS; i++) 768 if ((kfflags & kfflags2fst[i].kf_flag) != 0) 769 flags |= kfflags2fst[i].fst_flag; 770 return (flags); 771 } 772 773 static int 774 kinfo_uflags2fst(int fd) 775 { 776 777 switch (fd) { 778 case KF_FD_TYPE_CTTY: 779 return (PS_FST_UFLAG_CTTY); 780 case KF_FD_TYPE_CWD: 781 return (PS_FST_UFLAG_CDIR); 782 case KF_FD_TYPE_JAIL: 783 return (PS_FST_UFLAG_JAIL); 784 case KF_FD_TYPE_TEXT: 785 return (PS_FST_UFLAG_TEXT); 786 case KF_FD_TYPE_TRACE: 787 return (PS_FST_UFLAG_TRACE); 788 case KF_FD_TYPE_ROOT: 789 return (PS_FST_UFLAG_RDIR); 790 } 791 return (0); 792 } 793 794 static struct kinfo_file * 795 kinfo_getfile_core(struct procstat_core *core, int *cntp) 796 { 797 int cnt; 798 size_t len; 799 char *buf, *bp, *eb; 800 struct kinfo_file *kif, *kp, *kf; 801 802 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); 803 if (buf == NULL) 804 return (NULL); 805 /* 806 * XXXMG: The code below is just copy&past from libutil. 807 * The code duplication can be avoided if libutil 808 * is extended to provide something like: 809 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, 810 * size_t len, int *cntp); 811 */ 812 813 /* Pass 1: count items */ 814 cnt = 0; 815 bp = buf; 816 eb = buf + len; 817 while (bp < eb) { 818 kf = (struct kinfo_file *)(uintptr_t)bp; 819 if (kf->kf_structsize == 0) 820 break; 821 bp += kf->kf_structsize; 822 cnt++; 823 } 824 825 kif = calloc(cnt, sizeof(*kif)); 826 if (kif == NULL) { 827 free(buf); 828 return (NULL); 829 } 830 bp = buf; 831 eb = buf + len; 832 kp = kif; 833 /* Pass 2: unpack */ 834 while (bp < eb) { 835 kf = (struct kinfo_file *)(uintptr_t)bp; 836 if (kf->kf_structsize == 0) 837 break; 838 /* Copy/expand into pre-zeroed buffer */ 839 memcpy(kp, kf, kf->kf_structsize); 840 /* Advance to next packed record */ 841 bp += kf->kf_structsize; 842 /* Set field size to fixed length, advance */ 843 kp->kf_structsize = sizeof(*kp); 844 kp++; 845 } 846 free(buf); 847 *cntp = cnt; 848 return (kif); /* Caller must free() return value */ 849 } 850 851 static struct filestat_list * 852 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, 853 int mmapped) 854 { 855 struct kinfo_file *kif, *files; 856 struct kinfo_vmentry *kve, *vmentries; 857 struct filestat_list *head; 858 struct filestat *entry; 859 char *path; 860 off_t offset; 861 int cnt, fd, fflags; 862 int i, type, uflags; 863 int refcount; 864 cap_rights_t cap_rights; 865 866 assert(kp); 867 if (kp->ki_fd == NULL) 868 return (NULL); 869 switch(procstat->type) { 870 case PROCSTAT_SYSCTL: 871 files = kinfo_getfile(kp->ki_pid, &cnt); 872 break; 873 case PROCSTAT_CORE: 874 files = kinfo_getfile_core(procstat->core, &cnt); 875 break; 876 default: 877 assert(!"invalid type"); 878 } 879 if (files == NULL && errno != EPERM) { 880 warn("kinfo_getfile()"); 881 return (NULL); 882 } 883 procstat->files = files; 884 885 /* 886 * Allocate list head. 887 */ 888 head = malloc(sizeof(*head)); 889 if (head == NULL) 890 return (NULL); 891 STAILQ_INIT(head); 892 for (i = 0; i < cnt; i++) { 893 kif = &files[i]; 894 895 type = kinfo_type2fst(kif->kf_type); 896 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; 897 fflags = kinfo_fflags2fst(kif->kf_flags); 898 uflags = kinfo_uflags2fst(kif->kf_fd); 899 refcount = kif->kf_ref_count; 900 offset = kif->kf_offset; 901 if (*kif->kf_path != '\0') 902 path = strdup(kif->kf_path); 903 else 904 path = NULL; 905 cap_rights = kif->kf_cap_rights; 906 907 /* 908 * Create filestat entry. 909 */ 910 entry = filestat_new_entry(kif, type, fd, fflags, uflags, 911 refcount, offset, path, &cap_rights); 912 if (entry != NULL) 913 STAILQ_INSERT_TAIL(head, entry, next); 914 } 915 if (mmapped != 0) { 916 vmentries = procstat_getvmmap(procstat, kp, &cnt); 917 procstat->vmentries = vmentries; 918 if (vmentries == NULL || cnt == 0) 919 goto fail; 920 for (i = 0; i < cnt; i++) { 921 kve = &vmentries[i]; 922 if (kve->kve_type != KVME_TYPE_VNODE) 923 continue; 924 fflags = 0; 925 if (kve->kve_protection & KVME_PROT_READ) 926 fflags = PS_FST_FFLAG_READ; 927 if ((kve->kve_flags & KVME_FLAG_COW) == 0 && 928 kve->kve_protection & KVME_PROT_WRITE) 929 fflags |= PS_FST_FFLAG_WRITE; 930 offset = kve->kve_offset; 931 refcount = kve->kve_ref_count; 932 if (*kve->kve_path != '\0') 933 path = strdup(kve->kve_path); 934 else 935 path = NULL; 936 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, 937 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, 938 NULL); 939 if (entry != NULL) 940 STAILQ_INSERT_TAIL(head, entry, next); 941 } 942 } 943 fail: 944 return (head); 945 } 946 947 int 948 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, 949 struct pipestat *ps, char *errbuf) 950 { 951 952 assert(ps); 953 if (procstat->type == PROCSTAT_KVM) { 954 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, 955 errbuf)); 956 } else if (procstat->type == PROCSTAT_SYSCTL || 957 procstat->type == PROCSTAT_CORE) { 958 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); 959 } else { 960 warnx("unknown access method: %d", procstat->type); 961 if (errbuf != NULL) 962 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 963 return (1); 964 } 965 } 966 967 static int 968 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 969 struct pipestat *ps, char *errbuf) 970 { 971 struct pipe pi; 972 void *pipep; 973 974 assert(kd); 975 assert(ps); 976 assert(fst); 977 bzero(ps, sizeof(*ps)); 978 pipep = fst->fs_typedep; 979 if (pipep == NULL) 980 goto fail; 981 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { 982 warnx("can't read pipe at %p", (void *)pipep); 983 goto fail; 984 } 985 ps->addr = (uintptr_t)pipep; 986 ps->peer = (uintptr_t)pi.pipe_peer; 987 ps->buffer_cnt = pi.pipe_buffer.cnt; 988 return (0); 989 990 fail: 991 if (errbuf != NULL) 992 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 993 return (1); 994 } 995 996 static int 997 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, 998 char *errbuf __unused) 999 { 1000 struct kinfo_file *kif; 1001 1002 assert(ps); 1003 assert(fst); 1004 bzero(ps, sizeof(*ps)); 1005 kif = fst->fs_typedep; 1006 if (kif == NULL) 1007 return (1); 1008 