xref: /freebsd/lib/libprocstat/libprocstat.c (revision 83c0a9e839e2430617ae511cf80e150a8984d414)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 2017 Dell EMC
5  * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
6  * Copyright (c) 1988, 1993
7  *      The Regents of the University of California.  All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #include <sys/cdefs.h>
39 __FBSDID("$FreeBSD$");
40 
41 #include <sys/param.h>
42 #include <sys/elf.h>
43 #include <sys/time.h>
44 #include <sys/resourcevar.h>
45 #define	_WANT_UCRED
46 #include <sys/ucred.h>
47 #undef _WANT_UCRED
48 #include <sys/proc.h>
49 #include <sys/user.h>
50 #include <sys/stat.h>
51 #include <sys/vnode.h>
52 #include <sys/socket.h>
53 #define	_WANT_SOCKET
54 #include <sys/socketvar.h>
55 #include <sys/domain.h>
56 #include <sys/protosw.h>
57 #include <sys/un.h>
58 #define	_WANT_UNPCB
59 #include <sys/unpcb.h>
60 #include <sys/sysctl.h>
61 #include <sys/tty.h>
62 #include <sys/filedesc.h>
63 #include <sys/queue.h>
64 #define	_WANT_FILE
65 #include <sys/file.h>
66 #include <sys/conf.h>
67 #include <sys/ksem.h>
68 #include <sys/mman.h>
69 #include <sys/capsicum.h>
70 #include <sys/ptrace.h>
71 #define	_WANT_MOUNT
72 #include <sys/mount.h>
73 #include <sys/filedesc.h>
74 #include <sys/pipe.h>
75 #include <fs/devfs/devfs.h>
76 #include <fs/devfs/devfs_int.h>
77 #include <nfs/nfsproto.h>
78 #include <nfsclient/nfs.h>
79 #include <nfsclient/nfsnode.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 
85 #include <net/route.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #define	_WANT_INPCB
90 #include <netinet/in_pcb.h>
91 
92 #include <assert.h>
93 #include <ctype.h>
94 #include <err.h>
95 #include <fcntl.h>
96 #include <kvm.h>
97 #include <libutil.h>
98 #include <limits.h>
99 #include <paths.h>
100 #include <pwd.h>
101 #include <stdio.h>
102 #include <stdlib.h>
103 #include <stddef.h>
104 #include <string.h>
105 #include <unistd.h>
106 #include <netdb.h>
107 
108 #include <libprocstat.h>
109 #include "libprocstat_internal.h"
110 #include "common_kvm.h"
111 #include "core.h"
112 
113 int     statfs(const char *, struct statfs *);	/* XXX */
114 
115 #define	PROCSTAT_KVM	1
116 #define	PROCSTAT_SYSCTL	2
117 #define	PROCSTAT_CORE	3
118 
119 static char	**getargv(struct procstat *procstat, struct kinfo_proc *kp,
120     size_t nchr, int env);
121 static char	*getmnton(kvm_t *kd, struct mount *m);
122 static struct kinfo_vmentry *	kinfo_getvmmap_core(struct procstat_core *core,
123     int *cntp);
124 static Elf_Auxinfo	*procstat_getauxv_core(struct procstat_core *core,
125     unsigned int *cntp);
126 static Elf_Auxinfo	*procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
127 static struct filestat_list	*procstat_getfiles_kvm(
128     struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
129 static struct filestat_list	*procstat_getfiles_sysctl(
130     struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
131 static int	procstat_get_pipe_info_sysctl(struct filestat *fst,
132     struct pipestat *pipe, char *errbuf);
133 static int	procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
134     struct pipestat *pipe, char *errbuf);
135 static int	procstat_get_pts_info_sysctl(struct filestat *fst,
136     struct ptsstat *pts, char *errbuf);
137 static int	procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
138     struct ptsstat *pts, char *errbuf);
139 static int	procstat_get_sem_info_sysctl(struct filestat *fst,
140     struct semstat *sem, char *errbuf);
141 static int	procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
142     struct semstat *sem, char *errbuf);
143 static int	procstat_get_shm_info_sysctl(struct filestat *fst,
144     struct shmstat *shm, char *errbuf);
145 static int	procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
146     struct shmstat *shm, char *errbuf);
147 static int	procstat_get_socket_info_sysctl(struct filestat *fst,
148     struct sockstat *sock, char *errbuf);
149 static int	procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
150     struct sockstat *sock, char *errbuf);
151 static int	to_filestat_flags(int flags);
152 static int	procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
153     struct vnstat *vn, char *errbuf);
154 static int	procstat_get_vnode_info_sysctl(struct filestat *fst,
155     struct vnstat *vn, char *errbuf);
156 static gid_t	*procstat_getgroups_core(struct procstat_core *core,
157     unsigned int *count);
158 static gid_t *	procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
159     unsigned int *count);
160 static gid_t	*procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
161 static struct kinfo_kstack	*procstat_getkstack_sysctl(pid_t pid,
162     int *cntp);
163 static int	procstat_getosrel_core(struct procstat_core *core,
164     int *osrelp);
165 static int	procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
166     int *osrelp);
167 static int	procstat_getosrel_sysctl(pid_t pid, int *osrelp);
168 static int	procstat_getpathname_core(struct procstat_core *core,
169     char *pathname, size_t maxlen);
170 static int	procstat_getpathname_sysctl(pid_t pid, char *pathname,
171     size_t maxlen);
172 static int	procstat_getrlimit_core(struct procstat_core *core, int which,
173     struct rlimit* rlimit);
174 static int	procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
175     int which, struct rlimit* rlimit);
176 static int	procstat_getrlimit_sysctl(pid_t pid, int which,
177     struct rlimit* rlimit);
178 static int	procstat_getumask_core(struct procstat_core *core,
179     unsigned short *maskp);
180 static int	procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
181     unsigned short *maskp);
182 static int	procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
183 static int	vntype2psfsttype(int type);
184 
185 void
186 procstat_close(struct procstat *procstat)
187 {
188 
189 	assert(procstat);
190 	if (procstat->type == PROCSTAT_KVM)
191 		kvm_close(procstat->kd);
192 	else if (procstat->type == PROCSTAT_CORE)
193 		procstat_core_close(procstat->core);
194 	procstat_freeargv(procstat);
195 	procstat_freeenvv(procstat);
196 	free(procstat);
197 }
198 
199 struct procstat *
200 procstat_open_sysctl(void)
201 {
202 	struct procstat *procstat;
203 
204 	procstat = calloc(1, sizeof(*procstat));
205 	if (procstat == NULL) {
206 		warn("malloc()");
207 		return (NULL);
208 	}
209 	procstat->type = PROCSTAT_SYSCTL;
210 	return (procstat);
211 }
212 
213 struct procstat *
214 procstat_open_kvm(const char *nlistf, const char *memf)
215 {
216 	struct procstat *procstat;
217 	kvm_t *kd;
218 	char buf[_POSIX2_LINE_MAX];
219 
220 	procstat = calloc(1, sizeof(*procstat));
221 	if (procstat == NULL) {
222 		warn("malloc()");
223 		return (NULL);
224 	}
225 	kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
226 	if (kd == NULL) {
227 		warnx("kvm_openfiles(): %s", buf);
228 		free(procstat);
229 		return (NULL);
230 	}
231 	procstat->type = PROCSTAT_KVM;
232 	procstat->kd = kd;
233 	return (procstat);
234 }
235 
236 struct procstat *
237 procstat_open_core(const char *filename)
238 {
239 	struct procstat *procstat;
240 	struct procstat_core *core;
241 
242 	procstat = calloc(1, sizeof(*procstat));
243 	if (procstat == NULL) {
244 		warn("malloc()");
245 		return (NULL);
246 	}
247 	core = procstat_core_open(filename);
248 	if (core == NULL) {
249 		free(procstat);
250 		return (NULL);
251 	}
252 	procstat->type = PROCSTAT_CORE;
253 	procstat->core = core;
254 	return (procstat);
255 }
256 
257 struct kinfo_proc *
258 procstat_getprocs(struct procstat *procstat, int what, int arg,
259     unsigned int *count)
260 {
261 	struct kinfo_proc *p0, *p;
262 	size_t len, olen;
263 	int name[4];
264 	int cnt;
265 	int error;
266 
267 	assert(procstat);
268 	assert(count);
269 	p = NULL;
270 	if (procstat->type == PROCSTAT_KVM) {
271 		*count = 0;
272 		p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
273 		if (p0 == NULL || cnt <= 0)
274 			return (NULL);
275 		*count = cnt;
276 		len = *count * sizeof(*p);
277 		p = malloc(len);
278 		if (p == NULL) {
279 			warnx("malloc(%zu)", len);
280 			goto fail;
281 		}
282 		bcopy(p0, p, len);
283 		return (p);
284 	} else if (procstat->type == PROCSTAT_SYSCTL) {
285 		len = 0;
286 		name[0] = CTL_KERN;
287 		name[1] = KERN_PROC;
288 		name[2] = what;
289 		name[3] = arg;
290 		error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
291 		if (error < 0 && errno != EPERM) {
292 			warn("sysctl(kern.proc)");
293 			goto fail;
294 		}
295 		if (len == 0) {
296 			warnx("no processes?");
297 			goto fail;
298 		}
299 		do {
300 			len += len / 10;
301 			p = reallocf(p, len);
302 			if (p == NULL) {
303 				warnx("reallocf(%zu)", len);
304 				goto fail;
305 			}
306 			olen = len;
307 			error = sysctl(name, nitems(name), p, &len, NULL, 0);
308 		} while (error < 0 && errno == ENOMEM && olen == len);
309 		if (error < 0 && errno != EPERM) {
310 			warn("sysctl(kern.proc)");
311 			goto fail;
312 		}
313 		/* Perform simple consistency checks. */
314 		if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
315 			warnx("kinfo_proc structure size mismatch (len = %zu)", len);
316 			goto fail;
317 		}
318 		*count = len / sizeof(*p);
