1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org> 6 * Copyright (c) 1988, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/elf.h> 43 #include <sys/time.h> 44 #include <sys/resourcevar.h> 45 #define _WANT_UCRED 46 #include <sys/ucred.h> 47 #undef _WANT_UCRED 48 #include <sys/proc.h> 49 #include <sys/user.h> 50 #include <sys/stat.h> 51 #include <sys/vnode.h> 52 #include <sys/socket.h> 53 #define _WANT_SOCKET 54 #include <sys/socketvar.h> 55 #include <sys/domain.h> 56 #include <sys/protosw.h> 57 #include <sys/un.h> 58 #define _WANT_UNPCB 59 #include <sys/unpcb.h> 60 #include <sys/sysctl.h> 61 #include <sys/tty.h> 62 #include <sys/filedesc.h> 63 #include <sys/queue.h> 64 #define _WANT_FILE 65 #include <sys/file.h> 66 #include <sys/conf.h> 67 #include <sys/ksem.h> 68 #include <sys/mman.h> 69 #include <sys/capsicum.h> 70 #include <sys/ptrace.h> 71 #define _KERNEL 72 #include <sys/mount.h> 73 #include <sys/pipe.h> 74 #include <ufs/ufs/quota.h> 75 #include <ufs/ufs/inode.h> 76 #include <fs/devfs/devfs.h> 77 #include <fs/devfs/devfs_int.h> 78 #undef _KERNEL 79 #include <nfs/nfsproto.h> 80 #include <nfsclient/nfs.h> 81 #include <nfsclient/nfsnode.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 87 #include <net/route.h> 88 #include <netinet/in.h> 89 #include <netinet/in_systm.h> 90 #include <netinet/ip.h> 91 #define _WANT_INPCB 92 #include <netinet/in_pcb.h> 93 94 #include <assert.h> 95 #include <ctype.h> 96 #include <err.h> 97 #include <fcntl.h> 98 #include <kvm.h> 99 #include <libutil.h> 100 #include <limits.h> 101 #include <paths.h> 102 #include <pwd.h> 103 #include <stdio.h> 104 #include <stdlib.h> 105 #include <stddef.h> 106 #include <string.h> 107 #include <unistd.h> 108 #include <netdb.h> 109 110 #include <libprocstat.h> 111 #include "libprocstat_internal.h" 112 #include "common_kvm.h" 113 #include "core.h" 114 115 int statfs(const char *, struct statfs *); /* XXX */ 116 117 #define PROCSTAT_KVM 1 118 #define PROCSTAT_SYSCTL 2 119 #define PROCSTAT_CORE 3 120 121 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, 122 size_t nchr, int env); 123 static char *getmnton(kvm_t *kd, struct mount *m); 124 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, 125 int *cntp); 126 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, 127 unsigned int *cntp); 128 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); 129 static struct filestat_list *procstat_getfiles_kvm( 130 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 131 static struct filestat_list *procstat_getfiles_sysctl( 132 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 133 static int procstat_get_pipe_info_sysctl(struct filestat *fst, 134 struct pipestat *pipe, char *errbuf); 135 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 136 struct pipestat *pipe, char *errbuf); 137 static int procstat_get_pts_info_sysctl(struct filestat *fst, 138 struct ptsstat *pts, char *errbuf); 139 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 140 struct ptsstat *pts, char *errbuf); 141 static int procstat_get_sem_info_sysctl(struct filestat *fst, 142 struct semstat *sem, char *errbuf); 143 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 144 struct semstat *sem, char *errbuf); 145 static int procstat_get_shm_info_sysctl(struct filestat *fst, 146 struct shmstat *shm, char *errbuf); 147 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 148 struct shmstat *shm, char *errbuf); 149 static int procstat_get_socket_info_sysctl(struct filestat *fst, 150 struct sockstat *sock, char *errbuf); 151 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 152 struct sockstat *sock, char *errbuf); 153 static int to_filestat_flags(int flags); 154 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 155 struct vnstat *vn, char *errbuf); 156 static int procstat_get_vnode_info_sysctl(struct filestat *fst, 157 struct vnstat *vn, char *errbuf); 158 static gid_t *procstat_getgroups_core(struct procstat_core *core, 159 unsigned int *count); 160 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, 161 unsigned int *count); 162 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); 163 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, 164 int *cntp); 165 static int procstat_getosrel_core(struct procstat_core *core, 166 int *osrelp); 167 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, 168 int *osrelp); 169 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); 170 static int procstat_getpathname_core(struct procstat_core *core, 171 char *pathname, size_t maxlen); 172 static int procstat_getpathname_sysctl(pid_t pid, char *pathname, 173 size_t maxlen); 174 static int procstat_getrlimit_core(struct procstat_core *core, int which, 175 struct rlimit* rlimit); 176 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, 177 int which, struct rlimit* rlimit); 178 static int procstat_getrlimit_sysctl(pid_t pid, int which, 179 struct rlimit* rlimit); 180 static int procstat_getumask_core(struct procstat_core *core, 181 unsigned short *maskp); 182 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, 183 unsigned short *maskp); 184 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); 185 static int vntype2psfsttype(int type); 186 187 void 188 procstat_close(struct procstat *procstat) 189 { 190 191 assert(procstat); 192 if (procstat->type == PROCSTAT_KVM) 193 kvm_close(procstat->kd); 194 else if (procstat->type == PROCSTAT_CORE) 195 procstat_core_close(procstat->core); 196 procstat_freeargv(procstat); 197 procstat_freeenvv(procstat); 198 free(procstat); 199 } 200 201 struct procstat * 202 procstat_open_sysctl(void) 203 { 204 struct procstat *procstat; 205 206 procstat = calloc(1, sizeof(*procstat)); 207 if (procstat == NULL) { 208 warn("malloc()"); 209 return (NULL); 210 } 211 procstat->type = PROCSTAT_SYSCTL; 212 return (procstat); 213 } 214 215 struct procstat * 216 procstat_open_kvm(const char *nlistf, const char *memf) 217 { 218 struct procstat *procstat; 219 kvm_t *kd; 220 char buf[_POSIX2_LINE_MAX]; 221 222 procstat = calloc(1, sizeof(*procstat)); 223 if (procstat == NULL) { 224 warn("malloc()"); 225 return (NULL); 226 } 227 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); 228 if (kd == NULL) { 229 warnx("kvm_openfiles(): %s", buf); 230 free(procstat); 231 return (NULL); 232 } 233 procstat->type = PROCSTAT_KVM; 234 procstat->kd = kd; 235 return (procstat); 236 } 237 238 struct procstat * 239 procstat_open_core(const char *filename) 240 { 241 struct procstat *procstat; 242 struct procstat_core *core; 243 244 procstat = calloc(1, sizeof(*procstat)); 245 if (procstat == NULL) { 246 warn("malloc()"); 247 return (NULL); 248 } 249 core = procstat_core_open(filename); 250 if (core == NULL) { 251 free(procstat); 252 return (NULL); 253 } 254 procstat->type = PROCSTAT_CORE; 255 procstat->core = core; 256 return (procstat); 257 } 258 259 struct kinfo_proc * 260 procstat_getprocs(struct procstat *procstat, int what, int arg, 261 unsigned int *count) 262 { 263 struct kinfo_proc *p0, *p; 264 size_t len, olen; 265 int name[4]; 266 int cnt; 267 int error; 268 269 assert(procstat); 270 assert(count); 271 p = NULL; 272 if (procstat->type == PROCSTAT_KVM) { 273 *count = 0; 274 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); 275 if (p0 == NULL || cnt <= 0) 276 return (NULL); 277 *count = cnt; 278 len = *count * sizeof(*p); 279 p = malloc(len); 280 if (p == NULL) { 281 warnx("malloc(%zu)", len); 282 goto fail; 283 } 284 bcopy(p0, p, len); 285 return (p); 286 } else if (procstat->type == PROCSTAT_SYSCTL) { 287 len = 0; 288 name[0] = CTL_KERN; 289 name[1] = KERN_PROC; 290 name[2] = what; 291 name[3] = arg; 292 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 293 if (error < 0 && errno != EPERM) { 294 warn("sysctl(kern.proc)"); 295 goto fail; 296 } 297 if (len == 0) { 298 warnx("no processes?"); 299 goto fail; 300 } 301 do { 302 len += len / 10; 303 p = reallocf(p, len); 304 if (p == NULL) { 305 warnx("reallocf(%zu)", len); 306 goto fail; 307 } 308 olen = len; 309 error = sysctl(name, nitems(name), p, &len, NULL, 0); 310 } while (error < 0 && errno == ENOMEM && olen == len); 311 if (error < 0 && errno != EPERM) { 312 warn("sysctl(kern.proc)"); 313 goto fail; 314 } 315 /* Perform simple consistency checks. */ 316 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 317 warnx("kinfo_proc structure size mismatch (len = %zu)", len); 318 goto fail; 319 } 320 *count = len / sizeof(*p); 321 return (p); 322 } else if (procstat->type == PROCSTAT_CORE) { 323 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, 324 &len); 325 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 326 warnx("kinfo_proc structure size mismatch"); 327 goto fail; 328 } 329 *count = len / sizeof(*p); 330 return (p); 331 } else { 332 warnx("unknown access method: %d", procstat->type); 333 return (NULL); 334 } 335 fail: 336 if (p) 337 free(p); 338 return (NULL); 339 } 340 341 void 342 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) 343 { 344 345 if (p != NULL) 346 free(p); 347 p = NULL; 348 } 349 350 struct filestat_list * 351 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 352 { 353 354 switch(procstat->type) { 355 case PROCSTAT_KVM: 356 return (procstat_getfiles_kvm(procstat, kp, mmapped)); 357 case PROCSTAT_SYSCTL: 358 case PROCSTAT_CORE: 359 return (procstat_getfiles_sysctl(procstat, kp, mmapped)); 360 default: 361 warnx("unknown access method: %d", procstat->type); 362 return (NULL); 363 } 364 } 365 366 void 367 procstat_freefiles(struct procstat *procstat, struct filestat_list *head) 368 { 369 struct filestat *fst, *tmp; 370 371 STAILQ_FOREACH_SAFE(fst, head, next, tmp) { 372 if (fst->fs_path != NULL) 373 free(fst->fs_path); 374 free(fst); 375 } 376 free(head); 377 if (procstat->vmentries != NULL) { 378 free(procstat->vmentries); 379 procstat->vmentries = NULL; 380 } 381 if (procstat->files != NULL) { 382 free(procstat->files); 383 procstat->files = NULL; 384 } 385 } 386 387 static struct filestat * 388 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, 389 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp) 390 { 391 struct filestat *entry; 392 393 entry = calloc(1, sizeof(*entry)); 394 if (entry == NULL) { 395 warn("malloc()"); 396 return (NULL); 397 } 398 entry->fs_typedep = typedep; 399 entry->fs_fflags = fflags; 400 entry->fs_uflags = uflags; 401 entry->fs_fd = fd; 402 entry->fs_type = type; 403 entry->fs_ref_count = refcount; 404 entry->fs_offset = offset; 405 entry->fs_path = path; 406 if (cap_rightsp != NULL) 407 entry->fs_cap_rights = *cap_rightsp; 408 else 409 cap_rights_init(&entry->fs_cap_rights); 410 return (entry); 411 } 412 413 static struct vnode * 414 getctty(kvm_t *kd, struct kinfo_proc *kp) 415 { 416 struct pgrp pgrp; 417 struct proc proc; 418 struct session sess; 419 int error; 420 421 assert(kp); 422 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 423 sizeof(proc)); 424 if (error == 0) { 425 warnx("can't read proc struct at %p for pid %d", 426 kp->ki_paddr, kp->ki_pid); 427 return (NULL); 428 } 429 if (proc.p_pgrp == NULL) 430 return (NULL); 431 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, 432 sizeof(pgrp)); 433 if (error == 0) { 434 warnx("can't read pgrp struct at %p for pid %d", 435 proc.p_pgrp, kp->ki_pid); 436 return (NULL); 437 } 438 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, 439 sizeof(sess)); 440 if (error == 0) { 441 warnx("can't read session struct at %p for pid %d", 442 pgrp.pg_session, kp->ki_pid); 443 return (NULL); 444 } 445 return (sess.s_ttyvp); 446 } 447 448 static int 449 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest) 450 { 451 kvm_t *kd; 452 453 kd = (kvm_t *)token; 454 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest))); 455 } 456 457 static struct filestat_list * 458 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 459 { 460 struct file file; 461 struct filedesc filed; 462 struct fdescenttbl *fdt; 463 struct pwd pwd; 464 unsigned long pwd_addr; 465 struct vm_map_entry vmentry; 466 struct vm_object object; 467 struct vmspace vmspace; 468 vm_map_entry_t entryp; 469 vm_object_t objp; 470 struct vnode *vp; 471 struct filestat *entry; 472 struct filestat_list *head; 473 kvm_t *kd; 474 void *data; 475 int fflags; 476 unsigned int i; 477 int prot, type; 478 size_t fdt_size; 479 unsigned int nfiles; 480 bool haspwd; 481 482 assert(procstat); 483 kd = procstat->kd; 484 if (kd == NULL) 485 return (NULL); 486 if (kp->ki_fd == NULL) 487 return (NULL); 488 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, 489 sizeof(filed))) { 490 warnx("can't read filedesc at %p", (void *)kp->ki_fd); 491 return (NULL); 492 } 493 haspwd = false; 494 pwd_addr = (unsigned long)(FILEDESC_KVM_LOAD_PWD(&filed)); 495 if (pwd_addr != 0) { 496 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) { 497 warnx("can't read fd_pwd at %p", (void *)pwd_addr); 498 return (NULL); 499 } 500 haspwd = true; 501 } 502 503 /* 504 * Allocate list head. 505 */ 506 head = malloc(sizeof(*head)); 507 if (head == NULL) 508 return (NULL); 509 STAILQ_INIT(head); 510 511 /* root directory vnode, if one. */ 512 if (haspwd) { 513 if (pwd.pwd_rdir) { 514 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1, 515 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL); 516 if (entry != NULL) 517 STAILQ_INSERT_TAIL(head, entry, next); 518 } 519 /* current working directory vnode. */ 520 if (pwd.pwd_cdir) { 521 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1, 522 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL); 523 if (entry != NULL) 524 STAILQ_INSERT_TAIL(head, entry, next); 525 } 526 /* jail root, if any. */ 527 if (pwd.pwd_jdir) { 528 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1, 529 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL); 530 if (entry != NULL) 531 STAILQ_INSERT_TAIL(head, entry, next); 532 } 533 } 534 /* ktrace vnode, if one */ 535 if (kp->ki_tracep) { 536 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, 537 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 538 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL); 539 if (entry != NULL) 540 STAILQ_INSERT_TAIL(head, entry, next); 541 } 542 /* text vnode, if one */ 543 if (kp->ki_textvp) { 544 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, 545 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL); 546 if (entry != NULL) 547 STAILQ_INSERT_TAIL(head, entry, next); 548 } 549 /* Controlling terminal. */ 550 if ((vp = getctty(kd, kp)) != NULL) { 551 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, 552 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 553 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL); 554 if (entry != NULL) 555 STAILQ_INSERT_TAIL(head, entry, next); 556 } 557 558 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles, 559 sizeof(nfiles))) { 560 warnx("can't read fd_files at %p", (void *)filed.fd_files); 561 return (NULL); 562 } 563 564 fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent); 565 fdt = malloc(fdt_size); 566 if (fdt == NULL) { 567 warn("malloc(%zu)", fdt_size); 568 goto do_mmapped; 569 } 570 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) { 571 warnx("cannot read file structures at %p", (void *)filed.fd_files); 572 free(fdt); 573 goto do_mmapped; 574 } 575 for (i = 0; i < nfiles; i++) { 576 if (fdt->fdt_ofiles[i].fde_file == NULL) { 577 continue; 578 } 579 if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file, 580 sizeof(struct file))) { 581 warnx("can't read file %d at %p", i, 582 (void *)fdt->fdt_ofiles[i].fde_file); 583 continue; 584 } 585 switch (file.f_type) { 586 case DTYPE_VNODE: 587 type = PS_FST_TYPE_VNODE; 588 data = file.f_vnode; 589 break; 590 case DTYPE_SOCKET: 591 type = PS_FST_TYPE_SOCKET; 592 data = file.f_data; 593 break; 594 case DTYPE_PIPE: 595 type = PS_FST_TYPE_PIPE; 596 data = file.f_data; 597 break; 598 case DTYPE_FIFO: 599 type = PS_FST_TYPE_FIFO; 600 data = file.f_vnode; 601 break; 602 #ifdef DTYPE_PTS 603 case DTYPE_PTS: 604 type = PS_FST_TYPE_PTS; 605 data = file.f_data; 606 break; 607 #endif 608 case DTYPE_SEM: 609 type = PS_FST_TYPE_SEM; 610 data = file.f_data; 611 break; 612 case DTYPE_SHM: 613 type = PS_FST_TYPE_SHM; 614 data = file.f_data; 615 break; 616 case DTYPE_PROCDESC: 617 type = PS_FST_TYPE_PROCDESC; 618 data = file.f_data; 619 break; 620 case DTYPE_DEV: 621 type = PS_FST_TYPE_DEV; 622 data = file.f_data; 623 break; 624 default: 625 continue; 626 } 627 /* XXXRW: No capability rights support for kvm yet. */ 628 entry = filestat_new_entry(data, type, i, 629 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL); 630 if (entry != NULL) 631 STAILQ_INSERT_TAIL(head, entry, next); 632 } 633 free(fdt); 634 635 do_mmapped: 636 637 /* 638 * Process mmapped files if requested. 639 */ 640 if (mmapped) { 641 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, 642 sizeof(vmspace))) { 643 warnx("can't read vmspace at %p", 644 (void *)kp->ki_vmspace); 645 goto exit; 646 } 647 648 vmentry = vmspace.vm_map.header; 649 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader); 650 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header; 651 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) { 652 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) 653 continue; 654 if ((objp = vmentry.object.vm_object) == NULL) 655 continue; 656 for (; objp; objp = object.backing_object) { 657 if (!kvm_read_all(kd, (unsigned long)objp, 658 &object, sizeof(object))) { 659 warnx("can't read vm_object at %p", 660 (void *)objp); 661 break; 662 } 663 } 664 665 /* We want only vnode objects. */ 666 if (object.type != OBJT_VNODE) 667 continue; 668 669 prot = vmentry.protection; 670 fflags = 0; 671 if (prot & VM_PROT_READ) 672 fflags = PS_FST_FFLAG_READ; 673 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && 674 prot & VM_PROT_WRITE) 675 fflags |= PS_FST_FFLAG_WRITE; 676 677 /* 678 * Create filestat entry. 