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; 1009 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; 1010 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; 1011 return (0); 1012 } 1013 1014 int 1015 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, 1016 struct ptsstat *pts, char *errbuf) 1017 { 1018 1019 assert(pts); 1020 if (procstat->type == PROCSTAT_KVM) { 1021 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, 1022 errbuf)); 1023 } else if (procstat->type == PROCSTAT_SYSCTL || 1024 procstat->type == PROCSTAT_CORE) { 1025 return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); 1026 } else { 1027 warnx("unknown access method: %d", procstat->type); 1028 if (errbuf != NULL) 1029 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1030 return (1); 1031 } 1032 } 1033 1034 static int 1035 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 1036 struct ptsstat *pts, char *errbuf) 1037 { 1038 struct tty tty; 1039 void *ttyp; 1040 1041 assert(kd); 1042 assert(pts); 1043 assert(fst); 1044 bzero(pts, sizeof(*pts)); 1045 ttyp = fst->fs_typedep; 1046 if (ttyp == NULL) 1047 goto fail; 1048 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { 1049 warnx("can't read tty at %p", (void *)ttyp); 1050 goto fail; 1051 } 1052 pts->dev = dev2udev(kd, tty.t_dev); 1053 (void)kdevtoname(kd, tty.t_dev, pts->devname); 1054 return (0); 1055 1056 fail: 1057 if (errbuf != NULL) 1058 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1059 return (1); 1060 } 1061 1062 static int 1063 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, 1064 char *errbuf __unused) 1065 { 1066 struct kinfo_file *kif; 1067 1068 assert(pts); 1069 assert(fst); 1070 bzero(pts, sizeof(*pts)); 1071 kif = fst->fs_typedep; 1072 if (kif == NULL) 1073 return (0); 1074 pts->dev = kif->kf_un.kf_pts.kf_pts_dev; 1075 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); 1076 return (0); 1077 } 1078 1079 int 1080 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, 1081 struct semstat *sem, char *errbuf) 1082 { 1083 1084 assert(sem); 1085 if (procstat->type == PROCSTAT_KVM) { 1086 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, 1087 errbuf)); 1088 } else if (procstat->type == PROCSTAT_SYSCTL || 1089 procstat->type == PROCSTAT_CORE) { 1090 return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); 1091 } else { 1092 warnx("unknown access method: %d", procstat->type); 1093 if (errbuf != NULL) 1094 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1095 return (1); 1096 } 1097 } 1098 1099 static int 1100 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 1101 struct semstat *sem, char *errbuf) 1102 { 1103 struct ksem ksem; 1104 void *ksemp; 1105 char *path; 1106 int i; 1107 1108 assert(kd); 1109 assert(sem); 1110 assert(fst); 1111 bzero(sem, sizeof(*sem)); 1112 ksemp = fst->fs_typedep; 1113 if (ksemp == NULL) 1114 goto fail; 1115 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, 1116 sizeof(struct ksem))) { 1117 warnx("can't read ksem at %p", (void *)ksemp); 1118 goto fail; 1119 } 1120 sem->mode = S_IFREG | ksem.ks_mode; 1121 sem->value = ksem.ks_value; 1122 if (fst->fs_path == NULL && ksem.ks_path != NULL) { 1123 path = malloc(MAXPATHLEN); 1124 for (i = 0; i < MAXPATHLEN - 1; i++) { 1125 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, 1126 path + i, 1)) 1127 break; 1128 if (path[i] == '\0') 1129 break; 1130 } 1131 path[i] = '\0'; 1132 if (i == 0) 1133 free(path); 1134 else 1135 fst->fs_path = path; 1136 } 1137 return (0); 1138 1139 fail: 1140 if (errbuf != NULL) 1141 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1142 return (1); 1143 } 1144 1145 static int 1146 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, 1147 char *errbuf __unused) 1148 { 1149 struct kinfo_file *kif; 1150 1151 assert(sem); 1152 assert(fst); 1153 bzero(sem, sizeof(*sem)); 1154 kif = fst->fs_typedep; 1155 if (kif == NULL) 1156 return (0); 1157 sem->value = kif->kf_un.kf_sem.kf_sem_value; 1158 sem->mode = kif->kf_un.kf_sem.kf_sem_mode; 1159 return (0); 1160 } 1161 1162 int 1163 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, 1164 struct shmstat *shm, char *errbuf) 1165 { 1166 1167 assert(shm); 1168 if (procstat->type == PROCSTAT_KVM) { 1169 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, 1170 errbuf)); 1171 } else if (procstat->type == PROCSTAT_SYSCTL || 1172 procstat->type == PROCSTAT_CORE) { 1173 return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); 1174 } else { 1175 warnx("unknown access method: %d", procstat->type); 1176 if (errbuf != NULL) 1177 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1178 return (1); 1179 } 1180 } 1181 1182 static int 1183 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 1184 struct shmstat *shm, char *errbuf) 1185 { 1186 struct shmfd shmfd; 1187 void *shmfdp; 1188 char *path; 1189 int i; 1190 1191 assert(kd); 1192 assert(shm); 1193 assert(fst); 1194 bzero(shm, sizeof(*shm)); 1195 shmfdp = fst->fs_typedep; 1196 if (shmfdp == NULL) 1197 goto fail; 1198 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, 1199 sizeof(struct shmfd))) { 1200 warnx("can't read shmfd at %p", (void *)shmfdp); 1201 goto fail; 1202 } 1203 shm->mode = S_IFREG | shmfd.shm_mode; 1204 shm->size = shmfd.shm_size; 1205 if (fst->fs_path == NULL && shmfd.shm_path != NULL) { 1206 path = malloc(MAXPATHLEN); 1207 for (i = 0; i < MAXPATHLEN - 1; i++) { 1208 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, 1209 path + i, 1)) 1210 break; 1211 if (path[i] == '\0') 1212 break; 1213 } 1214 path[i] = '\0'; 1215 if (i == 0) 1216 free(path); 1217 else 1218 fst->fs_path = path; 1219 } 1220 return (0); 1221 1222 fail: 1223 if (errbuf != NULL) 1224 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1225 return (1); 1226 } 1227 1228 static int 1229 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, 1230 char *errbuf __unused) 1231 { 1232 struct kinfo_file *kif; 1233 1234 assert(shm); 1235 assert(fst); 1236 bzero(shm, sizeof(*shm)); 1237 kif = fst->fs_typedep; 1238 if (kif == NULL) 1239 return (0); 1240 shm->size = kif->kf_un.kf_file.kf_file_size; 1241 shm->mode = kif->kf_un.kf_file.kf_file_mode; 