319 		return (p);
320 	} else if (procstat->type == PROCSTAT_CORE) {
321 		p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
322 		    &len);
323 		if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
324 			warnx("kinfo_proc structure size mismatch");
325 			goto fail;
326 		}
327 		*count = len / sizeof(*p);
328 		return (p);
329 	} else {
330 		warnx("unknown access method: %d", procstat->type);
331 		return (NULL);
332 	}
333 fail:
334 	if (p)
335 		free(p);
336 	return (NULL);
337 }
338 
339 void
340 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
341 {
342 
343 	if (p != NULL)
344 		free(p);
345 	p = NULL;
346 }
347 
348 struct filestat_list *
349 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
350 {
351 
352 	switch(procstat->type) {
353 	case PROCSTAT_KVM:
354 		return (procstat_getfiles_kvm(procstat, kp, mmapped));
355 	case PROCSTAT_SYSCTL:
356 	case PROCSTAT_CORE:
357 		return (procstat_getfiles_sysctl(procstat, kp, mmapped));
358 	default:
359 		warnx("unknown access method: %d", procstat->type);
360 		return (NULL);
361 	}
362 }
363 
364 void
365 procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
366 {
367 	struct filestat *fst, *tmp;
368 
369 	STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
370 		if (fst->fs_path != NULL)
371 			free(fst->fs_path);
372 		free(fst);
373 	}
374 	free(head);
375 	if (procstat->vmentries != NULL) {
376 		free(procstat->vmentries);
377 		procstat->vmentries = NULL;
378 	}
379 	if (procstat->files != NULL) {
380 		free(procstat->files);
381 		procstat->files = NULL;
382 	}
383 }
384 
385 static struct filestat *
386 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
387     int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
388 {
389 	struct filestat *entry;
390 
391 	entry = calloc(1, sizeof(*entry));
392 	if (entry == NULL) {
393 		warn("malloc()");
394 		return (NULL);
395 	}
396 	entry->fs_typedep = typedep;
397 	entry->fs_fflags = fflags;
398 	entry->fs_uflags = uflags;
399 	entry->fs_fd = fd;
400 	entry->fs_type = type;
401 	entry->fs_ref_count = refcount;
402 	entry->fs_offset = offset;
403 	entry->fs_path = path;
404 	if (cap_rightsp != NULL)
405 		entry->fs_cap_rights = *cap_rightsp;
406 	else
407 		cap_rights_init(&entry->fs_cap_rights);
408 	return (entry);
409 }
410 
411 static struct vnode *
412 getctty(kvm_t *kd, struct kinfo_proc *kp)
413 {
414 	struct pgrp pgrp;
415 	struct proc proc;
416 	struct session sess;
417 	int error;
418 
419 	assert(kp);
420 	error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
421 	    sizeof(proc));
422 	if (error == 0) {
423 		warnx("can't read proc struct at %p for pid %d",
424 		    kp->ki_paddr, kp->ki_pid);
425 		return (NULL);
426 	}
427 	if (proc.p_pgrp == NULL)
428 		return (NULL);
429 	error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
430 	    sizeof(pgrp));
431 	if (error == 0) {
432 		warnx("can't read pgrp struct at %p for pid %d",
433 		    proc.p_pgrp, kp->ki_pid);
434 		return (NULL);
435 	}
436 	error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
437 	    sizeof(sess));
438 	if (error == 0) {
439 		warnx("can't read session struct at %p for pid %d",
440 		    pgrp.pg_session, kp->ki_pid);
441 		return (NULL);
442 	}
443 	return (sess.s_ttyvp);
444 }
445 
446 static int
447 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest)
448 {
449 	kvm_t *kd;
450 
451 	kd = (kvm_t *)token;
452 	return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest)));
453 }
454 
455 static struct filestat_list *
456 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
457 {
458 	struct file file;
459 	struct filedesc filed;
460 	struct pwddesc pathsd;
461 	struct fdescenttbl *fdt;
462 	struct pwd pwd;
463 	unsigned long pwd_addr;
464 	struct vm_map_entry vmentry;
465 	struct vm_object object;
466 	struct vmspace vmspace;
467 	vm_map_entry_t entryp;
468 	vm_object_t objp;
469 	struct vnode *vp;
470 	struct filestat *entry;
471 	struct filestat_list *head;
472 	kvm_t *kd;
473 	void *data;
474 	int fflags;
475 	unsigned int i;
476 	int prot, type;
477 	size_t fdt_size;
478 	unsigned int nfiles;
479 	bool haspwd;
480 
481 	assert(procstat);
482 	kd = procstat->kd;
483 	if (kd == NULL)
484 		return (NULL);
485 	if (kp->ki_fd == NULL || kp->ki_pd == NULL)
486 		return (NULL);
487 	if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
488 	    sizeof(filed))) {
489 		warnx("can't read filedesc at %p", (void *)kp->ki_fd);
490 		return (NULL);
491 	}
492 	if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd,
493 	    sizeof(pathsd))) {
494 		warnx("can't read pwddesc at %p", (void *)kp->ki_pd);
495 		return (NULL);
496 	}
497 	haspwd = false;
498 	pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd));
499 	if (pwd_addr != 0) {
500 		if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) {
501 			warnx("can't read fd_pwd at %p", (void *)pwd_addr);
502 			return (NULL);
503 		}
504 		haspwd = true;
505 	}
506 
507 	/*
508 	 * Allocate list head.
509 	 */
510 	head = malloc(sizeof(*head));
511 	if (head == NULL)
512 		return (NULL);
513 	STAILQ_INIT(head);
514 
515 	/* root directory vnode, if one. */
516 	if (haspwd) {
517 		if (pwd.pwd_rdir) {
518 			entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1,
519 			    PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL);
520 			if (entry != NULL)
521 				STAILQ_INSERT_TAIL(head, entry, next);
522 		}
523 		/* current working directory vnode. */
524 		if (pwd.pwd_cdir) {
525 			entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1,
526 			    PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL);
527 			if (entry != NULL)
528 				STAILQ_INSERT_TAIL(head, entry, next);
529 		}
530 		/* jail root, if any. */
531 		if (pwd.pwd_jdir) {
532 			entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1,
533 			    PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL);
534 			if (entry != NULL)
535 				STAILQ_INSERT_TAIL(head, entry, next);
536 		}
537 	}
538 	/* ktrace vnode, if one */
539 	if (kp->ki_tracep) {
540 		entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
541 		    PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
542 		    PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL);
543 		if (entry != NULL)
544 			STAILQ_INSERT_TAIL(head, entry, next);
545 	}
546 	/* text vnode, if one */
547 	if (kp->ki_textvp) {
548 		entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
549 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL);
550 		if (entry != NULL)
551 			STAILQ_INSERT_TAIL(head, entry, next);
552 	}
553 	/* Controlling terminal. */
554 	if ((vp = getctty(kd, kp)) != NULL) {
555 		entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
556 		    PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
557 		    PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL);
558 		if (entry != NULL)
559 			STAILQ_INSERT_TAIL(head, entry, next);
560 	}
561 
562 	if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles,
563 	    sizeof(nfiles))) {
564 		warnx("can't read fd_files at %p", (void *)filed.fd_files);
565 		return (NULL);
566 	}
567 
568 	fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent);
569 	fdt = malloc(fdt_size);
570 	if (fdt == NULL) {
571 		warn("malloc(%zu)", fdt_size);
572 		goto do_mmapped;
573 	}
574 	if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) {
575 		warnx("cannot read file structures at %p", (void *)filed.fd_files);
576 		free(fdt);
577 		goto do_mmapped;
578 	}
579 	for (i = 0; i < nfiles; i++) {
580 		if (fdt->fdt_ofiles[i].fde_file == NULL) {
581 			continue;
582 		}
583 		if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file,
584 		    sizeof(struct file))) {
585 			warnx("can't read file %d at %p", i,
586 			    (void *)fdt->fdt_ofiles[i].fde_file);
587 			continue;
588 		}
589 		switch (file.f_type) {
590 		case DTYPE_VNODE:
591 			type = PS_FST_TYPE_VNODE;
592 			data = file.f_vnode;
593 			break;
594 		case DTYPE_SOCKET:
595 			type = PS_FST_TYPE_SOCKET;
596 			data = file.f_data;
597 			break;
598 		case DTYPE_PIPE:
599 			type = PS_FST_TYPE_PIPE;
600 			data = file.f_data;
601 			break;
602 		case DTYPE_FIFO:
603 			type = PS_FST_TYPE_FIFO;
604 			data = file.f_vnode;
605 			break;
606 #ifdef DTYPE_PTS
607 		case DTYPE_PTS:
608 			type = PS_FST_TYPE_PTS;
609 			data = file.f_data;
610 			break;
611 #endif
612 		case DTYPE_SEM:
613 			type = PS_FST_TYPE_SEM;
614 			data = file.f_data;
615 			break;
616 		case DTYPE_SHM:
617 			type = PS_FST_TYPE_SHM;
618 			data = file.f_data;
619 			break;
620 		case DTYPE_PROCDESC:
621 			type = PS_FST_TYPE_PROCDESC;
622 			data = file.f_data;
623 			break;
624 		case DTYPE_DEV:
625 			type = PS_FST_TYPE_DEV;
626 			data = file.f_data;
627 			break;
628 		case DTYPE_EVENTFD:
629 			type = PS_FST_TYPE_EVENTFD;
630 			data = file.f_data;
631 			break;
632 		default:
633 			continue;
634 		}
635 		/* XXXRW: No capability rights support for kvm yet. */
636 		entry = filestat_new_entry(data, type, i,
637 		    to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL);
638 		if (entry != NULL)
639 			STAILQ_INSERT_TAIL(head, entry, next);
640 	}
641 	free(fdt);
642 
643 do_mmapped:
644 
645 	/*
646 	 * Process mmapped files if requested.