679 */ 680 entry = filestat_new_entry(object.handle, 681 PS_FST_TYPE_VNODE, -1, fflags, 682 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL); 683 if (entry != NULL) 684 STAILQ_INSERT_TAIL(head, entry, next); 685 } 686 if (entryp == NULL) 687 warnx("can't read vm_map_entry"); 688 } 689 exit: 690 return (head); 691 } 692 693 /* 694 * kinfo types to filestat translation. 695 */ 696 static int 697 kinfo_type2fst(int kftype) 698 { 699 static struct { 700 int kf_type; 701 int fst_type; 702 } kftypes2fst[] = { 703 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC }, 704 { KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO }, 705 { KF_TYPE_DEV, PS_FST_TYPE_DEV }, 706 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, 707 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, 708 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, 709 { KF_TYPE_NONE, PS_FST_TYPE_NONE }, 710 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, 711 { KF_TYPE_PTS, PS_FST_TYPE_PTS }, 712 { KF_TYPE_SEM, PS_FST_TYPE_SEM }, 713 { KF_TYPE_SHM, PS_FST_TYPE_SHM }, 714 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, 715 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, 716 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } 717 }; 718 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) 719 unsigned int i; 720 721 for (i = 0; i < NKFTYPES; i++) 722 if (kftypes2fst[i].kf_type == kftype) 723 break; 724 if (i == NKFTYPES) 725 return (PS_FST_TYPE_UNKNOWN); 726 return (kftypes2fst[i].fst_type); 727 } 728 729 /* 730 * kinfo flags to filestat translation. 731 */ 732 static int 733 kinfo_fflags2fst(int kfflags) 734 { 735 static struct { 736 int kf_flag; 737 int fst_flag; 738 } kfflags2fst[] = { 739 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, 740 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, 741 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, 742 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, 743 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, 744 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, 745 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, 746 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, 747 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, 748 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 749 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 750 { KF_FLAG_READ, PS_FST_FFLAG_READ }, 751 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, 752 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, 753 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } 754 }; 755 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) 756 unsigned int i; 757 int flags; 758 759 flags = 0; 760 for (i = 0; i < NKFFLAGS; i++) 761 if ((kfflags & kfflags2fst[i].kf_flag) != 0) 762 flags |= kfflags2fst[i].fst_flag; 763 return (flags); 764 } 765 766 static int 767 kinfo_uflags2fst(int fd) 768 { 769 770 switch (fd) { 771 case KF_FD_TYPE_CTTY: 772 return (PS_FST_UFLAG_CTTY); 773 case KF_FD_TYPE_CWD: 774 return (PS_FST_UFLAG_CDIR); 775 case KF_FD_TYPE_JAIL: 776 return (PS_FST_UFLAG_JAIL); 777 case KF_FD_TYPE_TEXT: 778 return (PS_FST_UFLAG_TEXT); 779 case KF_FD_TYPE_TRACE: 780 return (PS_FST_UFLAG_TRACE); 781 case KF_FD_TYPE_ROOT: 782 return (PS_FST_UFLAG_RDIR); 783 } 784 return (0); 785 } 786 787 static struct kinfo_file * 788 kinfo_getfile_core(struct procstat_core *core, int *cntp) 789 { 790 int cnt; 791 size_t len; 792 char *buf, *bp, *eb; 793 struct kinfo_file *kif, *kp, *kf; 794 795 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); 796 if (buf == NULL) 797 return (NULL); 798 /* 799 * XXXMG: The code below is just copy&past from libutil. 800 * The code duplication can be avoided if libutil 801 * is extended to provide something like: 802 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, 803 * size_t len, int *cntp); 804 */ 805 806 /* Pass 1: count items */ 807 cnt = 0; 808 bp = buf; 809 eb = buf + len; 810 while (bp < eb) { 811 kf = (struct kinfo_file *)(uintptr_t)bp; 812 if (kf->kf_structsize == 0) 813 break; 814 bp += kf->kf_structsize; 815 cnt++; 816 } 817 818 kif = calloc(cnt, sizeof(*kif)); 819 if (kif == NULL) { 820 free(buf); 821 return (NULL); 822 } 823 bp = buf; 824 eb = buf + len; 825 kp = kif; 826 /* Pass 2: unpack */ 827 while (bp < eb) { 828 kf = (struct kinfo_file *)(uintptr_t)bp; 829 if (kf->kf_structsize == 0) 830 break; 831 /* Copy/expand into pre-zeroed buffer */ 832 memcpy(kp, kf, kf->kf_structsize); 833 /* Advance to next packed record */ 834 bp += kf->kf_structsize; 835 /* Set field size to fixed length, advance */ 836 kp->kf_structsize = sizeof(*kp); 837 kp++; 838 } 839 free(buf); 840 *cntp = cnt; 841 return (kif); /* Caller must free() return value */ 842 } 843 844 static struct filestat_list * 845 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, 846 int mmapped) 847 { 848 struct kinfo_file *kif, *files; 849 struct kinfo_vmentry *kve, *vmentries; 850 struct filestat_list *head; 851 struct filestat *entry; 852 char *path; 853 off_t offset; 854 int cnt, fd, fflags; 855 int i, type, uflags; 856 int refcount; 857 cap_rights_t cap_rights; 858 859 assert(kp); 860 if (kp->ki_fd == NULL) 861 return (NULL); 862 switch(procstat->type) { 863 case PROCSTAT_SYSCTL: 864 files = kinfo_getfile(kp->ki_pid, &cnt); 865 break; 866 case PROCSTAT_CORE: 867 files = kinfo_getfile_core(procstat->core, &cnt); 868 break; 869 default: 870 assert(!"invalid type"); 871 } 872 if (files == NULL && errno != EPERM) { 873 warn("kinfo_getfile()"); 874 return (NULL); 875 } 876 procstat->files = files; 877 878 /* 879 * Allocate list head. 880 */ 881 head = malloc(sizeof(*head)); 882 if (head == NULL) 883 return (NULL); 884 STAILQ_INIT(head); 885 for (i = 0; i < cnt; i++) { 886 kif = &files[i]; 887 888 type = kinfo_type2fst(kif->kf_type); 889 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; 890 fflags = kinfo_fflags2fst(kif->kf_flags); 891 uflags = kinfo_uflags2fst(kif->kf_fd); 892 refcount = kif->kf_ref_count; 893 offset = kif->kf_offset; 894 if (*kif->kf_path != '\0') 895 path = strdup(kif->kf_path); 896 else 897 path = NULL; 898 cap_rights = kif->kf_cap_rights; 899 900 /* 901 * Create filestat entry. 902 */ 903 entry = filestat_new_entry(kif, type, fd, fflags, uflags, 904 refcount, offset, path, &cap_rights); 905 if (entry != NULL) 906 STAILQ_INSERT_TAIL(head, entry, next); 907 } 908 if (mmapped != 0) { 909 vmentries = procstat_getvmmap(procstat, kp, &cnt); 910 procstat->vmentries = vmentries; 911 if (vmentries == NULL || cnt == 0) 912 goto fail; 913 for (i = 0; i < cnt; i++) { 914 kve = &vmentries[i]; 915 if (kve->kve_type != KVME_TYPE_VNODE) 916 continue; 917 fflags = 0; 918 if (kve->kve_protection & KVME_PROT_READ) 919 fflags = PS_FST_FFLAG_READ; 920 if ((kve->kve_flags & KVME_FLAG_COW) == 0 && 921 kve->kve_protection & KVME_PROT_WRITE) 922 fflags |= PS_FST_FFLAG_WRITE; 923 offset = kve->kve_offset; 924 refcount = kve->kve_ref_count; 925 if (*kve->kve_path != '\0') 926 path = strdup(kve->kve_path); 927 else 928 path = NULL; 929 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, 930 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, 931 NULL); 932 if (entry != NULL) 933 STAILQ_INSERT_TAIL(head, entry, next); 934 } 935 } 936 fail: 937 return (head); 938 } 939 940 int 941 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, 942 struct pipestat *ps, char *errbuf) 943 { 944 945 assert(ps); 946 if (procstat->type == PROCSTAT_KVM) { 947 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, 948 errbuf)); 949 } else if (procstat->type == PROCSTAT_SYSCTL || 950 procstat->type == PROCSTAT_CORE) { 951 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); 952 } else { 953 warnx("unknown access method: %d", procstat->type); 954 if (errbuf != NULL) 955 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 956 return (1); 957 } 958 } 959 960 static int 961 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 962 struct pipestat *ps, char *errbuf) 963 { 964 struct pipe pi; 965 void *pipep; 966 967 assert(kd); 968 assert(ps); 969 assert(fst); 970 bzero(ps, sizeof(*ps)); 971 pipep = fst->fs_typedep; 972 if (pipep == NULL) 973 goto fail; 974 