1242 return (0); 1243 } 1244 1245 int 1246 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, 1247 struct vnstat *vn, char *errbuf) 1248 { 1249 1250 assert(vn); 1251 if (procstat->type == PROCSTAT_KVM) { 1252 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, 1253 errbuf)); 1254 } else if (procstat->type == PROCSTAT_SYSCTL || 1255 procstat->type == PROCSTAT_CORE) { 1256 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); 1257 } else { 1258 warnx("unknown access method: %d", procstat->type); 1259 if (errbuf != NULL) 1260 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1261 return (1); 1262 } 1263 } 1264 1265 static int 1266 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 1267 struct vnstat *vn, char *errbuf) 1268 { 1269 /* Filesystem specific handlers. */ 1270 #define FSTYPE(fst) {#fst, fst##_filestat} 1271 struct { 1272 const char *tag; 1273 int (*handler)(kvm_t *kd, struct vnode *vp, 1274 struct vnstat *vn); 1275 } fstypes[] = { 1276 FSTYPE(devfs), 1277 FSTYPE(isofs), 1278 FSTYPE(msdosfs), 1279 FSTYPE(nfs), 1280 FSTYPE(smbfs), 1281 FSTYPE(udf), 1282 FSTYPE(ufs), 1283 #ifdef LIBPROCSTAT_ZFS 1284 FSTYPE(zfs), 1285 #endif 1286 }; 1287 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) 1288 struct vnode vnode; 1289 char tagstr[12]; 1290 void *vp; 1291 int error; 1292 unsigned int i; 1293 1294 assert(kd); 1295 assert(vn); 1296 assert(fst); 1297 vp = fst->fs_typedep; 1298 if (vp == NULL) 1299 goto fail; 1300 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); 1301 if (error == 0) { 1302 warnx("can't read vnode at %p", (void *)vp); 1303 goto fail; 1304 } 1305 bzero(vn, sizeof(*vn)); 1306 vn->vn_type = vntype2psfsttype(vnode.v_type); 1307 if (vnode.v_type == VNON || vnode.v_type == VBAD) 1308 return (0); 1309 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name, 1310 tagstr, sizeof(tagstr)); 1311 if (error == 0) { 1312 warnx("can't read lo_name at %p", (void *)vp); 1313 goto fail; 1314 } 1315 tagstr[sizeof(tagstr) - 1] = '\0'; 1316 1317 /* 1318 * Find appropriate handler. 1319 */ 1320 for (i = 0; i < NTYPES; i++) 1321 if (!strcmp(fstypes[i].tag, tagstr)) { 1322 if (fstypes[i].handler(kd, &vnode, vn) != 0) { 1323 goto fail; 1324 } 1325 break; 1326 } 1327 if (i == NTYPES) { 1328 if (errbuf != NULL) 1329 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); 1330 return (1); 1331 } 1332 vn->vn_mntdir = getmnton(kd, vnode.v_mount); 1333 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) && 1334 vnode.v_rdev != NULL){ 1335 vn->vn_dev = dev2udev(kd, vnode.v_rdev); 1336 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); 1337 } else { 1338 vn->vn_dev = -1; 1339 } 1340 return (0); 1341 1342 fail: 1343 if (errbuf != NULL) 1344 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1345 return (1); 1346 } 1347 1348 /* 1349 * kinfo vnode type to filestat translation. 1350 */ 1351 static int 1352 kinfo_vtype2fst(int kfvtype) 1353 { 1354 static struct { 1355 int kf_vtype; 1356 int fst_vtype; 1357 } kfvtypes2fst[] = { 1358 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, 1359 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, 1360 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, 1361 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, 1362 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, 1363 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, 1364 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, 1365 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, 1366 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } 1367 }; 1368 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) 1369 unsigned int i; 1370 1371 for (i = 0; i < NKFVTYPES; i++) 1372 if (kfvtypes2fst[i].kf_vtype == kfvtype) 1373 break; 1374 if (i == NKFVTYPES) 1375 return (PS_FST_VTYPE_UNKNOWN); 1376 return (kfvtypes2fst[i].fst_vtype); 1377 } 1378 1379 static int 1380 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, 1381 char *errbuf) 1382 { 1383 struct statfs stbuf; 1384 struct kinfo_file *kif; 1385 struct kinfo_vmentry *kve; 1386 char *name, *path; 1387 uint64_t fileid; 1388 uint64_t size; 1389 uint64_t fsid; 1390 uint64_t rdev; 1391 uint16_t mode; 1392 int vntype; 1393 int status; 1394 1395 assert(fst); 1396 assert(vn); 1397 bzero(vn, sizeof(*vn)); 1398 if (fst->fs_typedep == NULL) 1399 return (1); 1400 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { 1401 kve = fst->fs_typedep; 1402 fileid = kve->kve_vn_fileid; 1403 fsid = kve->kve_vn_fsid; 1404 mode = kve->kve_vn_mode; 1405 path = kve->kve_path; 1406 rdev = kve->kve_vn_rdev; 1407 size = kve->kve_vn_size; 1408 vntype = kinfo_vtype2fst(kve->kve_vn_type); 1409 status = kve->kve_status; 1410 } else { 1411 kif = fst->fs_typedep; 1412 fileid = kif->kf_un.kf_file.kf_file_fileid; 1413 fsid = kif->kf_un.kf_file.kf_file_fsid; 1414 mode = kif->kf_un.kf_file.kf_file_mode; 1415 path = kif->kf_path; 1416 rdev = kif->kf_un.kf_file.kf_file_rdev; 1417 size = kif->kf_un.kf_file.kf_file_size; 1418 vntype = kinfo_vtype2fst(kif->kf_vnode_type); 1419 status = kif->kf_status; 1420 } 1421 vn->vn_type = vntype; 1422 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) 1423 return (0); 1424 if ((status & KF_ATTR_VALID) == 0) { 1425 if (errbuf != NULL) { 1426 snprintf(errbuf, _POSIX2_LINE_MAX, 1427 "? (no info available)"); 1428 } 1429 return (1); 1430 } 1431 if (path && *path) { 1432 statfs(path, &stbuf); 1433 vn->vn_mntdir = strdup(stbuf.f_mntonname); 1434 } else 1435 vn->vn_mntdir = strdup("-"); 1436 vn->vn_dev = rdev; 1437 if (vntype == PS_FST_VTYPE_VBLK) { 1438 name = devname(rdev, S_IFBLK); 1439 if (name != NULL) 1440 strlcpy(vn->vn_devname, name, 1441 sizeof(vn->vn_devname)); 1442 } else if (vntype == PS_FST_VTYPE_VCHR) { 1443 name = devname(vn->vn_dev, S_IFCHR); 1444 if (name != NULL) 1445 strlcpy(vn->vn_devname, name, 1446 sizeof(vn->vn_devname)); 1447 } 1448 vn->vn_fsid = fsid; 1449 vn->vn_fileid = fileid; 1450 vn->vn_size = size; 1451 vn->vn_mode = mode; 1452 return (0); 1453 } 1454 1455 int 1456 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, 1457 struct sockstat *sock, char *errbuf) 1458 { 1459 1460 