647 	 */
648 	if (mmapped) {
649 		if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
650 		    sizeof(vmspace))) {
651 			warnx("can't read vmspace at %p",
652 			    (void *)kp->ki_vmspace);
653 			goto exit;
654 		}
655 
656 		vmentry = vmspace.vm_map.header;
657 		for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader);
658 		    entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header;
659 		     entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) {
660 			if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
661 				continue;
662 			if ((objp = vmentry.object.vm_object) == NULL)
663 				continue;
664 			for (; objp; objp = object.backing_object) {
665 				if (!kvm_read_all(kd, (unsigned long)objp,
666 				    &object, sizeof(object))) {
667 					warnx("can't read vm_object at %p",
668 					    (void *)objp);
669 					break;
670 				}
671 			}
672 
673 			/* We want only vnode objects. */
674 			if (object.type != OBJT_VNODE)
675 				continue;
676 
677 			prot = vmentry.protection;
678 			fflags = 0;
679 			if (prot & VM_PROT_READ)
680 				fflags = PS_FST_FFLAG_READ;
681 			if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
682 			    prot & VM_PROT_WRITE)
683 				fflags |= PS_FST_FFLAG_WRITE;
684 
685 			/*
686 			 * Create filestat entry.
687 			 */
688 			entry = filestat_new_entry(object.handle,
689 			    PS_FST_TYPE_VNODE, -1, fflags,
690 			    PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL);
691 			if (entry != NULL)
692 				STAILQ_INSERT_TAIL(head, entry, next);
693 		}
694 		if (entryp == NULL)
695 			warnx("can't read vm_map_entry");
696 	}
697 exit:
698 	return (head);
699 }
700 
701 /*
702  * kinfo types to filestat translation.
703  */
704 static int
705 kinfo_type2fst(int kftype)
706 {
707 	static struct {
708 		int	kf_type;
709 		int	fst_type;
710 	} kftypes2fst[] = {
711 		{ KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC },
712 		{ KF_TYPE_DEV, PS_FST_TYPE_DEV },
713 		{ KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
714 		{ KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
715 		{ KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
716 		{ KF_TYPE_NONE, PS_FST_TYPE_NONE },
717 		{ KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
718 		{ KF_TYPE_PTS, PS_FST_TYPE_PTS },
719 		{ KF_TYPE_SEM, PS_FST_TYPE_SEM },
720 		{ KF_TYPE_SHM, PS_FST_TYPE_SHM },
721 		{ KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
722 		{ KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
723 		{ KF_TYPE_EVENTFD, PS_FST_TYPE_EVENTFD },
724 		{ KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
725 	};
726 #define NKFTYPES	(sizeof(kftypes2fst) / sizeof(*kftypes2fst))
727 	unsigned int i;
728 
729 	for (i = 0; i < NKFTYPES; i++)
730 		if (kftypes2fst[i].kf_type == kftype)
731 			break;
732 	if (i == NKFTYPES)
733 		return (PS_FST_TYPE_UNKNOWN);
734 	return (kftypes2fst[i].fst_type);
735 }
736 
737 /*
738  * kinfo flags to filestat translation.
739  */
740 static int
741 kinfo_fflags2fst(int kfflags)
742 {
743 	static struct {
744 		int	kf_flag;
745 		int	fst_flag;
746 	} kfflags2fst[] = {
747 		{ KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
748 		{ KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
749 		{ KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
750 		{ KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
751 		{ KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
752 		{ KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
753 		{ KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
754 		{ KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
755 		{ KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
756 		{ KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
757 		{ KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
758 		{ KF_FLAG_READ, PS_FST_FFLAG_READ },
759 		{ KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
760 		{ KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
761 		{ KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
762 	};
763 #define NKFFLAGS	(sizeof(kfflags2fst) / sizeof(*kfflags2fst))
764 	unsigned int i;
765 	int flags;
766 
767 	flags = 0;
768 	for (i = 0; i < NKFFLAGS; i++)
769 		if ((kfflags & kfflags2fst[i].kf_flag) != 0)
770 			flags |= kfflags2fst[i].fst_flag;
771 	return (flags);
772 }
773 
774 static int
775 kinfo_uflags2fst(int fd)
776 {
777 
778 	switch (fd) {
779 	case KF_FD_TYPE_CTTY:
780 		return (PS_FST_UFLAG_CTTY);
781 	case KF_FD_TYPE_CWD:
782 		return (PS_FST_UFLAG_CDIR);
783 	case KF_FD_TYPE_JAIL:
784 		return (PS_FST_UFLAG_JAIL);
785 	case KF_FD_TYPE_TEXT:
786 		return (PS_FST_UFLAG_TEXT);
787 	case KF_FD_TYPE_TRACE:
788 		return (PS_FST_UFLAG_TRACE);
789 	case KF_FD_TYPE_ROOT:
790 		return (PS_FST_UFLAG_RDIR);
791 	}
792 	return (0);
793 }
794 
795 static struct kinfo_file *
796 kinfo_getfile_core(struct procstat_core *core, int *cntp)
797 {
798 	int cnt;
799 	size_t len;
800 	char *buf, *bp, *eb;
801 	struct kinfo_file *kif, *kp, *kf;
802 
803 	buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
804 	if (buf == NULL)
805 		return (NULL);
806 	/*
807 	 * XXXMG: The code below is just copy&past from libutil.
808 	 * The code duplication can be avoided if libutil
809 	 * is extended to provide something like:
810 	 *   struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
811 	 *       size_t len, int *cntp);
812 	 */
813 
814 	/* Pass 1: count items */
815 	cnt = 0;
816 	bp = buf;
817 	eb = buf + len;
818 	while (bp < eb) {
819 		kf = (struct kinfo_file *)(uintptr_t)bp;
820 		if (kf->kf_structsize == 0)
821 			break;
822 		bp += kf->kf_structsize;
823 		cnt++;
824 	}
825 
826 	kif = calloc(cnt, sizeof(*kif));
827 	if (kif == NULL) {
828 		free(buf);
829 		return (NULL);
830 	}
831 	bp = buf;
832 	eb = buf + len;
833 	kp = kif;
834 	/* Pass 2: unpack */
835 	while (bp < eb) {
836 		kf = (struct kinfo_file *)(uintptr_t)bp;
837 		if (kf->kf_structsize == 0)
838 			break;
839 		/* Copy/expand into pre-zeroed buffer */
840 		memcpy(kp, kf, kf->kf_structsize);
841 		/* Advance to next packed record */
842 		bp += kf->kf_structsize;
843 		/* Set field size to fixed length, advance */
844 		kp->kf_structsize = sizeof(*kp);
845 		kp++;
846 	}
847 	free(buf);
848 	*cntp = cnt;
849 	return (kif);	/* Caller must free() return value */
850 }
851 
852 static struct filestat_list *
853 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
854     int mmapped)
855 {
856 	struct kinfo_file *kif, *files;
857 	struct kinfo_vmentry *kve, *vmentries;
858 	struct filestat_list *head;
859 	struct filestat *entry;
860 	char *path;
861 	off_t offset;
862 	int cnt, fd, fflags;
863 	int i, type, uflags;
864 	int refcount;
865 	cap_rights_t cap_rights;
866 
867 	assert(kp);
868 	switch (procstat->type) {
869 	case PROCSTAT_SYSCTL:
870 		files = kinfo_getfile(kp->ki_pid, &cnt);
871 		break;
872 	case PROCSTAT_CORE:
873 		files = kinfo_getfile_core(procstat->core, &cnt);
874 		break;
875 	default:
876 		assert(!"invalid type");
877 	}
878 	if (files == NULL && errno != EPERM) {
879 		warn("kinfo_getfile()");
880 		return (NULL);
881 	}
882 	procstat->files = files;
883 
884 	/*
885 	 * Allocate list head.