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { 975 warnx("can't read pipe at %p", (void *)pipep); 976 goto fail; 977 } 978 ps->addr = (uintptr_t)pipep; 979 ps->peer = (uintptr_t)pi.pipe_peer; 980 ps->buffer_cnt = pi.pipe_buffer.cnt; 981 return (0); 982 983 fail: 984 if (errbuf != NULL) 985 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 986 return (1); 987 } 988 989 static int 990 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, 991 char *errbuf __unused) 992 { 993 struct kinfo_file *kif; 994 995 assert(ps); 996 assert(fst); 997 bzero(ps, sizeof(*ps)); 998 kif = fst->fs_typedep; 999 if (kif == NULL) 1000 return (1); 1001 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; 1002 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; 1003 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; 1004 return (0); 1005 } 1006 1007 int 1008 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, 1009 struct ptsstat *pts, char *errbuf) 1010 { 1011 1012 assert(pts); 1013 if (procstat->type == PROCSTAT_KVM) { 1014 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, 1015 errbuf)); 1016 } else if (procstat->type == PROCSTAT_SYSCTL || 1017 procstat->type == PROCSTAT_CORE) { 1018 return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); 1019 } else { 1020 warnx("unknown access method: %d", procstat->type); 1021 if (errbuf != NULL) 1022 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1023 return (1); 1024 } 1025 } 1026 1027 static int 1028 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 1029 struct ptsstat *pts, char *errbuf) 1030 { 1031 struct tty tty; 1032 void *ttyp; 1033 1034 assert(kd); 1035 assert(pts); 1036 assert(fst); 1037 bzero(pts, sizeof(*pts)); 1038 ttyp = fst->fs_typedep; 1039 if (ttyp == NULL) 1040 goto fail; 1041 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { 1042 warnx("can't read tty at %p", (void *)ttyp); 1043 goto fail; 1044 } 1045 pts->dev = dev2udev(kd, tty.t_dev); 1046 (void)kdevtoname(kd, tty.t_dev, pts->devname); 1047 return (0); 1048 1049 fail: 1050 if (errbuf != NULL) 1051 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1052 return (1); 1053 } 1054 1055 static int 1056 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, 1057 char *errbuf __unused) 1058 { 1059 struct kinfo_file *kif; 1060 1061 assert(pts); 1062 assert(fst); 1063 bzero(pts, sizeof(*pts)); 1064 kif = fst->fs_typedep; 1065 if (kif == NULL) 1066 return (0); 1067 pts->dev = kif->kf_un.kf_pts.kf_pts_dev; 1068 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); 1069 return (0); 1070 } 1071 1072 int 1073 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, 1074 struct semstat *sem, char *errbuf) 1075 { 1076 1077 assert(sem); 1078 if (procstat->type == PROCSTAT_KVM) { 1079 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, 1080 errbuf)); 1081 } else if (procstat->type == PROCSTAT_SYSCTL || 1082 procstat->type == PROCSTAT_CORE) { 1083 return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); 1084 } else { 1085 warnx("unknown access method: %d", procstat->type); 1086 if (errbuf != NULL) 1087 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1088 return (1); 1089 } 1090 } 1091 1092 static int 1093 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 1094 struct semstat *sem, char *errbuf) 1095 { 1096 struct ksem ksem; 1097 void *ksemp; 1098 char *path; 1099 int i; 1100 1101 assert(kd); 1102 assert(sem); 1103 assert(fst); 1104 bzero(sem, sizeof(*sem)); 1105 ksemp = fst->fs_typedep; 1106 if (ksemp == NULL) 1107 goto fail; 1108 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, 1109 sizeof(struct ksem))) { 1110 warnx("can't read ksem at %p", (void *)ksemp); 1111 goto fail; 1112 } 1113 sem->mode = S_IFREG | ksem.ks_mode; 1114 sem->value = ksem.ks_value; 1115 if (fst->fs_path == NULL && ksem.ks_path != NULL) { 1116 path = malloc(MAXPATHLEN); 1117 for (i = 0; i < MAXPATHLEN - 1; i++) { 1118 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, 1119 path + i, 1)) 1120 break; 1121 if (path[i] == '\0') 1122 break; 1123 } 1124 path[i] = '\0'; 1125 if (i == 0) 1126 free(path); 1127 else 1128 fst->fs_path = path; 1129 } 1130 return (0); 1131 1132 fail: 1133 if (errbuf != NULL) 1134 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1135 return (1); 1136 } 1137 1138 static int 1139 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, 1140 char *errbuf __unused) 1141 { 1142 struct kinfo_file *kif; 1143 1144 assert(sem); 1145 assert(fst); 1146 bzero(sem, sizeof(*sem)); 1147 kif = fst->fs_typedep; 1148 if (kif == NULL) 1149 return (0); 1150 sem->value = kif->kf_un.kf_sem.kf_sem_value; 1151 sem->mode = kif->kf_un.kf_sem.kf_sem_mode; 1152 return (0); 1153 } 1154 1155 int 1156 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, 1157 struct shmstat *shm, char *errbuf) 1158 { 1159 1160 assert(shm); 1161 if (procstat->type == PROCSTAT_KVM) { 1162 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, 1163 errbuf)); 1164 } else if (procstat->type == PROCSTAT_SYSCTL || 1165 procstat->type == PROCSTAT_CORE) { 1166 return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); 1167 } else { 1168 warnx("unknown access method: %d", procstat->type); 1169 if (errbuf != NULL) 1170 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1171 return (1); 1172 } 1173 } 1174 1175 static int 1176 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 1177 struct shmstat *shm, char *errbuf) 1178 { 1179 struct shmfd shmfd; 1180 void *shmfdp; 1181 char *path; 1182 int i; 1183 1184 assert(kd); 1185 assert(shm); 1186 assert(fst); 1187 bzero(shm, sizeof(*shm)); 1188 shmfdp = fst->fs_typedep; 1189 if (shmfdp == NULL) 1190 goto fail; 1191 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, 1192 sizeof(struct shmfd))) { 1193 warnx("can't read shmfd at %p", (void *)shmfdp); 1194 goto fail; 1195 } 1196 shm->mode = S_IFREG | shmfd.shm_mode; 1197 shm->size = shmfd.shm_size; 1198 if (fst->fs_path == NULL && shmfd.shm_path != NULL) { 1199 path = malloc(MAXPATHLEN); 1200 for (i = 0; i < MAXPATHLEN - 1; i++) { 1201 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, 1202 path + i, 1)) 1203 break; 1204 if (path[i] == '\0') 1205 break; 1206 } 1207 path[i] = '\0'; 1208 if (i == 0) 1209 free(path); 1210 else 1211 fst->fs_path = path; 1212 } 1213 return (0); 1214 1215 fail: 1216 if (errbuf != NULL) 1217 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1218 return (1); 1219 } 1220 1221 static int 1222 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, 1223 char *errbuf __unused) 1224 { 1225 struct kinfo_file *kif; 1226 1227 assert(shm); 1228 assert(fst); 1229 bzero(shm, sizeof(*shm)); 1230 kif = fst->fs_typedep; 1231 if (kif == NULL) 1232 return (0); 1233 shm->size = kif->kf_un.kf_file.kf_file_size; 1234 shm->mode = kif->kf_un.kf_file.kf_file_mode; 1235 return (0); 1236 } 1237 1238 int 1239 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, 1240 struct vnstat *vn, char *errbuf) 1241 { 1242 1243 assert(vn); 1244 if (procstat->type == PROCSTAT_KVM) { 1245 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, 1246 errbuf)); 1247 } else if (procstat->type == PROCSTAT_SYSCTL || 1248 procstat->type == PROCSTAT_CORE) { 1249 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); 1250 } else { 1251 warnx("unknown access method: %d", procstat->type); 1252 if (errbuf != NULL) 1253 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1254 return (1); 1255 } 1256 } 1257 1258 static int 1259 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 1260 struct vnstat *vn, char *errbuf) 1261 { 1262 /* Filesystem specific handlers. */ 1263 #define FSTYPE(fst) {#fst, fst##_filestat} 1264 struct { 1265 const char *tag; 1266 int (*handler)(kvm_t *kd, struct vnode *vp, 1267 struct vnstat *vn); 1268 } fstypes[] = { 1269 FSTYPE(devfs), 1270 FSTYPE(isofs), 1271 FSTYPE(msdosfs), 1272 FSTYPE(nfs), 1273 FSTYPE(smbfs), 1274 FSTYPE(udf), 1275 FSTYPE(ufs), 1276 #ifdef LIBPROCSTAT_ZFS 1277 FSTYPE(zfs), 1278 #endif 1279 }; 1280 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) 1281 struct vnode vnode; 1282 char tagstr[12]; 1283 void *vp; 1284 int error; 1285 unsigned int i; 1286 1287 assert(kd); 1288 assert(vn); 1289 assert(fst); 1290 vp = fst->fs_typedep; 1291 if (vp == NULL) 1292 goto fail; 1293 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); 1294 if (error == 0) { 1295 warnx("can't read vnode at %p", (void *)vp); 1296 goto fail; 1297 } 1298 bzero(vn, sizeof(*vn)); 1299 vn->vn_type = vntype2psfsttype(vnode.v_type); 1300 if (vnode.v_type == VNON || vnode.v_type == VBAD) 1301 return (0); 1302 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name, 1303 tagstr, sizeof(tagstr)); 1304 if (error == 0) { 1305 warnx("can't read lo_name at %p", (void *)vp); 1306 goto fail; 1307 } 1308 tagstr[sizeof(tagstr) - 1] = '\0'; 1309 1310 /* 1311 * Find appropriate handler. 