assert(sock); 1461 if (procstat->type == PROCSTAT_KVM) { 1462 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, 1463 errbuf)); 1464 } else if (procstat->type == PROCSTAT_SYSCTL || 1465 procstat->type == PROCSTAT_CORE) { 1466 return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); 1467 } else { 1468 warnx("unknown access method: %d", procstat->type); 1469 if (errbuf != NULL) 1470 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1471 return (1); 1472 } 1473 } 1474 1475 static int 1476 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 1477 struct sockstat *sock, char *errbuf) 1478 { 1479 struct domain dom; 1480 struct inpcb inpcb; 1481 struct protosw proto; 1482 struct socket s; 1483 struct unpcb unpcb; 1484 ssize_t len; 1485 void *so; 1486 1487 assert(kd); 1488 assert(sock); 1489 assert(fst); 1490 bzero(sock, sizeof(*sock)); 1491 so = fst->fs_typedep; 1492 if (so == NULL) 1493 goto fail; 1494 sock->so_addr = (uintptr_t)so; 1495 /* fill in socket */ 1496 if (!kvm_read_all(kd, (unsigned long)so, &s, 1497 sizeof(struct socket))) { 1498 warnx("can't read sock at %p", (void *)so); 1499 goto fail; 1500 } 1501 /* fill in protosw entry */ 1502 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, 1503 sizeof(struct protosw))) { 1504 warnx("can't read protosw at %p", (void *)s.so_proto); 1505 goto fail; 1506 } 1507 /* fill in domain */ 1508 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, 1509 sizeof(struct domain))) { 1510 warnx("can't read domain at %p", 1511 (void *)proto.pr_domain); 1512 goto fail; 1513 } 1514 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, 1515 sizeof(sock->dname) - 1)) < 0) { 1516 warnx("can't read domain name at %p", (void *)dom.dom_name); 1517 sock->dname[0] = '\0'; 1518 } 1519 else 1520 sock->dname[len] = '\0'; 1521 1522 /* 1523 * Fill in known data. 1524 */ 1525 sock->type = s.so_type; 1526 sock->proto = proto.pr_protocol; 1527 sock->dom_family = dom.dom_family; 1528 sock->so_pcb = (uintptr_t)s.so_pcb; 1529 1530 /* 1531 * Protocol specific data. 1532 */ 1533 switch(dom.dom_family) { 1534 case AF_INET: 1535 case AF_INET6: 1536 if (proto.pr_protocol == IPPROTO_TCP) { 1537 if (s.so_pcb) { 1538 if (kvm_read(kd, (u_long)s.so_pcb, 1539 (char *)&inpcb, sizeof(struct inpcb)) 1540 != sizeof(struct inpcb)) { 1541 warnx("can't read inpcb at %p", 1542 (void *)s.so_pcb); 1543 } else 1544 sock->inp_ppcb = 1545 (uintptr_t)inpcb.inp_ppcb; 1546 sock->sendq = s.so_snd.sb_ccc; 1547 sock->recvq = s.so_rcv.sb_ccc; 1548 } 1549 } 1550 break; 1551 case AF_UNIX: 1552 if (s.so_pcb) { 1553 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, 1554 sizeof(struct unpcb)) != sizeof(struct unpcb)){ 1555 warnx("can't read unpcb at %p", 1556 (void *)s.so_pcb); 1557 } else if (unpcb.unp_conn) { 1558 sock->so_rcv_sb_state = s.so_rcv.sb_state; 1559 sock->so_snd_sb_state = s.so_snd.sb_state; 1560 sock->unp_conn = (uintptr_t)unpcb.unp_conn; 1561 sock->sendq = s.so_snd.sb_ccc; 1562 sock->recvq = s.so_rcv.sb_ccc; 1563 } 1564 } 1565 break; 1566 default: 1567 break; 1568 } 1569 return (0); 1570 1571 fail: 1572 if (errbuf != NULL) 1573 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1574 return (1); 1575 } 1576 1577 static int 1578 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, 1579 char *errbuf __unused) 1580 { 1581 struct kinfo_file *kif; 1582 1583 assert(sock); 1584 assert(fst); 1585 bzero(sock, sizeof(*sock)); 1586 kif = fst->fs_typedep; 1587 if (kif == NULL) 1588 return (0); 1589 1590 /* 1591 * Fill in known data. 1592 */ 1593 sock->type = kif->kf_sock_type; 1594 sock->proto = kif->kf_sock_protocol; 1595 sock->dom_family = kif->kf_sock_domain; 1596 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; 1597 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); 1598 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local, 1599 kif->kf_un.kf_sock.kf_sa_local.ss_len); 1600 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer, 1601 kif->kf_un.kf_sock.kf_sa_peer.ss_len); 1602 1603 /* 1604 * Protocol specific data. 1605 */ 1606 switch(sock->dom_family) { 1607 case AF_INET: 1608 case AF_INET6: 1609 if (sock->proto == IPPROTO_TCP) { 1610 sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb; 1611 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1612 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1613 } 1614 break; 1615 case AF_UNIX: 1616 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { 1617 sock->so_rcv_sb_state = 1618 kif->kf_un.kf_sock.kf_sock_rcv_sb_state; 1619 sock->so_snd_sb_state = 1620 kif->kf_un.kf_sock.kf_sock_snd_sb_state; 1621 sock->unp_conn = 1622 kif->kf_un.kf_sock.kf_sock_unpconn; 1623 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1624 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1625 } 1626 break; 1627 default: 1628 break; 1629 } 1630 return (0); 1631 } 1632 1633 /* 1634 * Descriptor flags to filestat translation. 1635 */ 1636 static int 1637 to_filestat_flags(int flags) 1638 { 1639 static struct { 1640 int flag; 1641 int fst_flag; 1642 } fstflags[] = { 1643 { FREAD, PS_FST_FFLAG_READ }, 1644 { FWRITE, PS_FST_FFLAG_WRITE }, 1645 { O_APPEND, PS_FST_FFLAG_APPEND }, 1646 { O_ASYNC, PS_FST_FFLAG_ASYNC }, 1647 { O_CREAT, PS_FST_FFLAG_CREAT }, 1648 { O_DIRECT, PS_FST_FFLAG_DIRECT }, 1649 { O_EXCL, PS_FST_FFLAG_EXCL }, 1650 { O_EXEC, PS_FST_FFLAG_EXEC }, 1651 { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, 1652 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 1653 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 1654 { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, 1655 { O_SYNC, PS_FST_FFLAG_SYNC }, 1656 { O_TRUNC, PS_FST_FFLAG_TRUNC } 1657 }; 1658 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) 1659 int fst_flags; 1660 unsigned int i; 1661 1662 fst_flags = 0; 1663 for (i = 0; i < NFSTFLAGS; i++) 1664 if (flags & fstflags[i].flag) 1665 fst_flags |= fstflags[i].fst_flag; 1666 return (fst_flags); 1667 } 1668 1669 /* 1670 * Vnode type to filestate translation. 