886 	 */
887 	head = malloc(sizeof(*head));
888 	if (head == NULL)
889 		return (NULL);
890 	STAILQ_INIT(head);
891 	for (i = 0; i < cnt; i++) {
892 		kif = &files[i];
893 
894 		type = kinfo_type2fst(kif->kf_type);
895 		fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
896 		fflags = kinfo_fflags2fst(kif->kf_flags);
897 		uflags = kinfo_uflags2fst(kif->kf_fd);
898 		refcount = kif->kf_ref_count;
899 		offset = kif->kf_offset;
900 		if (*kif->kf_path != '\0')
901 			path = strdup(kif->kf_path);
902 		else
903 			path = NULL;
904 		cap_rights = kif->kf_cap_rights;
905 
906 		/*
907 		 * Create filestat entry.
908 		 */
909 		entry = filestat_new_entry(kif, type, fd, fflags, uflags,
910 		    refcount, offset, path, &cap_rights);
911 		if (entry != NULL)
912 			STAILQ_INSERT_TAIL(head, entry, next);
913 	}
914 	if (mmapped != 0) {
915 		vmentries = procstat_getvmmap(procstat, kp, &cnt);
916 		procstat->vmentries = vmentries;
917 		if (vmentries == NULL || cnt == 0)
918 			goto fail;
919 		for (i = 0; i < cnt; i++) {
920 			kve = &vmentries[i];
921 			if (kve->kve_type != KVME_TYPE_VNODE)
922 				continue;
923 			fflags = 0;
924 			if (kve->kve_protection & KVME_PROT_READ)
925 				fflags = PS_FST_FFLAG_READ;
926 			if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
927 			    kve->kve_protection & KVME_PROT_WRITE)
928 				fflags |= PS_FST_FFLAG_WRITE;
929 			offset = kve->kve_offset;
930 			refcount = kve->kve_ref_count;
931 			if (*kve->kve_path != '\0')
932 				path = strdup(kve->kve_path);
933 			else
934 				path = NULL;
935 			entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
936 			    fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
937 			    NULL);
938 			if (entry != NULL)
939 				STAILQ_INSERT_TAIL(head, entry, next);
940 		}
941 	}
942 fail:
943 	return (head);
944 }
945 
946 int
947 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
948     struct pipestat *ps, char *errbuf)
949 {
950 
951 	assert(ps);
952 	if (procstat->type == PROCSTAT_KVM) {
953 		return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
954 		    errbuf));
955 	} else if (procstat->type == PROCSTAT_SYSCTL ||
956 		procstat->type == PROCSTAT_CORE) {
957 		return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
958 	} else {
959 		warnx("unknown access method: %d", procstat->type);
960 		if (errbuf != NULL)
961 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
962 		return (1);
963 	}
964 }
965 
966 static int
967 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
968     struct pipestat *ps, char *errbuf)
969 {
970 	struct pipe pi;
971 	void *pipep;
972 
973 	assert(kd);
974 	assert(ps);
975 	assert(fst);
976 	bzero(ps, sizeof(*ps));
977 	pipep = fst->fs_typedep;
978 	if (pipep == NULL)
979 		goto fail;
980 	if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
981 		warnx("can't read pipe at %p", (void *)pipep);
982 		goto fail;
983 	}
984 	ps->addr = (uintptr_t)pipep;
985 	ps->peer = (uintptr_t)pi.pipe_peer;
986 	ps->buffer_cnt = pi.pipe_buffer.cnt;
987 	return (0);
988 
989 fail:
990 	if (errbuf != NULL)
991 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
992 	return (1);
993 }
994 
995 static int
996 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
997     char *errbuf __unused)
998 {
999 	struct kinfo_file *kif;
1000 
1001 	assert(ps);
1002 	assert(fst);
1003 	bzero(ps, sizeof(*ps));
1004 	kif = fst->fs_typedep;
1005 	if (kif == NULL)
1006 		return (1);
1007 	ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
1008 	ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
1009 	ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
1010 	return (0);
1011 }
1012 
1013 int
1014 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
1015     struct ptsstat *pts, char *errbuf)
1016 {
1017 
1018 	assert(pts);
1019 	if (procstat->type == PROCSTAT_KVM) {
1020 		return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
1021 		    errbuf));
1022 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1023 		procstat->type == PROCSTAT_CORE) {
1024 		return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
1025 	} else {
1026 		warnx("unknown access method: %d", procstat->type);
1027 		if (errbuf != NULL)
1028 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1029 		return (1);
1030 	}
1031 }
1032 
1033 static int
1034 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
1035     struct ptsstat *pts, char *errbuf)
1036 {
1037 	struct tty tty;
1038 	void *ttyp;
1039 
1040 	assert(kd);
1041 	assert(pts);
1042 	assert(fst);
1043 	bzero(pts, sizeof(*pts));
1044 	ttyp = fst->fs_typedep;
1045 	if (ttyp == NULL)
1046 		goto fail;
1047 	if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
1048 		warnx("can't read tty at %p", (void *)ttyp);
1049 		goto fail;
1050 	}
1051 	pts->dev = dev2udev(kd, tty.t_dev);
1052 	(void)kdevtoname(kd, tty.t_dev, pts->devname);
1053 	return (0);
1054 
1055 fail:
1056 	if (errbuf != NULL)
1057 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1058 	return (1);
1059 }
1060 
1061 static int
1062 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
1063     char *errbuf __unused)
1064 {
1065 	struct kinfo_file *kif;
1066 
1067 	assert(pts);
1068 	assert(fst);
1069 	bzero(pts, sizeof(*pts));
1070 	kif = fst->fs_typedep;
1071 	if (kif == NULL)
1072 		return (0);
1073 	pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
1074 	strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
1075 	return (0);
1076 }
1077 
1078 int
1079 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
1080     struct semstat *sem, char *errbuf)
1081 {
1082 
1083 	assert(sem);
1084 	if (procstat->type == PROCSTAT_KVM) {
1085 		return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
1086 		    errbuf));
1087 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1088 	    procstat->type == PROCSTAT_CORE) {
1089 		return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
1090 	} else {
1091 		warnx("unknown access method: %d", procstat->type);
1092 		if (errbuf != NULL)
1093 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1094 		return (1);
1095 	}
1096 }
1097 
1098 static int
1099 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
1100     struct semstat *sem, char *errbuf)
1101 {
1102 	struct ksem ksem;
1103 	void *ksemp;
1104 	char *path;
1105 	int i;
1106 
1107 	assert(kd);
1108 	assert(sem);
1109 	assert(fst);
1110 	bzero(sem, sizeof(*sem));
1111 	ksemp = fst->fs_typedep;
1112 	if (ksemp == NULL)
1113 		goto fail;
1114 	if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
1115 	    sizeof(struct ksem))) {
1116 		warnx("can't read ksem at %p", (void *)ksemp);
1117 		goto fail;
1118 	}
1119 	sem->mode = S_IFREG | ksem.ks_mode;
1120 	sem->value = ksem.ks_value;
1121 	if (fst->fs_path == NULL && ksem.ks_path != NULL) {
1122 		path = malloc(MAXPATHLEN);
1123 		for (i = 0; i < MAXPATHLEN - 1; i++) {
1124 			if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
1125 			    path + i, 1))
1126 				break;
1127 			if (path[i] == '\0')
1128 				break;
1129 		}
1130 		path[i] = '\0';
1131 		if (i == 0)
1132 			free(path);
1133 		else
1134 			fst->fs_path = path;
1135 	}
1136 	return (0);
1137 
1138 fail:
1139 	if (errbuf != NULL)
1140 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1141 	return (1);
1142 }
1143 
1144 static int
1145 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
1146     char *errbuf __unused)
1147 {
1148 	struct kinfo_file *kif;
1149 
1150 	assert(sem);
1151 	assert(fst);
1152 	bzero(sem, sizeof(*sem));
1153 	kif = fst->fs_typedep;
1154 	if (kif == NULL)
1155 		return (0);
1156 	sem->value = kif->kf_un.kf_sem.kf_sem_value;
1157 	sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
1158 	return (0);
1159 }
1160 
1161 int
1162 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
1163     struct shmstat *shm, char *errbuf)
1164 {
1165 
1166 	assert(shm);
1167 	if (procstat->type == PROCSTAT_KVM) {
1168 		return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
1169 		    errbuf));
1170 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1171 	    procstat->type == PROCSTAT_CORE) {
1172 		return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
1173 	} else {
1174 		warnx("unknown access method: %d", procstat->type);
1175 		if (errbuf != NULL)
1176 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1177 		return (1);
1178 	}
1179 }
1180 
1181 static int
1182 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
1183     struct shmstat *shm, char *errbuf)
1184 {
1185 	struct shmfd shmfd;
1186 	void *shmfdp;
1187 	char *path;
1188 	int i;
1189 
1190 	assert(kd);
1191 	assert(shm);
1192 	assert(fst);
1193 	bzero(shm, sizeof(*shm));
1194 	shmfdp = fst->fs_typedep;
1195 	if (shmfdp == NULL)
1196 		goto fail;
1197 	if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
1198 	    sizeof(struct shmfd))) {
1199 		warnx("can't read shmfd at %p", (void *)shmfdp);
1200 		goto fail;
1201 	}
1202 	shm->mode = S_IFREG | shmfd.shm_mode;
1203 	shm->size = shmfd.shm_size;
1204 	if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
1205 		path = malloc(MAXPATHLEN);
1206 		for (i = 0; i < MAXPATHLEN - 1; i++) {
1207 			if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