1312 */ 1313 for (i = 0; i < NTYPES; i++) 1314 if (!strcmp(fstypes[i].tag, tagstr)) { 1315 if (fstypes[i].handler(kd, &vnode, vn) != 0) { 1316 goto fail; 1317 } 1318 break; 1319 } 1320 if (i == NTYPES) { 1321 if (errbuf != NULL) 1322 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); 1323 return (1); 1324 } 1325 vn->vn_mntdir = getmnton(kd, vnode.v_mount); 1326 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) && 1327 vnode.v_rdev != NULL){ 1328 vn->vn_dev = dev2udev(kd, vnode.v_rdev); 1329 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); 1330 } else { 1331 vn->vn_dev = -1; 1332 } 1333 return (0); 1334 1335 fail: 1336 if (errbuf != NULL) 1337 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1338 return (1); 1339 } 1340 1341 /* 1342 * kinfo vnode type to filestat translation. 1343 */ 1344 static int 1345 kinfo_vtype2fst(int kfvtype) 1346 { 1347 static struct { 1348 int kf_vtype; 1349 int fst_vtype; 1350 } kfvtypes2fst[] = { 1351 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, 1352 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, 1353 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, 1354 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, 1355 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, 1356 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, 1357 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, 1358 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, 1359 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } 1360 }; 1361 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) 1362 unsigned int i; 1363 1364 for (i = 0; i < NKFVTYPES; i++) 1365 if (kfvtypes2fst[i].kf_vtype == kfvtype) 1366 break; 1367 if (i == NKFVTYPES) 1368 return (PS_FST_VTYPE_UNKNOWN); 1369 return (kfvtypes2fst[i].fst_vtype); 1370 } 1371 1372 static int 1373 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, 1374 char *errbuf) 1375 { 1376 struct statfs stbuf; 1377 struct kinfo_file *kif; 1378 struct kinfo_vmentry *kve; 1379 char *name, *path; 1380 uint64_t fileid; 1381 uint64_t size; 1382 uint64_t fsid; 1383 uint64_t rdev; 1384 uint16_t mode; 1385 int vntype; 1386 int status; 1387 1388 assert(fst); 1389 assert(vn); 1390 bzero(vn, sizeof(*vn)); 1391 if (fst->fs_typedep == NULL) 1392 return (1); 1393 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { 1394 kve = fst->fs_typedep; 1395 fileid = kve->kve_vn_fileid; 1396 fsid = kve->kve_vn_fsid; 1397 mode = kve->kve_vn_mode; 1398 path = kve->kve_path; 1399 rdev = kve->kve_vn_rdev; 1400 size = kve->kve_vn_size; 1401 vntype = kinfo_vtype2fst(kve->kve_vn_type); 1402 status = kve->kve_status; 1403 } else { 1404 kif = fst->fs_typedep; 1405 fileid = kif->kf_un.kf_file.kf_file_fileid; 1406 fsid = kif->kf_un.kf_file.kf_file_fsid; 1407 mode = kif->kf_un.kf_file.kf_file_mode; 1408 path = kif->kf_path; 1409 rdev = kif->kf_un.kf_file.kf_file_rdev; 1410 size = kif->kf_un.kf_file.kf_file_size; 1411 vntype = kinfo_vtype2fst(kif->kf_vnode_type); 1412 status = kif->kf_status; 1413 } 1414 vn->vn_type = vntype; 1415 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) 1416 return (0); 1417 if ((status & KF_ATTR_VALID) == 0) { 1418 if (errbuf != NULL) { 1419 snprintf(errbuf, _POSIX2_LINE_MAX, 1420 "? (no info available)"); 1421 } 1422 return (1); 1423 } 1424 if (path && *path) { 1425 statfs(path, &stbuf); 1426 vn->vn_mntdir = strdup(stbuf.f_mntonname); 1427 } else 1428 vn->vn_mntdir = strdup("-"); 1429 vn->vn_dev = rdev; 1430 if (vntype == PS_FST_VTYPE_VBLK) { 1431 name = devname(rdev, S_IFBLK); 1432 if (name != NULL) 1433 strlcpy(vn->vn_devname, name, 1434 sizeof(vn->vn_devname)); 1435 } else if (vntype == PS_FST_VTYPE_VCHR) { 1436 name = devname(vn->vn_dev, S_IFCHR); 1437 if (name != NULL) 1438 strlcpy(vn->vn_devname, name, 1439 sizeof(vn->vn_devname)); 1440 } 1441 vn->vn_fsid = fsid; 1442 vn->vn_fileid = fileid; 1443 vn->vn_size = size; 1444 vn->vn_mode = mode; 1445 return (0); 1446 } 1447 1448 int 1449 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, 1450 struct sockstat *sock, char *errbuf) 1451 { 1452 1453 assert(sock); 1454 if (procstat->type == PROCSTAT_KVM) { 1455 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, 1456 errbuf)); 1457 } else if (procstat->type == PROCSTAT_SYSCTL || 1458 procstat->type == PROCSTAT_CORE) { 1459 return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); 1460 } else { 1461 warnx("unknown access method: %d", procstat->type); 1462 if (errbuf != NULL) 1463 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1464 return (1); 1465 } 1466 } 1467 1468 static int 1469 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 1470 struct sockstat *sock, char *errbuf) 1471 { 1472 struct domain dom; 1473 struct inpcb inpcb; 1474 struct protosw proto; 1475 struct socket s; 1476 struct unpcb unpcb; 1477 ssize_t len; 1478 void *so; 1479 1480 assert(kd); 1481 assert(sock); 1482 assert(fst); 1483 bzero(sock, sizeof(*sock)); 1484 so = fst->fs_typedep; 1485 if (so == NULL) 1486 goto fail; 1487 sock->so_addr = (uintptr_t)so; 1488 /* fill in socket */ 1489 if (!kvm_read_all(kd, (unsigned long)so, &s, 1490 sizeof(struct socket))) { 1491 warnx("can't read sock at %p", (void *)so); 1492 goto fail; 1493 } 1494 /* fill in protosw entry */ 1495 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, 1496 sizeof(struct protosw))) { 1497 warnx("can't read protosw at %p", (void *)s.so_proto); 1498 goto fail; 1499 } 1500 /* fill in domain */ 1501 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, 1502 sizeof(struct domain))) { 1503 warnx("can't read domain at %p", 1504 (void *)proto.pr_domain); 1505 goto fail; 1506 } 1507 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, 1508 sizeof(sock->dname) - 1)) < 0) { 1509 warnx("can't read domain name at %p", (void *)dom.dom_name); 1510 sock->dname[0] = '\0'; 1511 } 1512 else 1513 sock->dname[len] = '\0'; 1514 1515 /* 1516 * Fill in known data. 1517 */ 1518 sock->type = s.so_type; 1519 sock->proto = proto.pr_protocol; 1520 sock->dom_family = dom.dom_family; 1521 sock->so_pcb = (uintptr_t)s.so_pcb; 1522 1523 /* 1524 * Protocol specific data. 1525 */ 1526 switch(dom.dom_family) { 1527 case AF_INET: 1528 case AF_INET6: 1529 if (proto.pr_protocol == IPPROTO_TCP) { 1530 if (s.so_pcb) { 1531 if (kvm_read(kd, (u_long)s.so_pcb, 1532 (char *)&inpcb, sizeof(struct inpcb)) 1533 != sizeof(struct inpcb)) { 1534 warnx("can't read inpcb at %p", 1535 (void *)s.so_pcb); 1536 } else 1537 sock->inp_ppcb = 1538 (uintptr_t)inpcb.inp_ppcb; 1539 sock->sendq = s.so_snd.sb_ccc; 1540 sock->recvq = s.so_rcv.sb_ccc; 1541 } 1542 } 1543 break; 1544 case AF_UNIX: 1545 if (s.so_pcb) { 1546 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, 1547 sizeof(struct unpcb)) != sizeof(struct unpcb)){ 1548 warnx("can't read unpcb at %p", 1549 (void *)s.so_pcb); 1550 } else if (unpcb.unp_conn) { 1551 sock->so_rcv_sb_state = s.so_rcv.sb_state; 1552 sock->so_snd_sb_state = s.so_snd.sb_state; 1553 sock->unp_conn = (uintptr_t)unpcb.unp_conn; 1554 sock->sendq = s.so_snd.sb_ccc; 1555 sock->recvq = s.so_rcv.sb_ccc; 1556 } 1557 } 1558 break; 1559 default: 1560 break; 1561 } 1562 return (0); 1563 1564 fail: 1565 if (errbuf != NULL) 1566 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1567 return (1); 1568 } 1569 1570 static int 1571 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, 1572 char *errbuf __unused) 1573 { 1574 struct kinfo_file *kif; 1575 1576 assert(sock); 1577 assert(fst); 1578 bzero(sock, sizeof(*sock)); 1579 kif = fst->fs_typedep; 1580 if (kif == NULL) 1581 return (0); 1582 1583 /* 1584 * Fill in known data. 1585 */ 1586 sock->type = kif->kf_sock_type; 1587 sock->proto = kif->kf_sock_protocol; 1588 sock->dom_family = kif->kf_sock_domain; 1589 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; 1590 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); 1591 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local, 1592 kif->kf_un.kf_sock.kf_sa_local.ss_len); 1593 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer, 1594 kif->kf_un.kf_sock.kf_sa_peer.ss_len); 1595 1596 /* 1597 * Protocol specific data. 1598 */ 1599 switch(sock->dom_family) { 1600 case AF_INET: 1601 case AF_INET6: 1602 if (sock->proto == IPPROTO_TCP) { 1603 sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb; 1604 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1605 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1606 } 1607 break; 1608 case AF_UNIX: 1609 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { 1610 sock->so_rcv_sb_state = 1611 kif->kf_un.kf_sock.kf_sock_rcv_sb_state; 1612 sock->so_snd_sb_state = 1613 kif->kf_un.kf_sock.kf_sock_snd_sb_state; 1614 sock->unp_conn = 1615 kif->kf_un.kf_sock.kf_sock_unpconn; 1616 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1617 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1618 } 1619 break; 1620 default: 1621 break; 1622 } 1623 return (0); 1624 } 1625 1626 /* 1627 * Descriptor flags to filestat translation. 