1671 */ 1672 static int 1673 vntype2psfsttype(int type) 1674 { 1675 static struct { 1676 int vtype; 1677 int fst_vtype; 1678 } vt2fst[] = { 1679 { VBAD, PS_FST_VTYPE_VBAD }, 1680 { VBLK, PS_FST_VTYPE_VBLK }, 1681 { VCHR, PS_FST_VTYPE_VCHR }, 1682 { VDIR, PS_FST_VTYPE_VDIR }, 1683 { VFIFO, PS_FST_VTYPE_VFIFO }, 1684 { VLNK, PS_FST_VTYPE_VLNK }, 1685 { VNON, PS_FST_VTYPE_VNON }, 1686 { VREG, PS_FST_VTYPE_VREG }, 1687 { VSOCK, PS_FST_VTYPE_VSOCK } 1688 }; 1689 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) 1690 unsigned int i, fst_type; 1691 1692 fst_type = PS_FST_VTYPE_UNKNOWN; 1693 for (i = 0; i < NVFTYPES; i++) { 1694 if (type == vt2fst[i].vtype) { 1695 fst_type = vt2fst[i].fst_vtype; 1696 break; 1697 } 1698 } 1699 return (fst_type); 1700 } 1701 1702 static char * 1703 getmnton(kvm_t *kd, struct mount *m) 1704 { 1705 struct mount mnt; 1706 static struct mtab { 1707 struct mtab *next; 1708 struct mount *m; 1709 char mntonname[MNAMELEN + 1]; 1710 } *mhead = NULL; 1711 struct mtab *mt; 1712 1713 for (mt = mhead; mt != NULL; mt = mt->next) 1714 if (m == mt->m) 1715 return (mt->mntonname); 1716 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { 1717 warnx("can't read mount table at %p", (void *)m); 1718 return (NULL); 1719 } 1720 if ((mt = malloc(sizeof (struct mtab))) == NULL) 1721 err(1, NULL); 1722 mt->m = m; 1723 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); 1724 mt->mntonname[MNAMELEN] = '\0'; 1725 mt->next = mhead; 1726 mhead = mt; 1727 return (mt->mntonname); 1728 } 1729 1730 /* 1731 * Auxiliary structures and functions to get process environment or 1732 * command line arguments. 1733 */ 1734 struct argvec { 1735 char *buf; 1736 size_t bufsize; 1737 char **argv; 1738 size_t argc; 1739 }; 1740 1741 static struct argvec * 1742 argvec_alloc(size_t bufsize) 1743 { 1744 struct argvec *av; 1745 1746 av = malloc(sizeof(*av)); 1747 if (av == NULL) 1748 return (NULL); 1749 av->bufsize = bufsize; 1750 av->buf = malloc(av->bufsize); 1751 if (av->buf == NULL) { 1752 free(av); 1753 return (NULL); 1754 } 1755 av->argc = 32; 1756 av->argv = malloc(sizeof(char *) * av->argc); 1757 if (av->argv == NULL) { 1758 free(av->buf); 1759 free(av); 1760 return (NULL); 1761 } 1762 return av; 1763 } 1764 1765 static void 1766 argvec_free(struct argvec * av) 1767 { 1768 1769 free(av->argv); 1770 free(av->buf); 1771 free(av); 1772 } 1773 1774 static char ** 1775 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) 1776 { 1777 int error, name[4], argc, i; 1778 struct argvec *av, **avp; 1779 enum psc_type type; 1780 size_t len; 1781 char *p, **argv; 1782 1783 assert(procstat); 1784 assert(kp); 1785 if (procstat->type == PROCSTAT_KVM) { 1786 warnx("can't use kvm access method"); 1787 return (NULL); 1788 } 1789 if (procstat->type != PROCSTAT_SYSCTL && 1790 procstat->type != PROCSTAT_CORE) { 1791 warnx("unknown access method: %d", procstat->type); 1792 return (NULL); 1793 } 1794 1795 if (nchr == 0 || nchr > ARG_MAX) 1796 nchr = ARG_MAX; 1797 1798 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); 1799 av = *avp; 1800 1801 if (av == NULL) 1802 { 1803 av = argvec_alloc(nchr); 1804 if (av == NULL) 1805 { 1806 warn("malloc(%zu)", nchr); 1807 return (NULL); 1808 } 1809 *avp = av; 1810 } else if (av->bufsize < nchr) { 1811 av->buf = reallocf(av->buf, nchr); 1812 if (av->buf == NULL) { 1813 warn("malloc(%zu)", nchr); 1814 return (NULL); 1815 } 1816 } 1817 if (procstat->type == PROCSTAT_SYSCTL) { 1818 name[0] = CTL_KERN; 1819 name[1] = KERN_PROC; 1820 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 1821 name[3] = kp->ki_pid; 1822 len = nchr; 1823 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0); 1824 if (error != 0 && errno != ESRCH && errno != EPERM) 1825 warn("sysctl(kern.proc.%s)", env ? "env" : "args"); 1826 if (error != 0 || len == 0) 1827 return (NULL); 1828 } else /* procstat->type == PROCSTAT_CORE */ { 1829 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; 1830 len = nchr; 1831 if (procstat_core_get(procstat->core, type, av->buf, &len) 1832 == NULL) { 1833 return (NULL); 1834 } 1835 } 1836 1837 argv = av->argv; 1838 argc = av->argc; 1839 i = 0; 1840 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { 1841 argv[i++] = p; 1842 if (i < argc) 1843 continue; 1844 /* Grow argv. */ 1845 argc += argc; 1846 argv = realloc(argv, sizeof(char *) * argc); 1847 if (argv == NULL) { 1848 warn("malloc(%zu)", sizeof(char *) * argc); 1849 return (NULL); 1850 } 1851 av->argv = argv; 1852 av->argc = argc; 1853 } 1854 argv[i] = NULL; 1855 1856 return (argv); 1857 } 1858 1859 /* 1860 * Return process command line arguments. 1861 */ 1862 char ** 1863 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1864 { 1865 1866 return (getargv(procstat, p, nchr, 0)); 1867 } 1868 1869 /* 1870 * Free the buffer allocated by procstat_getargv(). 1871 */ 1872 void 1873 procstat_freeargv(struct procstat *procstat) 1874 { 1875 1876 if (procstat->argv != NULL) { 1877 argvec_free(procstat->argv); 1878 procstat->argv = NULL; 1879 } 1880 } 1881 1882 /* 1883 * Return process environment. 1884 */ 1885 char ** 1886 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1887 { 1888 1889 return (getargv(procstat, p, nchr, 1)); 1890 } 1891 1892 /* 1893 * Free the buffer allocated by procstat_getenvv(). 1894 */ 1895 void 1896 procstat_freeenvv(struct procstat *procstat) 1897 { 1898 if (procstat->envv != NULL) { 1899 argvec_free(procstat->envv); 1900 procstat->envv = NULL; 1901 } 1902 } 1903 1904 static struct kinfo_vmentry * 1905 kinfo_getvmmap_core(struct procstat_core *core, int *cntp) 1906 { 1907 int cnt; 1908 size_t len; 1909 char *buf, *bp, *eb; 1910 struct kinfo_vmentry *kiv, *kp, *kv; 1911 1912 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); 1913 if (buf == NULL) 1914 return (NULL); 1915 1916 /* 1917 * XXXMG: The code below is just copy&past from libutil. 