1208 			    path + i, 1))
1209 				break;
1210 			if (path[i] == '\0')
1211 				break;
1212 		}
1213 		path[i] = '\0';
1214 		if (i == 0)
1215 			free(path);
1216 		else
1217 			fst->fs_path = path;
1218 	}
1219 	return (0);
1220 
1221 fail:
1222 	if (errbuf != NULL)
1223 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1224 	return (1);
1225 }
1226 
1227 static int
1228 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
1229     char *errbuf __unused)
1230 {
1231 	struct kinfo_file *kif;
1232 
1233 	assert(shm);
1234 	assert(fst);
1235 	bzero(shm, sizeof(*shm));
1236 	kif = fst->fs_typedep;
1237 	if (kif == NULL)
1238 		return (0);
1239 	shm->size = kif->kf_un.kf_file.kf_file_size;
1240 	shm->mode = kif->kf_un.kf_file.kf_file_mode;
1241 	return (0);
1242 }
1243 
1244 int
1245 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
1246     struct vnstat *vn, char *errbuf)
1247 {
1248 
1249 	assert(vn);
1250 	if (procstat->type == PROCSTAT_KVM) {
1251 		return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
1252 		    errbuf));
1253 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1254 		procstat->type == PROCSTAT_CORE) {
1255 		return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
1256 	} else {
1257 		warnx("unknown access method: %d", procstat->type);
1258 		if (errbuf != NULL)
1259 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1260 		return (1);
1261 	}
1262 }
1263 
1264 static int
1265 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
1266     struct vnstat *vn, char *errbuf)
1267 {
1268 	/* Filesystem specific handlers. */
1269 	#define FSTYPE(fst)     {#fst, fst##_filestat}
1270 	struct {
1271 		const char	*tag;
1272 		int		(*handler)(kvm_t *kd, struct vnode *vp,
1273 		    struct vnstat *vn);
1274 	} fstypes[] = {
1275 		FSTYPE(devfs),
1276 		FSTYPE(isofs),
1277 		FSTYPE(msdosfs),
1278 		FSTYPE(nfs),
1279 		FSTYPE(smbfs),
1280 		FSTYPE(udf),
1281 		FSTYPE(ufs),
1282 #ifdef LIBPROCSTAT_ZFS
1283 		FSTYPE(zfs),
1284 #endif
1285 	};
1286 #define	NTYPES	(sizeof(fstypes) / sizeof(*fstypes))
1287 	struct vnode vnode;
1288 	char tagstr[12];
1289 	void *vp;
1290 	int error;
1291 	unsigned int i;
1292 
1293 	assert(kd);
1294 	assert(vn);
1295 	assert(fst);
1296 	vp = fst->fs_typedep;
1297 	if (vp == NULL)
1298 		goto fail;
1299 	error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
1300 	if (error == 0) {
1301 		warnx("can't read vnode at %p", (void *)vp);
1302 		goto fail;
1303 	}
1304 	bzero(vn, sizeof(*vn));
1305 	vn->vn_type = vntype2psfsttype(vnode.v_type);
1306 	if (vnode.v_type == VNON || vnode.v_type == VBAD)
1307 		return (0);
1308 	error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name,
1309 	    tagstr, sizeof(tagstr));
1310 	if (error == 0) {
1311 		warnx("can't read lo_name at %p", (void *)vp);
1312 		goto fail;
1313 	}
1314 	tagstr[sizeof(tagstr) - 1] = '\0';
1315 
1316 	/*
1317 	 * Find appropriate handler.
1318 	 */
1319 	for (i = 0; i < NTYPES; i++)
1320 		if (!strcmp(fstypes[i].tag, tagstr)) {
1321 			if (fstypes[i].handler(kd, &vnode, vn) != 0) {
1322 				goto fail;
1323 			}
1324 			break;
1325 		}
1326 	if (i == NTYPES) {
1327 		if (errbuf != NULL)
1328 			snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
1329 		return (1);
1330 	}
1331 	vn->vn_mntdir = getmnton(kd, vnode.v_mount);
1332 	if ((vnode.v_type == VBLK || vnode.v_type == VCHR) &&
1333 	    vnode.v_rdev != NULL){
1334 		vn->vn_dev = dev2udev(kd, vnode.v_rdev);
1335 		(void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
1336 	} else {
1337 		vn->vn_dev = -1;
1338 	}
1339 	return (0);
1340 
1341 fail:
1342 	if (errbuf != NULL)
1343 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1344 	return (1);
1345 }
1346 
1347 /*
1348  * kinfo vnode type to filestat translation.
1349  */
1350 static int
1351 kinfo_vtype2fst(int kfvtype)
1352 {
1353 	static struct {
1354 		int	kf_vtype;
1355 		int	fst_vtype;
1356 	} kfvtypes2fst[] = {
1357 		{ KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
1358 		{ KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
1359 		{ KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
1360 		{ KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
1361 		{ KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
1362 		{ KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
1363 		{ KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
1364 		{ KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
1365 		{ KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
1366 	};
1367 #define	NKFVTYPES	(sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
1368 	unsigned int i;
1369 
1370 	for (i = 0; i < NKFVTYPES; i++)
1371 		if (kfvtypes2fst[i].kf_vtype == kfvtype)
1372 			break;
1373 	if (i == NKFVTYPES)
1374 		return (PS_FST_VTYPE_UNKNOWN);
1375 	return (kfvtypes2fst[i].fst_vtype);
1376 }
1377 
1378 static int
1379 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
1380     char *errbuf)
1381 {
1382 	struct statfs stbuf;
1383 	struct kinfo_file *kif;
1384 	struct kinfo_vmentry *kve;
1385 	char *name, *path;
1386 	uint64_t fileid;
1387 	uint64_t size;
1388 	uint64_t fsid;
1389 	uint64_t rdev;
1390 	uint16_t mode;
1391 	int vntype;
1392 	int status;
1393 
1394 	assert(fst);
1395 	assert(vn);
1396 	bzero(vn, sizeof(*vn));
1397 	if (fst->fs_typedep == NULL)
1398 		return (1);
1399 	if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
1400 		kve = fst->fs_typedep;
1401 		fileid = kve->kve_vn_fileid;
1402 		fsid = kve->kve_vn_fsid;
1403 		mode = kve->kve_vn_mode;
1404 		path = kve->kve_path;
1405 		rdev = kve->kve_vn_rdev;
1406 		size = kve->kve_vn_size;
1407 		vntype = kinfo_vtype2fst(kve->kve_vn_type);
1408 		status = kve->kve_status;
1409 	} else {
1410 		kif = fst->fs_typedep;
1411 		fileid = kif->kf_un.kf_file.kf_file_fileid;
1412 		fsid = kif->kf_un.kf_file.kf_file_fsid;
1413 		mode = kif->kf_un.kf_file.kf_file_mode;
1414 		path = kif->kf_path;
1415 		rdev = kif->kf_un.kf_file.kf_file_rdev;
1416 		size = kif->kf_un.kf_file.kf_file_size;
1417 		vntype = kinfo_vtype2fst(kif->kf_vnode_type);
1418 		status = kif->kf_status;
1419 	}
1420 	vn->vn_type = vntype;
1421 	if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
1422 		return (0);
1423 	if ((status & KF_ATTR_VALID) == 0) {
1424 		if (errbuf != NULL) {
1425 			snprintf(errbuf, _POSIX2_LINE_MAX,
1426 			    "? (no info available)");
1427 		}
1428 		return (1);
1429 	}
1430 	if (path && *path) {
1431 		statfs(path, &stbuf);
1432 		vn->vn_mntdir = strdup(stbuf.f_mntonname);
1433 	} else
1434 		vn->vn_mntdir = strdup("-");
1435 	vn->vn_dev = rdev;
1436 	if (vntype == PS_FST_VTYPE_VBLK) {
1437 		name = devname(rdev, S_IFBLK);
1438 		if (name != NULL)
1439 			strlcpy(vn->vn_devname, name,
1440 			    sizeof(vn->vn_devname));
1441 	} else if (vntype == PS_FST_VTYPE_VCHR) {
1442 		name = devname(vn->vn_dev, S_IFCHR);
1443 		if (name != NULL)
1444 			strlcpy(vn->vn_devname, name,
1445 			    sizeof(vn->vn_devname));
1446 	}
1447 	vn->vn_fsid = fsid;
1448 	vn->vn_fileid = fileid;
1449 	vn->vn_size = size;
1450 	vn->vn_mode = mode;
1451 	return (0);
1452 }
1453 
1454 int
1455 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
1456     struct sockstat *sock, char *errbuf)
1457 {
1458 
1459 	assert(sock);
1460 	if (procstat->type == PROCSTAT_KVM) {
1461 		return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
1462 		    errbuf));
1463 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1464 		procstat->type == PROCSTAT_CORE) {
1465 		return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
1466 	} else {
1467 		warnx("unknown access method: %d", procstat->type);
1468 		if (errbuf != NULL)
1469 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1470 		return (1);
1471 	}
1472 }
1473 
1474 static int
1475 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
1476     struct sockstat *sock, char *errbuf)
1477 {
1478 	struct domain dom;
1479 	struct inpcb inpcb;
1480 	struct protosw proto;
1481 	struct socket s;
1482 	struct unpcb unpcb;
1483 	ssize_t len;
1484 	void *so;
1485 
1486 	assert(kd);
1487 	assert(sock);
1488 	assert(fst);
1489 	bzero(sock, sizeof(*sock));
1490 	so = fst->fs_typedep;
1491 	if (so == NULL)
1492 		goto fail;
1493 	sock->so_addr = (uintptr_t)so;
1494 	/* fill in socket */
1495 	if (!kvm_read_all(kd, (unsigned long)so, &s,
1496 	    sizeof(struct socket))) {
1497 		warnx("can't read sock at %p", (void *)so);
1498 		goto fail;
1499 	}
1500 	/* fill in protosw entry */
1501 	if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
1502 	    sizeof(struct protosw))) {
1503 		warnx("can't read protosw at %p", (void *)s.so_proto);
1504 		goto fail;
1505 	}
1506 	/* fill in domain */
1507 	if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
1508 	    sizeof(struct domain))) {
1509 		warnx("can't read domain at %p",
1510 		    (void *)proto.pr_domain);
1511 		goto fail;
1512 	}
1513 	if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
1514 	    sizeof(sock->dname) - 1)) < 0) {
1515 		warnx("can't read domain name at %p", (void *)dom.dom_name);
1516 		sock->dname[0] = '\0';
1517 	}
1518 	else
1519 		sock->dname[len] = '\0';
1520 
1521 	/*
1522 	 * Fill in known data.