1628 */ 1629 static int 1630 to_filestat_flags(int flags) 1631 { 1632 static struct { 1633 int flag; 1634 int fst_flag; 1635 } fstflags[] = { 1636 { FREAD, PS_FST_FFLAG_READ }, 1637 { FWRITE, PS_FST_FFLAG_WRITE }, 1638 { O_APPEND, PS_FST_FFLAG_APPEND }, 1639 { O_ASYNC, PS_FST_FFLAG_ASYNC }, 1640 { O_CREAT, PS_FST_FFLAG_CREAT }, 1641 { O_DIRECT, PS_FST_FFLAG_DIRECT }, 1642 { O_EXCL, PS_FST_FFLAG_EXCL }, 1643 { O_EXEC, PS_FST_FFLAG_EXEC }, 1644 { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, 1645 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 1646 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 1647 { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, 1648 { O_SYNC, PS_FST_FFLAG_SYNC }, 1649 { O_TRUNC, PS_FST_FFLAG_TRUNC } 1650 }; 1651 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) 1652 int fst_flags; 1653 unsigned int i; 1654 1655 fst_flags = 0; 1656 for (i = 0; i < NFSTFLAGS; i++) 1657 if (flags & fstflags[i].flag) 1658 fst_flags |= fstflags[i].fst_flag; 1659 return (fst_flags); 1660 } 1661 1662 /* 1663 * Vnode type to filestate translation. 1664 */ 1665 static int 1666 vntype2psfsttype(int type) 1667 { 1668 static struct { 1669 int vtype; 1670 int fst_vtype; 1671 } vt2fst[] = { 1672 { VBAD, PS_FST_VTYPE_VBAD }, 1673 { VBLK, PS_FST_VTYPE_VBLK }, 1674 { VCHR, PS_FST_VTYPE_VCHR }, 1675 { VDIR, PS_FST_VTYPE_VDIR }, 1676 { VFIFO, PS_FST_VTYPE_VFIFO }, 1677 { VLNK, PS_FST_VTYPE_VLNK }, 1678 { VNON, PS_FST_VTYPE_VNON }, 1679 { VREG, PS_FST_VTYPE_VREG }, 1680 { VSOCK, PS_FST_VTYPE_VSOCK } 1681 }; 1682 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) 1683 unsigned int i, fst_type; 1684 1685 fst_type = PS_FST_VTYPE_UNKNOWN; 1686 for (i = 0; i < NVFTYPES; i++) { 1687 if (type == vt2fst[i].vtype) { 1688 fst_type = vt2fst[i].fst_vtype; 1689 break; 1690 } 1691 } 1692 return (fst_type); 1693 } 1694 1695 static char * 1696 getmnton(kvm_t *kd, struct mount *m) 1697 { 1698 struct mount mnt; 1699 static struct mtab { 1700 struct mtab *next; 1701 struct mount *m; 1702 char mntonname[MNAMELEN + 1]; 1703 } *mhead = NULL; 1704 struct mtab *mt; 1705 1706 for (mt = mhead; mt != NULL; mt = mt->next) 1707 if (m == mt->m) 1708 return (mt->mntonname); 1709 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { 1710 warnx("can't read mount table at %p", (void *)m); 1711 return (NULL); 1712 } 1713 if ((mt = malloc(sizeof (struct mtab))) == NULL) 1714 err(1, NULL); 1715 mt->m = m; 1716 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); 1717 mt->mntonname[MNAMELEN] = '\0'; 1718 mt->next = mhead; 1719 mhead = mt; 1720 return (mt->mntonname); 1721 } 1722 1723 /* 1724 * Auxiliary structures and functions to get process environment or 1725 * command line arguments. 1726 */ 1727 struct argvec { 1728 char *buf; 1729 size_t bufsize; 1730 char **argv; 1731 size_t argc; 1732 }; 1733 1734 static struct argvec * 1735 argvec_alloc(size_t bufsize) 1736 { 1737 struct argvec *av; 1738 1739 av = malloc(sizeof(*av)); 1740 if (av == NULL) 1741 return (NULL); 1742 av->bufsize = bufsize; 1743 av->buf = malloc(av->bufsize); 1744 if (av->buf == NULL) { 1745 free(av); 1746 return (NULL); 1747 } 1748 av->argc = 32; 1749 av->argv = malloc(sizeof(char *) * av->argc); 1750 if (av->argv == NULL) { 1751 free(av->buf); 1752 free(av); 1753 return (NULL); 1754 } 1755 return av; 1756 } 1757 1758 static void 1759 argvec_free(struct argvec * av) 1760 { 1761 1762 free(av->argv); 1763 free(av->buf); 1764 free(av); 1765 } 1766 1767 static char ** 1768 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) 1769 { 1770 int error, name[4], argc, i; 1771 struct argvec *av, **avp; 1772 enum psc_type type; 1773 size_t len; 1774 char *p, **argv; 1775 1776 assert(procstat); 1777 assert(kp); 1778 if (procstat->type == PROCSTAT_KVM) { 1779 warnx("can't use kvm access method"); 1780 return (NULL); 1781 } 1782 if (procstat->type != PROCSTAT_SYSCTL && 1783 procstat->type != PROCSTAT_CORE) { 1784 warnx("unknown access method: %d", procstat->type); 1785 return (NULL); 1786 } 1787 1788 if (nchr == 0 || nchr > ARG_MAX) 1789 nchr = ARG_MAX; 1790 1791 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); 1792 av = *avp; 1793 1794 if (av == NULL) 1795 { 1796 av = argvec_alloc(nchr); 1797 if (av == NULL) 1798 { 1799 warn("malloc(%zu)", nchr); 1800 return (NULL); 1801 } 1802 *avp = av; 1803 } else if (av->bufsize < nchr) { 1804 av->buf = reallocf(av->buf, nchr); 1805 if (av->buf == NULL) { 1806 warn("malloc(%zu)", nchr); 1807 return (NULL); 1808 } 1809 } 1810 if (procstat->type == PROCSTAT_SYSCTL) { 1811 name[0] = CTL_KERN; 1812 name[1] = KERN_PROC; 1813 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 1814 name[3] = kp->ki_pid; 1815 len = nchr; 1816 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0); 1817 if (error != 0 && errno != ESRCH && errno != EPERM) 1818 warn("sysctl(kern.proc.%s)", env ? "env" : "args"); 1819 if (error != 0 || len == 0) 1820 return (NULL); 1821 } else /* procstat->type == PROCSTAT_CORE */ { 1822 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; 1823 len = nchr; 1824 if (procstat_core_get(procstat->core, type, av->buf, &len) 1825 == NULL) { 1826 return (NULL); 1827 } 1828 } 1829 1830 argv = av->argv; 1831 argc = av->argc; 1832 i = 0; 1833 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { 1834 argv[i++] = p; 1835 if (i < argc) 1836 continue; 1837 /* Grow argv. */ 1838 argc += argc; 1839 argv = realloc(argv, sizeof(char *) * argc); 1840 if (argv == NULL) { 1841 warn("malloc(%zu)", sizeof(char *) * argc); 1842 return (NULL); 1843 } 1844 av->argv = argv; 1845 av->argc = argc; 1846 } 1847 argv[i] = NULL; 1848 1849 return (argv); 1850 } 1851 1852 /* 1853 * Return process command line arguments. 1854 */ 1855 char ** 1856 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1857 { 1858 1859 return (getargv(procstat, p, nchr, 0)); 1860 } 1861 1862 /* 1863 * Free the buffer allocated by procstat_getargv(). 1864 */ 1865 void 1866 procstat_freeargv(struct procstat *procstat) 1867 { 1868 1869 if (procstat->argv != NULL) { 1870 argvec_free(procstat->argv); 1871 procstat->argv = NULL; 1872 } 1873 } 1874 1875 /* 1876 * Return process environment. 1877 */ 1878 char ** 1879 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1880 { 1881 1882 return (getargv(procstat, p, nchr, 1)); 1883 } 1884 1885 /* 1886 * Free the buffer allocated by procstat_getenvv(). 1887 */ 1888 void 1889 procstat_freeenvv(struct procstat *procstat) 1890 { 1891 if (procstat->envv != NULL) { 1892 argvec_free(procstat->envv); 1893 procstat->envv = NULL; 1894 } 1895 } 1896 1897 static struct kinfo_vmentry * 1898 kinfo_getvmmap_core(struct procstat_core *core, int *cntp) 1899 { 1900 int cnt; 1901 size_t len; 1902 char *buf, *bp, *eb; 1903 struct kinfo_vmentry *kiv, *kp, *kv; 1904 1905 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); 1906 if (buf == NULL) 1907 return (NULL); 1908 1909 /* 1910 * XXXMG: The code below is just copy&past from libutil. 1911 * The code duplication can be avoided if libutil 1912 * is extended to provide something like: 1913 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, 1914 * size_t len, int *cntp); 1915 */ 1916 1917 /* Pass 1: count items */ 1918 cnt = 0; 1919 bp = buf; 1920 eb = buf + len; 1921 while (bp < eb) { 1922 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1923 if (kv->kve_structsize == 0) 1924 break; 1925 bp += kv->kve_structsize; 1926 cnt++; 1927 } 1928 1929 kiv = calloc(cnt, sizeof(*kiv)); 1930 if (kiv == NULL) { 1931 free(buf); 1932 return (NULL); 1933 } 1934 bp = buf; 1935 eb = buf + len; 1936 kp = kiv; 1937 /* Pass 2: unpack */ 1938 while (bp < eb) { 1939 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1940 if (kv->kve_structsize == 0) 1941 break; 1942 /* Copy/expand into pre-zeroed buffer */ 1943 memcpy(kp, kv, kv->kve_structsize); 1944 /* Advance to next packed record */ 1945 bp += kv->kve_structsize; 1946 /* Set field size to fixed length, advance */ 1947 kp->kve_structsize = sizeof(*kp); 1948 kp++; 1949 } 1950 free(buf); 1951 *cntp = cnt; 1952 return (kiv); /* Caller must free() return value */ 1953 } 1954 1955 struct kinfo_vmentry * 1956 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, 1957 unsigned int *cntp) 1958 { 1959 1960 switch(procstat->type) { 1961 case PROCSTAT_KVM: 1962 warnx("kvm method is not