1918 * The code duplication can be avoided if libutil 1919 * is extended to provide something like: 1920 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, 1921 * size_t len, int *cntp); 1922 */ 1923 1924 /* Pass 1: count items */ 1925 cnt = 0; 1926 bp = buf; 1927 eb = buf + len; 1928 while (bp < eb) { 1929 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1930 if (kv->kve_structsize == 0) 1931 break; 1932 bp += kv->kve_structsize; 1933 cnt++; 1934 } 1935 1936 kiv = calloc(cnt, sizeof(*kiv)); 1937 if (kiv == NULL) { 1938 free(buf); 1939 return (NULL); 1940 } 1941 bp = buf; 1942 eb = buf + len; 1943 kp = kiv; 1944 /* Pass 2: unpack */ 1945 while (bp < eb) { 1946 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1947 if (kv->kve_structsize == 0) 1948 break; 1949 /* Copy/expand into pre-zeroed buffer */ 1950 memcpy(kp, kv, kv->kve_structsize); 1951 /* Advance to next packed record */ 1952 bp += kv->kve_structsize; 1953 /* Set field size to fixed length, advance */ 1954 kp->kve_structsize = sizeof(*kp); 1955 kp++; 1956 } 1957 free(buf); 1958 *cntp = cnt; 1959 return (kiv); /* Caller must free() return value */ 1960 } 1961 1962 struct kinfo_vmentry * 1963 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, 1964 unsigned int *cntp) 1965 { 1966 1967 switch(procstat->type) { 1968 case PROCSTAT_KVM: 1969 warnx("kvm method is not supported"); 1970 return (NULL); 1971 case PROCSTAT_SYSCTL: 1972 return (kinfo_getvmmap(kp->ki_pid, cntp)); 1973 case PROCSTAT_CORE: 1974 return (kinfo_getvmmap_core(procstat->core, cntp)); 1975 default: 1976 warnx("unknown access method: %d", procstat->type); 1977 return (NULL); 1978 } 1979 } 1980 1981 void 1982 procstat_freevmmap(struct procstat *procstat __unused, 1983 struct kinfo_vmentry *vmmap) 1984 { 1985 1986 free(vmmap); 1987 } 1988 1989 static gid_t * 1990 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) 1991 { 1992 struct proc proc; 1993 struct ucred ucred; 1994 gid_t *groups; 1995 size_t len; 1996 1997 assert(kd != NULL); 1998 assert(kp != NULL); 1999 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2000 sizeof(proc))) { 2001 warnx("can't read proc struct at %p for pid %d", 2002 kp->ki_paddr, kp->ki_pid); 2003 return (NULL); 2004 } 2005 if (proc.p_ucred == NOCRED) 2006 return (NULL); 2007 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, 2008 sizeof(ucred))) { 2009 warnx("can't read ucred struct at %p for pid %d", 2010 proc.p_ucred, kp->ki_pid); 2011 return (NULL); 2012 } 2013 len = ucred.cr_ngroups * sizeof(gid_t); 2014 groups = malloc(len); 2015 if (groups == NULL) { 2016 warn("malloc(%zu)", len); 2017 return (NULL); 2018 } 2019 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { 2020 warnx("can't read groups at %p for pid %d", 2021 ucred.cr_groups, kp->ki_pid); 2022 free(groups); 2023 return (NULL); 2024 } 2025 *cntp = ucred.cr_ngroups; 2026 return (groups); 2027 } 2028 2029 static gid_t * 2030 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) 2031 { 2032 int mib[4]; 2033 size_t len; 2034 gid_t *groups; 2035 2036 mib[0] = CTL_KERN; 2037 mib[1] = KERN_PROC; 2038 mib[2] = KERN_PROC_GROUPS; 2039 mib[3] = pid; 2040 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); 2041 groups = malloc(len); 2042 if (groups == NULL) { 2043 warn("malloc(%zu)", len); 2044 return (NULL); 2045 } 2046 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) { 2047 warn("sysctl: kern.proc.groups: %d", pid); 2048 free(groups); 2049 return (NULL); 2050 } 2051 *cntp = len / sizeof(gid_t); 2052 return (groups); 2053 } 2054 2055 static gid_t * 2056 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) 2057 { 2058 size_t len; 2059 gid_t *groups; 2060 2061 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); 2062 if (groups == NULL) 2063 return (NULL); 2064 *cntp = len / sizeof(gid_t); 2065 return (groups); 2066 } 2067 2068 gid_t * 2069 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, 2070 unsigned int *cntp) 2071 { 2072 switch(procstat->type) { 2073 case PROCSTAT_KVM: 2074 return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); 2075 case PROCSTAT_SYSCTL: 2076 return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); 2077 case PROCSTAT_CORE: 2078 return (procstat_getgroups_core(procstat->core, cntp)); 2079 default: 2080 warnx("unknown access method: %d", procstat->type); 2081 return (NULL); 2082 } 2083 } 2084 2085 void 2086 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) 2087 { 2088 2089 free(groups); 2090 } 2091 2092 static int 2093 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) 2094 { 2095 struct pwddesc pd; 2096 2097 assert(kd != NULL); 2098 assert(kp != NULL); 2099 if (kp->ki_pd == NULL) 2100 return (-1); 2101 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) { 2102 warnx("can't read pwddesc at %p for pid %d", kp->ki_pd, 2103 kp->ki_pid); 2104 return (-1); 2105 } 2106 *maskp = pd.pd_cmask; 2107 return (0); 2108 } 2109 2110 static int 2111 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) 2112 { 2113 int error; 2114 int mib[4]; 2115 size_t len; 2116 2117 mib[0] = CTL_KERN; 2118 mib[1] = KERN_PROC; 2119 mib[2] = KERN_PROC_UMASK; 2120 mib[3] = pid; 2121 len = sizeof(*maskp); 2122 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0); 2123 if (error != 0 && errno != ESRCH && errno != EPERM) 2124 warn("sysctl: kern.proc.umask: %d", pid); 2125 return (error); 2126 } 2127 2128 static int 2129 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) 2130 { 2131 size_t len; 2132 unsigned short *buf; 2133 2134 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); 2135 if (buf == NULL) 2136 return (-1); 2137 if (len < sizeof(*maskp)) { 2138 free(buf); 2139 return (-1); 2140 } 2141 *maskp = *buf; 2142 free(buf); 2143 return (0); 2144 } 2145 2146 int 2147 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, 2148 unsigned short *maskp) 2149 { 2150 switch(procstat->type) { 2151 case PROCSTAT_KVM: 2152 return (procstat_getumask_kvm(procstat->kd, kp, maskp)); 2153 case PROCSTAT_SYSCTL: 2154 return (procstat_getumask_sysctl(kp->ki_pid, maskp)); 2155 case PROCSTAT_CORE: 2156 return (procstat_getumask_core(procstat->core, maskp)); 2157 default: 2158 warnx("unknown access method: %d", procstat->type); 2159 return (-1); 2160 } 2161 } 2162 2163 static int 2164 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, 2165 struct rlimit* rlimit) 2166 { 2167 struct proc proc; 2168 unsigned long offset; 2169 2170 assert(kd != NULL); 2171 assert(kp != NULL); 2172 assert(which >= 0 && which < RLIM_NLIMITS); 2173 