1523 	 */
1524 	sock->type = s.so_type;
1525 	sock->proto = proto.pr_protocol;
1526 	sock->dom_family = dom.dom_family;
1527 	sock->so_pcb = (uintptr_t)s.so_pcb;
1528 
1529 	/*
1530 	 * Protocol specific data.
1531 	 */
1532 	switch(dom.dom_family) {
1533 	case AF_INET:
1534 	case AF_INET6:
1535 		if (proto.pr_protocol == IPPROTO_TCP) {
1536 			if (s.so_pcb) {
1537 				if (kvm_read(kd, (u_long)s.so_pcb,
1538 				    (char *)&inpcb, sizeof(struct inpcb))
1539 				    != sizeof(struct inpcb)) {
1540 					warnx("can't read inpcb at %p",
1541 					    (void *)s.so_pcb);
1542 				} else
1543 					sock->inp_ppcb =
1544 					    (uintptr_t)inpcb.inp_ppcb;
1545 				sock->sendq = s.so_snd.sb_ccc;
1546 				sock->recvq = s.so_rcv.sb_ccc;
1547 			}
1548 		}
1549 		break;
1550 	case AF_UNIX:
1551 		if (s.so_pcb) {
1552 			if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
1553 			    sizeof(struct unpcb)) != sizeof(struct unpcb)){
1554 				warnx("can't read unpcb at %p",
1555 				    (void *)s.so_pcb);
1556 			} else if (unpcb.unp_conn) {
1557 				sock->so_rcv_sb_state = s.so_rcv.sb_state;
1558 				sock->so_snd_sb_state = s.so_snd.sb_state;
1559 				sock->unp_conn = (uintptr_t)unpcb.unp_conn;
1560 				sock->sendq = s.so_snd.sb_ccc;
1561 				sock->recvq = s.so_rcv.sb_ccc;
1562 			}
1563 		}
1564 		break;
1565 	default:
1566 		break;
1567 	}
1568 	return (0);
1569 
1570 fail:
1571 	if (errbuf != NULL)
1572 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1573 	return (1);
1574 }
1575 
1576 static int
1577 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
1578     char *errbuf __unused)
1579 {
1580 	struct kinfo_file *kif;
1581 
1582 	assert(sock);
1583 	assert(fst);
1584 	bzero(sock, sizeof(*sock));
1585 	kif = fst->fs_typedep;
1586 	if (kif == NULL)
1587 		return (0);
1588 
1589 	/*
1590 	 * Fill in known data.
1591 	 */
1592 	sock->type = kif->kf_sock_type;
1593 	sock->proto = kif->kf_sock_protocol;
1594 	sock->dom_family = kif->kf_sock_domain;
1595 	sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
1596 	strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
1597 	bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local,
1598 	    kif->kf_un.kf_sock.kf_sa_local.ss_len);
1599 	bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer,
1600 	    kif->kf_un.kf_sock.kf_sa_peer.ss_len);
1601 
1602 	/*
1603 	 * Protocol specific data.
1604 	 */
1605 	switch(sock->dom_family) {
1606 	case AF_INET:
1607 	case AF_INET6:
1608 		if (sock->proto == IPPROTO_TCP) {
1609 			sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb;
1610 			sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1611 			sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1612 		}
1613 		break;
1614 	case AF_UNIX:
1615 		if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
1616 			sock->so_rcv_sb_state =
1617 			    kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
1618 			sock->so_snd_sb_state =
1619 			    kif->kf_un.kf_sock.kf_sock_snd_sb_state;
1620 			sock->unp_conn =
1621 			    kif->kf_un.kf_sock.kf_sock_unpconn;
1622 			sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1623 			sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1624 		}
1625 		break;
1626 	default:
1627 		break;
1628 	}
1629 	return (0);
1630 }
1631 
1632 /*
1633  * Descriptor flags to filestat translation.
1634  */
1635 static int
1636 to_filestat_flags(int flags)
1637 {
1638 	static struct {
1639 		int flag;
1640 		int fst_flag;
1641 	} fstflags[] = {
1642 		{ FREAD, PS_FST_FFLAG_READ },
1643 		{ FWRITE, PS_FST_FFLAG_WRITE },
1644 		{ O_APPEND, PS_FST_FFLAG_APPEND },
1645 		{ O_ASYNC, PS_FST_FFLAG_ASYNC },
1646 		{ O_CREAT, PS_FST_FFLAG_CREAT },
1647 		{ O_DIRECT, PS_FST_FFLAG_DIRECT },
1648 		{ O_EXCL, PS_FST_FFLAG_EXCL },
1649 		{ O_EXEC, PS_FST_FFLAG_EXEC },
1650 		{ O_EXLOCK, PS_FST_FFLAG_EXLOCK },
1651 		{ O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
1652 		{ O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
1653 		{ O_SHLOCK, PS_FST_FFLAG_SHLOCK },
1654 		{ O_SYNC, PS_FST_FFLAG_SYNC },
1655 		{ O_TRUNC, PS_FST_FFLAG_TRUNC }
1656 	};
1657 #define NFSTFLAGS	(sizeof(fstflags) / sizeof(*fstflags))
1658 	int fst_flags;
1659 	unsigned int i;
1660 
1661 	fst_flags = 0;
1662 	for (i = 0; i < NFSTFLAGS; i++)
1663 		if (flags & fstflags[i].flag)
1664 			fst_flags |= fstflags[i].fst_flag;
1665 	return (fst_flags);
1666 }
1667 
1668 /*
1669  * Vnode type to filestate translation.