supported"); 1963 return (NULL); 1964 case PROCSTAT_SYSCTL: 1965 return (kinfo_getvmmap(kp->ki_pid, cntp)); 1966 case PROCSTAT_CORE: 1967 return (kinfo_getvmmap_core(procstat->core, cntp)); 1968 default: 1969 warnx("unknown access method: %d", procstat->type); 1970 return (NULL); 1971 } 1972 } 1973 1974 void 1975 procstat_freevmmap(struct procstat *procstat __unused, 1976 struct kinfo_vmentry *vmmap) 1977 { 1978 1979 free(vmmap); 1980 } 1981 1982 static gid_t * 1983 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) 1984 { 1985 struct proc proc; 1986 struct ucred ucred; 1987 gid_t *groups; 1988 size_t len; 1989 1990 assert(kd != NULL); 1991 assert(kp != NULL); 1992 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 1993 sizeof(proc))) { 1994 warnx("can't read proc struct at %p for pid %d", 1995 kp->ki_paddr, kp->ki_pid); 1996 return (NULL); 1997 } 1998 if (proc.p_ucred == NOCRED) 1999 return (NULL); 2000 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, 2001 sizeof(ucred))) { 2002 warnx("can't read ucred struct at %p for pid %d", 2003 proc.p_ucred, kp->ki_pid); 2004 return (NULL); 2005 } 2006 len = ucred.cr_ngroups * sizeof(gid_t); 2007 groups = malloc(len); 2008 if (groups == NULL) { 2009 warn("malloc(%zu)", len); 2010 return (NULL); 2011 } 2012 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { 2013 warnx("can't read groups at %p for pid %d", 2014 ucred.cr_groups, kp->ki_pid); 2015 free(groups); 2016 return (NULL); 2017 } 2018 *cntp = ucred.cr_ngroups; 2019 return (groups); 2020 } 2021 2022 static gid_t * 2023 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) 2024 { 2025 int mib[4]; 2026 size_t len; 2027 gid_t *groups; 2028 2029 mib[0] = CTL_KERN; 2030 mib[1] = KERN_PROC; 2031 mib[2] = KERN_PROC_GROUPS; 2032 mib[3] = pid; 2033 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); 2034 groups = malloc(len); 2035 if (groups == NULL) { 2036 warn("malloc(%zu)", len); 2037 return (NULL); 2038 } 2039 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) { 2040 warn("sysctl: kern.proc.groups: %d", pid); 2041 free(groups); 2042 return (NULL); 2043 } 2044 *cntp = len / sizeof(gid_t); 2045 return (groups); 2046 } 2047 2048 static gid_t * 2049 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) 2050 { 2051 size_t len; 2052 gid_t *groups; 2053 2054 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); 2055 if (groups == NULL) 2056 return (NULL); 2057 *cntp = len / sizeof(gid_t); 2058 return (groups); 2059 } 2060 2061 gid_t * 2062 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, 2063 unsigned int *cntp) 2064 { 2065 switch(procstat->type) { 2066 case PROCSTAT_KVM: 2067 return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); 2068 case PROCSTAT_SYSCTL: 2069 return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); 2070 case PROCSTAT_CORE: 2071 return (procstat_getgroups_core(procstat->core, cntp)); 2072 default: 2073 warnx("unknown access method: %d", procstat->type); 2074 return (NULL); 2075 } 2076 } 2077 2078 void 2079 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) 2080 { 2081 2082 free(groups); 2083 } 2084 2085 static int 2086 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) 2087 { 2088 struct filedesc fd; 2089 2090 assert(kd != NULL); 2091 assert(kp != NULL); 2092 if (kp->ki_fd == NULL) 2093 return (-1); 2094 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) { 2095 warnx("can't read filedesc at %p for pid %d", kp->ki_fd, 2096 kp->ki_pid); 2097 return (-1); 2098 } 2099 *maskp = fd.fd_cmask; 2100 return (0); 2101 } 2102 2103 static int 2104 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) 2105 { 2106 int error; 2107 int mib[4]; 2108 size_t len; 2109 2110 mib[0] = CTL_KERN; 2111 mib[1] = KERN_PROC; 2112 mib[2] = KERN_PROC_UMASK; 2113 mib[3] = pid; 2114 len = sizeof(*maskp); 2115 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0); 2116 if (error != 0 && errno != ESRCH && errno != EPERM) 2117 warn("sysctl: kern.proc.umask: %d", pid); 2118 return (error); 2119 } 2120 2121 static int 2122 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) 2123 { 2124 size_t len; 2125 unsigned short *buf; 2126 2127 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); 2128 if (buf == NULL) 2129 return (-1); 2130 if (len < sizeof(*maskp)) { 2131 free(buf); 2132 return (-1); 2133 } 2134 *maskp = *buf; 2135 free(buf); 2136 return (0); 2137 } 2138 2139 int 2140 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, 2141 unsigned short *maskp) 2142 { 2143 switch(procstat->type) { 2144 case PROCSTAT_KVM: 2145 return (procstat_getumask_kvm(procstat->kd, kp, maskp)); 2146 case PROCSTAT_SYSCTL: 2147 return (procstat_getumask_sysctl(kp->ki_pid, maskp)); 2148 case PROCSTAT_CORE: 2149 return (procstat_getumask_core(procstat->core, maskp)); 2150 default: 2151 warnx("unknown access method: %d", procstat->type); 2152 return (-1); 2153 } 2154 } 2155 2156 static int 2157 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, 2158 struct rlimit* rlimit) 2159 { 2160 struct proc proc; 2161 unsigned long offset; 2162 2163 assert(kd != NULL); 2164 assert(kp != NULL); 2165 assert(which >= 0 && which < RLIM_NLIMITS); 2166 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2167 sizeof(proc))) { 2168 warnx("can't read proc struct at %p for pid %d", 2169 kp->ki_paddr, kp->ki_pid); 2170 return (-1); 2171 } 2172 if (proc.p_limit == NULL) 2173 return (-1); 2174 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; 2175 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { 2176 warnx("can't read rlimit struct at %p for pid %d", 2177 (void *)offset, kp->ki_pid); 2178 return (-1); 2179 } 2180 return (0); 2181 } 2182 2183 static int 2184 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) 2185 { 2186 int error, name[5]; 2187 size_t len; 2188 2189 name[0] = CTL_KERN; 2190 name[1] = KERN_PROC; 2191 name[2] = KERN_PROC_RLIMIT; 2192 name[3] = pid; 2193 name[4] = which; 2194 len = sizeof(struct rlimit); 2195 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0); 2196 if (error < 0 && errno != ESRCH) { 2197 warn("sysctl: kern.proc.rlimit: %d", pid); 2198 return (-1); 2199 } 2200 if (error < 0 || len != sizeof(struct rlimit)) 2201 return (-1); 2202 return (0); 2203 } 2204 2205 static int 2206 procstat_getrlimit_core(struct procstat_core *core, int which, 2207 struct rlimit* rlimit) 2208 { 2209 size_t len; 2210 struct rlimit* rlimits; 2211 2212 if (which < 0 || which >= RLIM_NLIMITS) { 2213 errno = EINVAL; 2214 warn("getrlimit: which"); 2215 return (-1); 2216 } 2217 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); 2218 if (rlimits == NULL) 2219 return (-1); 2220 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { 2221 free(rlimits); 2222 return (-1); 2223 } 2224 *rlimit = rlimits[which]; 2225 free(rlimits); 2226 return (0); 2227 } 2228 2229 int 2230 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, 2231 struct rlimit* rlimit) 2232 { 2233 switch(procstat->type) { 2234 case PROCSTAT_KVM: 2235 return (procstat_getrlimit_kvm(procstat->kd, kp, which, 2236 rlimit)); 2237 case PROCSTAT_SYSCTL: 2238 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); 2239 case PROCSTAT_CORE: 2240 return (procstat_getrlimit_core(procstat->core, which, rlimit)); 2241 default: 2242 warnx("unknown access method: %d", procstat->type); 2243 return (-1); 2244 } 2245 } 2246 2247 static int 2248 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) 2249 { 2250 int error, name[4]; 2251 size_t len; 2252 2253 name[0] = CTL_KERN; 2254 name[1] = KERN_PROC; 2255 name[2] = KERN_PROC_PATHNAME; 2256 name[3] = pid; 2257 len = maxlen; 2258 error = sysctl(name, nitems(name), pathname, &len, NULL, 0); 2259 if (error != 0 && errno != ESRCH) 2260 warn("sysctl: kern.proc.pathname: %d", pid); 2261 if (len == 0) 2262 pathname[0] = '\0'; 2263 return (error); 2264 } 2265 2266 static int 2267 procstat_getpathname_core(struct procstat_core *core, char *pathname, 2268 size_t maxlen) 2269 { 2270 struct kinfo_file *files; 2271 int cnt, i, result; 2272 2273 files = kinfo_getfile_core(core, &cnt); 2274 if (files == NULL) 2275 return (-1); 2276 result = -1; 2277 for (i = 0; i < cnt; i++) { 2278 if (files[i].kf_fd != KF_FD_TYPE_TEXT) 2279 continue; 2280 strncpy(pathname, files[i].kf_path, maxlen); 2281 result = 0; 2282 break; 2283 } 2284 free(files); 2285 return (result); 2286 } 2287 2288 int 2289 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, 2290 char *pathname, size_t maxlen) 2291 { 2292 switch(procstat->type) { 2293 case PROCSTAT_KVM: 2294 /* XXX: Return empty string. */ 2295 if (maxlen > 0) 2296 pathname[0] = '\0'; 2297 return (0); 2298 case PROCSTAT_SYSCTL: 2299 return (procstat_getpathname_sysctl(kp->ki_pid, pathname, 2300 