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2174 sizeof(proc))) { 2175 warnx("can't read proc struct at %p for pid %d", 2176 kp->ki_paddr, kp->ki_pid); 2177 return (-1); 2178 } 2179 if (proc.p_limit == NULL) 2180 return (-1); 2181 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; 2182 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { 2183 warnx("can't read rlimit struct at %p for pid %d", 2184 (void *)offset, kp->ki_pid); 2185 return (-1); 2186 } 2187 return (0); 2188 } 2189 2190 static int 2191 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) 2192 { 2193 int error, name[5]; 2194 size_t len; 2195 2196 name[0] = CTL_KERN; 2197 name[1] = KERN_PROC; 2198 name[2] = KERN_PROC_RLIMIT; 2199 name[3] = pid; 2200 name[4] = which; 2201 len = sizeof(struct rlimit); 2202 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0); 2203 if (error < 0 && errno != ESRCH) { 2204 warn("sysctl: kern.proc.rlimit: %d", pid); 2205 return (-1); 2206 } 2207 if (error < 0 || len != sizeof(struct rlimit)) 2208 return (-1); 2209 return (0); 2210 } 2211 2212 static int 2213 procstat_getrlimit_core(struct procstat_core *core, int which, 2214 struct rlimit* rlimit) 2215 { 2216 size_t len; 2217 struct rlimit* rlimits; 2218 2219 if (which < 0 || which >= RLIM_NLIMITS) { 2220 errno = EINVAL; 2221 warn("getrlimit: which"); 2222 return (-1); 2223 } 2224 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); 2225 if (rlimits == NULL) 2226 return (-1); 2227 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { 2228 free(rlimits); 2229 return (-1); 2230 } 2231 *rlimit = rlimits[which]; 2232 free(rlimits); 2233 return (0); 2234 } 2235 2236 int 2237 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, 2238 struct rlimit* rlimit) 2239 { 2240 switch(procstat->type) { 2241 case PROCSTAT_KVM: 2242 return (procstat_getrlimit_kvm(procstat->kd, kp, which, 2243 rlimit)); 2244 case PROCSTAT_SYSCTL: 2245 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); 2246 case PROCSTAT_CORE: 2247 return (procstat_getrlimit_core(procstat->core, which, rlimit)); 2248 default: 2249 warnx("unknown access method: %d", procstat->type); 2250 return (-1); 2251 } 2252 } 2253 2254 static int 2255 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) 2256 { 2257 int error, name[4]; 2258 size_t len; 2259 2260 name[0] = CTL_KERN; 2261 name[1] = KERN_PROC; 2262 name[2] = KERN_PROC_PATHNAME; 2263 name[3] = pid; 2264 len = maxlen; 2265 error = sysctl(name, nitems(name), pathname, &len, NULL, 0); 2266 if (error != 0 && errno != ESRCH) 2267 warn("sysctl: kern.proc.pathname: %d", pid); 2268 if (len == 0) 2269 pathname[0] = '\0'; 2270 return (error); 2271 } 2272 2273 static int 2274 procstat_getpathname_core(struct procstat_core *core, char *pathname, 2275 size_t maxlen) 2276 { 2277 struct kinfo_file *files; 2278 int cnt, i, result; 2279 2280 files = kinfo_getfile_core(core, &cnt); 2281 if (files == NULL) 2282 return (-1); 2283 result = -1; 2284 for (i = 0; i < cnt; i++) { 2285 if (files[i].kf_fd != KF_FD_TYPE_TEXT) 2286 continue; 2287 strncpy(pathname, files[i].kf_path, maxlen); 2288 result = 0; 2289 break; 2290 } 2291 free(files); 2292 return (result); 2293 } 2294 2295 int 2296 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, 2297 char *pathname, size_t maxlen) 2298 { 2299 switch(procstat->type) { 2300 case PROCSTAT_KVM: 2301 /* XXX: Return empty string. */ 2302 if (maxlen > 0) 2303 pathname[0] = '\0'; 2304 return (0); 2305 case PROCSTAT_SYSCTL: 2306 return (procstat_getpathname_sysctl(kp->ki_pid, pathname, 2307 maxlen)); 2308 case PROCSTAT_CORE: 2309 return (procstat_getpathname_core(procstat->core, pathname, 2310 maxlen)); 2311 default: 2312 warnx("unknown access method: %d", procstat->type); 2313 return (-1); 2314 } 2315 } 2316 2317 static int 2318 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) 2319 { 2320 struct proc proc; 2321 2322 assert(kd != NULL); 2323 assert(kp != NULL); 2324 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2325 sizeof(proc))) { 2326 warnx("can't read proc struct at %p for pid %d", 2327 kp->ki_paddr, kp->ki_pid); 2328 return (-1); 2329 } 2330 *osrelp = proc.p_osrel; 2331 return (0); 2332 } 2333 2334 static int 2335 procstat_getosrel_sysctl(pid_t pid, int *osrelp) 2336 { 2337 int error, name[4]; 2338 size_t len; 2339 2340 name[0] = CTL_KERN; 2341 name[1] = KERN_PROC; 2342 name[2] = KERN_PROC_OSREL; 2343 name[3] = pid; 2344 len = sizeof(*osrelp); 2345 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0); 2346 if (error != 0 && errno != ESRCH) 2347 warn("sysctl: kern.proc.osrel: %d", pid); 2348 return (error); 2349 } 2350 2351 static int 2352 procstat_getosrel_core(struct procstat_core *core, int *osrelp) 2353 { 2354 size_t len; 2355 int *buf; 2356 2357 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); 2358 if (buf == NULL) 2359 return (-1); 2360 if (len < sizeof(*osrelp)) { 2361 free(buf); 2362 return (-1); 2363 } 2364 *osrelp = *buf; 2365 free(buf); 2366 return (0); 2367 } 2368 2369 int 2370 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) 2371 { 2372 switch(procstat->type) { 2373 case PROCSTAT_KVM: 2374 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); 2375 case PROCSTAT_SYSCTL: 2376 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); 2377 case PROCSTAT_CORE: 2378 return (procstat_getosrel_core(procstat->core, osrelp)); 2379 default: 2380 warnx("unknown access method: %d", procstat->type); 2381 return (-1); 2382 } 2383 } 2384 2385 #define PROC_AUXV_MAX 256 2386 2387 #if __ELF_WORD_SIZE == 64 2388 static const char *elf32_sv_names[] = { 2389 "Linux ELF32", 2390 "FreeBSD ELF32", 2391 }; 2392 2393 static int 2394 is_elf32_sysctl(pid_t pid) 2395 { 2396 int error, name[4]; 2397 size_t len, i; 2398 static char sv_name[256]; 2399 2400 name[0] = CTL_KERN; 2401 name[1] = KERN_PROC; 2402 name[2] = KERN_PROC_SV_NAME; 2403 name[3] = pid; 2404 len = sizeof(sv_name); 2405 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0); 2406 if (error != 0 || len == 0) 2407 return (0); 2408 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { 2409 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) 