1670  */
1671 static int
1672 vntype2psfsttype(int type)
1673 {
1674 	static struct {
1675 		int	vtype;
1676 		int	fst_vtype;
1677 	} vt2fst[] = {
1678 		{ VBAD, PS_FST_VTYPE_VBAD },
1679 		{ VBLK, PS_FST_VTYPE_VBLK },
1680 		{ VCHR, PS_FST_VTYPE_VCHR },
1681 		{ VDIR, PS_FST_VTYPE_VDIR },
1682 		{ VFIFO, PS_FST_VTYPE_VFIFO },
1683 		{ VLNK, PS_FST_VTYPE_VLNK },
1684 		{ VNON, PS_FST_VTYPE_VNON },
1685 		{ VREG, PS_FST_VTYPE_VREG },
1686 		{ VSOCK, PS_FST_VTYPE_VSOCK }
1687 	};
1688 #define	NVFTYPES	(sizeof(vt2fst) / sizeof(*vt2fst))
1689 	unsigned int i, fst_type;
1690 
1691 	fst_type = PS_FST_VTYPE_UNKNOWN;
1692 	for (i = 0; i < NVFTYPES; i++) {
1693 		if (type == vt2fst[i].vtype) {
1694 			fst_type = vt2fst[i].fst_vtype;
1695 			break;
1696 		}
1697 	}
1698 	return (fst_type);
1699 }
1700 
1701 static char *
1702 getmnton(kvm_t *kd, struct mount *m)
1703 {
1704 	struct mount mnt;
1705 	static struct mtab {
1706 		struct mtab *next;
1707 		struct mount *m;
1708 		char mntonname[MNAMELEN + 1];
1709 	} *mhead = NULL;
1710 	struct mtab *mt;
1711 
1712 	for (mt = mhead; mt != NULL; mt = mt->next)
1713 		if (m == mt->m)
1714 			return (mt->mntonname);
1715 	if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
1716 		warnx("can't read mount table at %p", (void *)m);
1717 		return (NULL);
1718 	}
1719 	if ((mt = malloc(sizeof (struct mtab))) == NULL)
1720 		err(1, NULL);
1721 	mt->m = m;
1722 	bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
1723 	mt->mntonname[MNAMELEN] = '\0';
1724 	mt->next = mhead;
1725 	mhead = mt;
1726 	return (mt->mntonname);
1727 }
1728 
1729 /*
1730  * Auxiliary structures and functions to get process environment or
1731  * command line arguments.
1732  */
1733 struct argvec {
1734 	char	*buf;
1735 	size_t	bufsize;
1736 	char	**argv;
1737 	size_t	argc;
1738 };
1739 
1740 static struct argvec *
1741 argvec_alloc(size_t bufsize)
1742 {
1743 	struct argvec *av;
1744 
1745 	av = malloc(sizeof(*av));
1746 	if (av == NULL)
1747 		return (NULL);
1748 	av->bufsize = bufsize;
1749 	av->buf = malloc(av->bufsize);
1750 	if (av->buf == NULL) {
1751 		free(av);
1752 		return (NULL);
1753 	}
1754 	av->argc = 32;
1755 	av->argv = malloc(sizeof(char *) * av->argc);
1756 	if (av->argv == NULL) {
1757 		free(av->buf);
1758 		free(av);
1759 		return (NULL);
1760 	}
1761 	return av;
1762 }
1763 
1764 static void
1765 argvec_free(struct argvec * av)
1766 {
1767 
1768 	free(av->argv);
1769 	free(av->buf);
1770 	free(av);
1771 }
1772 
1773 static char **
1774 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
1775 {
1776 	int error, name[4], argc, i;
1777 	struct argvec *av, **avp;
1778 	enum psc_type type;
1779 	size_t len;
1780 	char *p, **argv;
1781 
1782 	assert(procstat);
1783 	assert(kp);
1784 	if (procstat->type == PROCSTAT_KVM) {
1785 		warnx("can't use kvm access method");
1786 		return (NULL);
1787 	}
1788 	if (procstat->type != PROCSTAT_SYSCTL &&
1789 	    procstat->type != PROCSTAT_CORE) {
1790 		warnx("unknown access method: %d", procstat->type);
1791 		return (NULL);
1792 	}
1793 
1794 	if (nchr == 0 || nchr > ARG_MAX)
1795 		nchr = ARG_MAX;
1796 
1797 	avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
1798 	av = *avp;
1799 
1800 	if (av == NULL)
1801 	{
1802 		av = argvec_alloc(nchr);
1803 		if (av == NULL)
1804 		{
1805 			warn("malloc(%zu)", nchr);
1806 			return (NULL);
1807 		}
1808 		*avp = av;
1809 	} else if (av->bufsize < nchr) {
1810 		av->buf = reallocf(av->buf, nchr);
1811 		if (av->buf == NULL) {
1812 			warn("malloc(%zu)", nchr);
1813 			return (NULL);
1814 		}
1815 	}
1816 	if (procstat->type == PROCSTAT_SYSCTL) {
1817 		name[0] = CTL_KERN;
1818 		name[1] = KERN_PROC;
1819 		name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
1820 		name[3] = kp->ki_pid;
1821 		len = nchr;
1822 		error = sysctl(name, nitems(name), av->buf, &len, NULL, 0);
1823 		if (error != 0 && errno != ESRCH && errno != EPERM)
1824 			warn("sysctl(kern.proc.%s)", env ? "env" : "args");
1825 		if (error != 0 || len == 0)
1826 			return (NULL);
1827 	} else /* procstat->type == PROCSTAT_CORE */ {
1828 		type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
1829 		len = nchr;
1830 		if (procstat_core_get(procstat->core, type, av->buf, &len)
1831 		    == NULL) {
1832 			return (NULL);
1833 		}
1834 	}
1835 
1836 	argv = av->argv;
1837 	argc = av->argc;
1838 	i = 0;
1839 	for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
1840 		argv[i++] = p;
1841 		if (i < argc)
1842 			continue;
1843 		/* Grow argv. */
1844 		argc += argc;
1845 		argv = realloc(argv, sizeof(char *) * argc);
1846 		if (argv == NULL) {
1847 			warn("malloc(%zu)", sizeof(char *) * argc);
1848 			return (NULL);
1849 		}
1850 		av->argv = argv;
1851 		av->argc = argc;
1852 	}
1853 	argv[i] = NULL;
1854 
1855 	return (argv);
1856 }
1857 
1858 /*
1859  * Return process command line arguments.
1860  */
1861 char **
1862 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1863 {
1864 
1865 	return (getargv(procstat, p, nchr, 0));
1866 }
1867 
1868 /*
1869  * Free the buffer allocated by procstat_getargv().
1870  */
1871 void
1872 procstat_freeargv(struct procstat *procstat)
1873 {
1874 
1875 	if (procstat->argv != NULL) {
1876 		argvec_free(procstat->argv);
1877 		procstat->argv = NULL;
1878 	}
1879 }
1880 
1881 /*
1882  * Return process environment.
1883  */
1884 char **
1885 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1886 {
1887 
1888 	return (getargv(procstat, p, nchr, 1));
1889 }
1890 
1891 /*
1892  * Free the buffer allocated by procstat_getenvv().
1893  */
1894 void
1895 procstat_freeenvv(struct procstat *procstat)
1896 {
1897 	if (procstat->envv != NULL) {
1898 		argvec_free(procstat->envv);
1899 		procstat->envv = NULL;
1900 	}
1901 }
1902 
1903 static struct kinfo_vmentry *
1904 kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
1905 {
1906 	int cnt;
1907 	size_t len;
1908 	char *buf, *bp, *eb;
1909 	struct kinfo_vmentry *kiv, *kp, *kv;
1910 
1911 	buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
1912 	if (buf == NULL)
1913 		return (NULL);
1914 
1915 	/*
1916 	 * XXXMG: The code below is just copy&past from libutil.