maxlen)); 2301 case PROCSTAT_CORE: 2302 return (procstat_getpathname_core(procstat->core, pathname, 2303 maxlen)); 2304 default: 2305 warnx("unknown access method: %d", procstat->type); 2306 return (-1); 2307 } 2308 } 2309 2310 static int 2311 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) 2312 { 2313 struct proc proc; 2314 2315 assert(kd != NULL); 2316 assert(kp != NULL); 2317 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2318 sizeof(proc))) { 2319 warnx("can't read proc struct at %p for pid %d", 2320 kp->ki_paddr, kp->ki_pid); 2321 return (-1); 2322 } 2323 *osrelp = proc.p_osrel; 2324 return (0); 2325 } 2326 2327 static int 2328 procstat_getosrel_sysctl(pid_t pid, int *osrelp) 2329 { 2330 int error, name[4]; 2331 size_t len; 2332 2333 name[0] = CTL_KERN; 2334 name[1] = KERN_PROC; 2335 name[2] = KERN_PROC_OSREL; 2336 name[3] = pid; 2337 len = sizeof(*osrelp); 2338 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0); 2339 if (error != 0 && errno != ESRCH) 2340 warn("sysctl: kern.proc.osrel: %d", pid); 2341 return (error); 2342 } 2343 2344 static int 2345 procstat_getosrel_core(struct procstat_core *core, int *osrelp) 2346 { 2347 size_t len; 2348 int *buf; 2349 2350 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); 2351 if (buf == NULL) 2352 return (-1); 2353 if (len < sizeof(*osrelp)) { 2354 free(buf); 2355 return (-1); 2356 } 2357 *osrelp = *buf; 2358 free(buf); 2359 return (0); 2360 } 2361 2362 int 2363 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) 2364 { 2365 switch(procstat->type) { 2366 case PROCSTAT_KVM: 2367 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); 2368 case PROCSTAT_SYSCTL: 2369 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); 2370 case PROCSTAT_CORE: 2371 return (procstat_getosrel_core(procstat->core, osrelp)); 2372 default: 2373 warnx("unknown access method: %d", procstat->type); 2374 return (-1); 2375 } 2376 } 2377 2378 #define PROC_AUXV_MAX 256 2379 2380 #if __ELF_WORD_SIZE == 64 2381 static const char *elf32_sv_names[] = { 2382 "Linux ELF32", 2383 "FreeBSD ELF32", 2384 }; 2385 2386 static int 2387 is_elf32_sysctl(pid_t pid) 2388 { 2389 int error, name[4]; 2390 size_t len, i; 2391 static char sv_name[256]; 2392 2393 name[0] = CTL_KERN; 2394 name[1] = KERN_PROC; 2395 name[2] = KERN_PROC_SV_NAME; 2396 name[3] = pid; 2397 len = sizeof(sv_name); 2398 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0); 2399 if (error != 0 || len == 0) 2400 return (0); 2401 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { 2402 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) 2403 return (1); 2404 } 2405 return (0); 2406 } 2407 2408 static Elf_Auxinfo * 2409 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) 2410 { 2411 Elf_Auxinfo *auxv; 2412 Elf32_Auxinfo *auxv32; 2413 void *ptr; 2414 size_t len; 2415 unsigned int i, count; 2416 int name[4]; 2417 2418 name[0] = CTL_KERN; 2419 name[1] = KERN_PROC; 2420 name[2] = KERN_PROC_AUXV; 2421 name[3] = pid; 2422 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); 2423 auxv = NULL; 2424 auxv32 = malloc(len); 2425 if (auxv32 == NULL) { 2426 warn("malloc(%zu)", len); 2427 goto out; 2428 } 2429 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) { 2430 if (errno != ESRCH && errno != EPERM) 2431 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2432 goto out; 2433 } 2434 count = len / sizeof(Elf_Auxinfo); 2435 auxv = malloc(count * sizeof(Elf_Auxinfo)); 2436 if (auxv == NULL) { 2437 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); 2438 goto out; 2439 } 2440 for (i = 0; i < count; i++) { 2441 /* 2442 * XXX: We expect that values for a_type on a 32-bit platform 2443 * are directly mapped to values on 64-bit one, which is not 2444 * necessarily true. 2445 */ 2446 auxv[i].a_type = auxv32[i].a_type; 2447 ptr = &auxv32[i].a_un; 2448 auxv[i].a_un.a_val = *((uint32_t *)ptr); 2449 } 2450 *cntp = count; 2451 out: 2452 free(auxv32); 2453 return (auxv); 2454 } 2455 #endif /* __ELF_WORD_SIZE == 64 */ 2456 2457 static Elf_Auxinfo * 2458 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) 2459 { 2460 Elf_Auxinfo *auxv; 2461 int name[4]; 2462 size_t len; 2463 2464 #if __ELF_WORD_SIZE == 64 2465 if (is_elf32_sysctl(pid)) 2466 return (procstat_getauxv32_sysctl(pid, cntp)); 2467 #endif 2468 name[0] = CTL_KERN; 2469 name[1] = KERN_PROC; 2470 name[2] = KERN_PROC_AUXV; 2471 name[3] = pid; 2472 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); 2473 auxv = malloc(len); 2474 if (auxv == NULL) { 2475 warn("malloc(%zu)", len); 2476 return (NULL); 2477 } 2478 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) { 2479 if (errno != ESRCH && errno != EPERM) 2480 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2481 free(auxv); 2482 return (NULL); 2483 } 2484 *cntp = len / sizeof(Elf_Auxinfo); 2485 return (auxv); 2486 } 2487 2488 static Elf_Auxinfo * 2489 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) 2490 { 2491 Elf_Auxinfo *auxv; 2492 size_t len; 2493 2494 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); 2495 if (auxv == NULL) 2496 return (NULL); 2497 *cntp = len / sizeof(Elf_Auxinfo); 2498 return (auxv); 2499 } 2500 2501 Elf_Auxinfo * 2502 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, 2503 unsigned int *cntp) 2504 { 2505 switch(procstat->type) { 2506 case PROCSTAT_KVM: 2507 warnx("kvm method is not supported"); 2508 return (NULL); 2509 case PROCSTAT_SYSCTL: 2510 return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); 2511 case PROCSTAT_CORE: 2512 return (procstat_getauxv_core(procstat->core, cntp)); 2513 default: 2514 warnx("unknown access method: %d", procstat->type); 2515 return (NULL); 2516 } 2517 } 2518 2519 void 2520 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) 2521 { 2522 2523 free(auxv); 2524 } 2525 2526 static struct ptrace_lwpinfo * 2527 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp) 2528 { 2529 void *buf; 2530 struct ptrace_lwpinfo *pl; 2531 unsigned int cnt; 2532 size_t len; 2533 2534 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO); 2535 if (cnt == 0) 2536 return (NULL); 2537 2538 len = cnt * sizeof(*pl); 2539 buf = calloc(1, len); 2540 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len); 2541 if (pl == NULL) { 2542 free(buf); 2543 return (NULL); 2544 } 2545 *cntp = len / sizeof(*pl); 2546 return (pl); 2547 } 2548 2549 struct ptrace_lwpinfo * 2550 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp) 2551 { 2552 switch (procstat->type) { 2553 case PROCSTAT_KVM: 2554 warnx("kvm method is not supported"); 2555 return (NULL); 2556 case PROCSTAT_SYSCTL: 2557 warnx("sysctl method is not supported"); 2558 return (NULL); 2559 case PROCSTAT_CORE: 2560 return (procstat_getptlwpinfo_core(procstat->core, cntp)); 2561 default: 2562 warnx("unknown access method: %d", procstat->type); 2563 return (NULL); 2564 } 2565 } 2566 2567 void 2568 procstat_freeptlwpinfo(struct procstat *procstat __unused, 2569 struct ptrace_lwpinfo *pl) 2570 { 2571 free(pl); 2572 } 2573 2574 static struct kinfo_kstack * 2575 procstat_getkstack_sysctl(pid_t pid, int *cntp) 2576 { 2577 struct kinfo_kstack *kkstp; 2578 int error, name[4]; 2579 size_t len; 2580 2581 name[0] = CTL_KERN; 2582 name[1] = KERN_PROC; 2583 name[2] = KERN_PROC_KSTACK; 2584 name[3] = pid; 2585 2586 len = 0; 2587 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 2588 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { 2589 warn("sysctl: kern.proc.kstack: %d", pid); 2590 return (NULL); 2591 } 2592 if (error == -1 && errno == ENOENT) { 2593 warnx("sysctl: kern.proc.kstack unavailable" 2594 " (options DDB or options STACK required in kernel)"); 2595 return (NULL); 2596 } 2597 if (error == -1) 2598 return (NULL); 2599 kkstp = malloc(len); 2600 if (kkstp == NULL) { 2601 warn("malloc(%zu)", len); 2602 return (NULL); 2603 } 2604 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1) { 2605 warn("sysctl: kern.proc.pid: %d", pid); 2606 free(kkstp); 2607 return (NULL); 2608 } 2609 *cntp = len / sizeof(*kkstp); 2610 2611 return (kkstp); 2612 } 2613 2614 struct kinfo_kstack * 2615 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, 2616 unsigned int *cntp) 2617 { 2618 switch(procstat->type) { 2619 case PROCSTAT_KVM: 2620 warnx("kvm method is not supported"); 2621 return (NULL); 2622 case PROCSTAT_SYSCTL: 2623 return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); 2624 case PROCSTAT_CORE: 2625 warnx("core method is not supported"); 2626 return (NULL); 2627 default: 2628 warnx("unknown access method: %d", procstat->type); 2629 return (NULL); 2630 } 2631 } 2632 2633 void 2634 procstat_freekstack(struct procstat *procstat __unused, 2635 struct kinfo_kstack *kkstp) 2636 { 2637 2638 free(kkstp); 2639 } 2640