2410 return (1); 2411 } 2412 return (0); 2413 } 2414 2415 static Elf_Auxinfo * 2416 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) 2417 { 2418 Elf_Auxinfo *auxv; 2419 Elf32_Auxinfo *auxv32; 2420 void *ptr; 2421 size_t len; 2422 unsigned int i, count; 2423 int name[4]; 2424 2425 name[0] = CTL_KERN; 2426 name[1] = KERN_PROC; 2427 name[2] = KERN_PROC_AUXV; 2428 name[3] = pid; 2429 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); 2430 auxv = NULL; 2431 auxv32 = malloc(len); 2432 if (auxv32 == NULL) { 2433 warn("malloc(%zu)", len); 2434 goto out; 2435 } 2436 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) { 2437 if (errno != ESRCH && errno != EPERM) 2438 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2439 goto out; 2440 } 2441 count = len / sizeof(Elf_Auxinfo); 2442 auxv = malloc(count * sizeof(Elf_Auxinfo)); 2443 if (auxv == NULL) { 2444 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); 2445 goto out; 2446 } 2447 for (i = 0; i < count; i++) { 2448 /* 2449 * XXX: We expect that values for a_type on a 32-bit platform 2450 * are directly mapped to values on 64-bit one, which is not 2451 * necessarily true. 2452 */ 2453 auxv[i].a_type = auxv32[i].a_type; 2454 ptr = &auxv32[i].a_un; 2455 auxv[i].a_un.a_val = *((uint32_t *)ptr); 2456 } 2457 *cntp = count; 2458 out: 2459 free(auxv32); 2460 return (auxv); 2461 } 2462 #endif /* __ELF_WORD_SIZE == 64 */ 2463 2464 static Elf_Auxinfo * 2465 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) 2466 { 2467 Elf_Auxinfo *auxv; 2468 int name[4]; 2469 size_t len; 2470 2471 #if __ELF_WORD_SIZE == 64 2472 if (is_elf32_sysctl(pid)) 2473 return (procstat_getauxv32_sysctl(pid, cntp)); 2474 #endif 2475 name[0] = CTL_KERN; 2476 name[1] = KERN_PROC; 2477 name[2] = KERN_PROC_AUXV; 2478 name[3] = pid; 2479 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); 2480 auxv = malloc(len); 2481 if (auxv == NULL) { 2482 warn("malloc(%zu)", len); 2483 return (NULL); 2484 } 2485 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) { 2486 if (errno != ESRCH && errno != EPERM) 2487 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2488 free(auxv); 2489 return (NULL); 2490 } 2491 *cntp = len / sizeof(Elf_Auxinfo); 2492 return (auxv); 2493 } 2494 2495 static Elf_Auxinfo * 2496 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) 2497 { 2498 Elf_Auxinfo *auxv; 2499 size_t len; 2500 2501 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); 2502 if (auxv == NULL) 2503 return (NULL); 2504 *cntp = len / sizeof(Elf_Auxinfo); 2505 return (auxv); 2506 } 2507 2508 Elf_Auxinfo * 2509 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, 2510 unsigned int *cntp) 2511 { 2512 switch(procstat->type) { 2513 case PROCSTAT_KVM: 2514 warnx("kvm method is not supported"); 2515 return (NULL); 2516 case PROCSTAT_SYSCTL: 2517 return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); 2518 case PROCSTAT_CORE: 2519 return (procstat_getauxv_core(procstat->core, cntp)); 2520 default: 2521 warnx("unknown access method: %d", procstat->type); 2522 return (NULL); 2523 } 2524 } 2525 2526 void 2527 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) 2528 { 2529 2530 free(auxv); 2531 } 2532 2533 static struct ptrace_lwpinfo * 2534 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp) 2535 { 2536 void *buf; 2537 struct ptrace_lwpinfo *pl; 2538 unsigned int cnt; 2539 size_t len; 2540 2541 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO); 2542 if (cnt == 0) 2543 return (NULL); 2544 2545 len = cnt * sizeof(*pl); 2546 buf = calloc(1, len); 2547 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len); 2548 if (pl == NULL) { 2549 free(buf); 2550 return (NULL); 2551 } 2552 *cntp = len / sizeof(*pl); 2553 return (pl); 2554 } 2555 2556 struct ptrace_lwpinfo * 2557 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp) 2558 { 2559 switch (procstat->type) { 2560 case PROCSTAT_KVM: 2561 warnx("kvm method is not supported"); 2562 return (NULL); 2563 case PROCSTAT_SYSCTL: 2564 warnx("sysctl method is not supported"); 2565 return (NULL); 2566 case PROCSTAT_CORE: 2567 return (procstat_getptlwpinfo_core(procstat->core, cntp)); 2568 default: 2569 warnx("unknown access method: %d", procstat->type); 2570 return (NULL); 2571 } 2572 } 2573 2574 void 2575 procstat_freeptlwpinfo(struct procstat *procstat __unused, 2576 struct ptrace_lwpinfo *pl) 2577 { 2578 free(pl); 2579 } 2580 2581 static struct kinfo_kstack * 2582 procstat_getkstack_sysctl(pid_t pid, int *cntp) 2583 { 2584 struct kinfo_kstack *kkstp; 2585 int error, name[4]; 2586 size_t len; 2587 2588 name[0] = CTL_KERN; 2589 name[1] = KERN_PROC; 2590 name[2] = KERN_PROC_KSTACK; 2591 name[3] = pid; 2592 2593 len = 0; 2594 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 2595 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { 2596 warn("sysctl: kern.proc.kstack: %d", pid); 2597 return (NULL); 2598 } 2599 if (error == -1 && errno == ENOENT) { 2600 warnx("sysctl: kern.proc.kstack unavailable" 2601 " (options DDB or options STACK required in kernel)"); 2602 return (NULL); 2603 } 2604 if (error == -1) 2605 return (NULL); 2606 kkstp = malloc(len); 2607 if (kkstp == NULL) { 2608 warn("malloc(%zu)", len); 2609 return (NULL); 2610 } 2611 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1) { 2612 warn("sysctl: kern.proc.pid: %d", pid); 2613 free(kkstp); 2614 return (NULL); 2615 } 2616 *cntp = len / sizeof(*kkstp); 2617 2618 return (kkstp); 2619 } 2620 2621 struct kinfo_kstack * 2622 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, 2623 unsigned int *cntp) 2624 { 2625 switch(procstat->type) { 2626 case PROCSTAT_KVM: 2627 warnx("kvm method is not supported"); 2628 return (NULL); 2629 case PROCSTAT_SYSCTL: 2630 return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); 2631 case PROCSTAT_CORE: 2632 warnx("core method is not supported"); 2633 return (NULL); 2634 default: 2635 warnx("unknown access method: %d", procstat->type); 2636 return (NULL); 2637 } 2638 } 2639 2640 void 2641 procstat_freekstack(struct procstat *procstat __unused, 2642 struct kinfo_kstack *kkstp) 2643 { 2644 2645 free(kkstp); 2646 } 2647