1917 	 * The code duplication can be avoided if libutil
1918 	 * is extended to provide something like:
1919 	 *   struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
1920 	 *       size_t len, int *cntp);
1921 	 */
1922 
1923 	/* Pass 1: count items */
1924 	cnt = 0;
1925 	bp = buf;
1926 	eb = buf + len;
1927 	while (bp < eb) {
1928 		kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1929 		if (kv->kve_structsize == 0)
1930 			break;
1931 		bp += kv->kve_structsize;
1932 		cnt++;
1933 	}
1934 
1935 	kiv = calloc(cnt, sizeof(*kiv));
1936 	if (kiv == NULL) {
1937 		free(buf);
1938 		return (NULL);
1939 	}
1940 	bp = buf;
1941 	eb = buf + len;
1942 	kp = kiv;
1943 	/* Pass 2: unpack */
1944 	while (bp < eb) {
1945 		kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1946 		if (kv->kve_structsize == 0)
1947 			break;
1948 		/* Copy/expand into pre-zeroed buffer */
1949 		memcpy(kp, kv, kv->kve_structsize);
1950 		/* Advance to next packed record */
1951 		bp += kv->kve_structsize;
1952 		/* Set field size to fixed length, advance */
1953 		kp->kve_structsize = sizeof(*kp);
1954 		kp++;
1955 	}
1956 	free(buf);
1957 	*cntp = cnt;
1958 	return (kiv);	/* Caller must free() return value */
1959 }
1960 
1961 struct kinfo_vmentry *
1962 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
1963     unsigned int *cntp)
1964 {
1965 
1966 	switch(procstat->type) {
1967 	case PROCSTAT_KVM:
1968 		warnx("kvm method is not supported");
1969 		return (NULL);
1970 	case PROCSTAT_SYSCTL:
1971 		return (kinfo_getvmmap(kp->ki_pid, cntp));
1972 	case PROCSTAT_CORE:
1973 		return (kinfo_getvmmap_core(procstat->core, cntp));
1974 	default:
1975 		warnx("unknown access method: %d", procstat->type);
1976 		return (NULL);
1977 	}
1978 }
1979 
1980 void
1981 procstat_freevmmap(struct procstat *procstat __unused,
1982     struct kinfo_vmentry *vmmap)
1983 {
1984 
1985 	free(vmmap);
1986 }
1987 
1988 static gid_t *
1989 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
1990 {
1991 	struct proc proc;
1992 	struct ucred ucred;
1993 	gid_t *groups;
1994 	size_t len;
1995 
1996 	assert(kd != NULL);
1997 	assert(kp != NULL);
1998 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
1999 	    sizeof(proc))) {
2000 		warnx("can't read proc struct at %p for pid %d",
2001 		    kp->ki_paddr, kp->ki_pid);
2002 		return (NULL);
2003 	}
2004 	if (proc.p_ucred == NOCRED)
2005 		return (NULL);
2006 	if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
2007 	    sizeof(ucred))) {
2008 		warnx("can't read ucred struct at %p for pid %d",
2009 		    proc.p_ucred, kp->ki_pid);
2010 		return (NULL);
2011 	}
2012 	len = ucred.cr_ngroups * sizeof(gid_t);
2013 	groups = malloc(len);
2014 	if (groups == NULL) {
2015 		warn("malloc(%zu)", len);
2016 		return (NULL);
2017 	}
2018 	if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
2019 		warnx("can't read groups at %p for pid %d",
2020 		    ucred.cr_groups, kp->ki_pid);
2021 		free(groups);
2022 		return (NULL);
2023 	}
2024 	*cntp = ucred.cr_ngroups;
2025 	return (groups);
2026 }
2027 
2028 static gid_t *
2029 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
2030 {
2031 	int mib[4];
2032 	size_t len;
2033 	gid_t *groups;
2034 
2035 	mib[0] = CTL_KERN;
2036 	mib[1] = KERN_PROC;
2037 	mib[2] = KERN_PROC_GROUPS;
2038 	mib[3] = pid;
2039 	len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
2040 	groups = malloc(len);
2041 	if (groups == NULL) {
2042 		warn("malloc(%zu)", len);
2043 		return (NULL);
2044 	}
2045 	if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) {
2046 		warn("sysctl: kern.proc.groups: %d", pid);
2047 		free(groups);
2048 		return (NULL);
2049 	}
2050 	*cntp = len / sizeof(gid_t);
2051 	return (groups);
2052 }
2053 
2054 static gid_t *
2055 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
2056 {
2057 	size_t len;
2058 	gid_t *groups;
2059 
2060 	groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
2061 	if (groups == NULL)
2062 		return (NULL);
2063 	*cntp = len / sizeof(gid_t);
2064 	return (groups);
2065 }
2066 
2067 gid_t *
2068 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
2069     unsigned int *cntp)
2070 {
2071 	switch(procstat->type) {
2072 	case PROCSTAT_KVM:
2073 		return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
2074 	case PROCSTAT_SYSCTL:
2075 		return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
2076 	case PROCSTAT_CORE:
2077 		return (procstat_getgroups_core(procstat->core, cntp));
2078 	default:
2079 		warnx("unknown access method: %d", procstat->type);
2080 		return (NULL);
2081 	}
2082 }
2083 
2084 void
2085 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
2086 {
2087 
2088 	free(groups);
2089 }
2090 
2091 static int
2092 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
2093 {
2094 	struct pwddesc pd;
2095 
2096 	assert(kd != NULL);
2097 	assert(kp != NULL);
2098 	if (kp->ki_pd == NULL)
2099 		return (-1);
2100 	if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) {
2101 		warnx("can't read pwddesc at %p for pid %d", kp->ki_pd,
2102 		    kp->ki_pid);
2103 		return (-1);
2104 	}
2105 	*maskp = pd.pd_cmask;
2106 	return (0);
2107 }
2108 
2109 static int
2110 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
2111 {
2112 	int error;
2113 	int mib[4];
2114 	size_t len;
2115 
2116 	mib[0] = CTL_KERN;
2117 	mib[1] = KERN_PROC;
2118 	mib[2] = KERN_PROC_UMASK;
2119 	mib[3] = pid;
2120 	len = sizeof(*maskp);
2121 	error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0);
2122 	if (error != 0 && errno != ESRCH && errno != EPERM)
2123 		warn("sysctl: kern.proc.umask: %d", pid);
2124 	return (error);
2125 }
2126 
2127 static int
2128 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
2129 {
2130 	size_t len;
2131 	unsigned short *buf;
2132 
2133 	buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
2134 	if (buf == NULL)
2135 		return (-1);
2136 	if (len < sizeof(*maskp)) {
2137 		free(buf);
2138 		return (-1);
2139 	}
2140 	*maskp = *buf;
2141 	free(buf);
2142 	return (0);
2143 }
2144 
2145 int
2146 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
2147     unsigned short *maskp)
2148 {
2149 	switch(procstat->type) {
2150 	case PROCSTAT_KVM:
2151 		return (procstat_getumask_kvm(procstat->kd, kp, maskp));
2152 	case PROCSTAT_SYSCTL:
2153 		return (procstat_getumask_sysctl(kp->ki_pid, maskp));
2154 	case PROCSTAT_CORE:
2155 		return (procstat_getumask_core(procstat->core, maskp));
2156 	default:
2157 		warnx("unknown access method: %d", procstat->type);
2158 		return (-1);
2159 	}
2160 }
2161 
2162 static int
2163 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
2164     struct rlimit* rlimit)
2165 {
2166 	struct proc proc;
2167 	unsigned long offset;
2168 
2169 	assert(kd != NULL);
2170 	assert(kp != NULL);
2171 	assert(which >= 0 && which < RLIM_NLIMITS);
2172 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2173 	    sizeof(proc))) {
2174 		warnx("can't read proc struct at %p for pid %d",
2175 		    kp->ki_paddr, kp->ki_pid);
2176 		return (-1);
2177 	}
2178 	if (proc.p_limit == NULL)
2179 		return (-1);
2180 	offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
2181 	if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
2182 		warnx("can't read rlimit struct at %p for pid %d",
2183 		    (void *)offset, kp->ki_pid);
2184 		return (-1);
2185 	}
2186 	return (0);
2187 }
2188 
2189 static int
2190 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
2191 {
2192 	int error, name[5];
2193 	size_t len;
2194 
2195 	name[0] = CTL_KERN;
2196 	name[1] = KERN_PROC;
2197 	name[2] = KERN_PROC_RLIMIT;
2198 	name[3] = pid;
2199 	name[4] = which;
2200 	len = sizeof(struct rlimit);
2201 	error = sysctl(name, nitems(name), rlimit, &len, NULL, 0);
2202 	if (error < 0 && errno != ESRCH) {
2203 		warn("sysctl: kern.proc.rlimit: %d", pid);
2204 		return (-1);
2205 	}
2206 	if (error < 0 || len != sizeof(struct rlimit))
2207 		return (-1);
2208 	return (0);
2209 }
2210 
2211 static int
2212 procstat_getrlimit_core(struct procstat_core *core, int which,
2213     struct rlimit* rlimit)
2214 {
2215 	size_t len;
2216 	struct rlimit* rlimits;
2217 
2218 	if (which < 0 || which >= RLIM_NLIMITS) {
2219 		errno = EINVAL;
2220 		warn("getrlimit: which");
2221 		return (-1);
2222 	}
2223 	rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
2224 	if (rlimits == NULL)
2225 		return (-1);
2226 	if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
2227 		free(rlimits);
2228 		return (-1);
2229 	}
2230 	*rlimit = rlimits[which];
2231 	free(rlimits);
2232 	return (0);
2233 }
2234 
2235 int
2236 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
2237     struct rlimit* rlimit)
2238 {
2239 	switch(procstat->type) {
2240 	case PROCSTAT_KVM:
2241 		return (procstat_getrlimit_kvm(procstat->kd, kp, which,
2242 		    rlimit));
2243 	case PROCSTAT_SYSCTL:
2244 		return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
2245 	case PROCSTAT_CORE:
2246 		return (procstat_getrlimit_core(procstat->core, which, rlimit));
2247 	default:
2248 		warnx("unknown access method: %d", procstat->type);
2249 		return (-1);
2250 	}
2251 }
2252 
2253 static int
2254 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
2255 {
2256 	int error, name[4];
2257 	size_t len;
2258 
2259 	name[0] = CTL_KERN;
2260 	name[1] = KERN_PROC;
2261 	name[2] = KERN_PROC_PATHNAME;
2262 	name[3] = pid;
2263 	len = maxlen;
2264 	error = sysctl(name, nitems(name), pathname, &len, NULL, 0);
2265 	if (error != 0 && errno != ESRCH)
2266 		warn("sysctl: kern.proc.pathname: %d", pid);
2267 	if (len == 0)
2268 		pathname[0] = '\0';
2269 	return (error);
2270 }
2271 
2272 static int
2273 procstat_getpathname_core(struct procstat_core *core, char *pathname,
2274     size_t maxlen)
2275 {
2276 	struct kinfo_file *files;
2277 	int cnt, i, result;
2278 
2279 	files = kinfo_getfile_core(core, &cnt);
2280 	if (files == NULL)
2281 		return (-1);
2282 	result = -1;
2283 	for (i = 0; i < cnt; i++) {
2284 		if (files[i].kf_fd != KF_FD_TYPE_TEXT)
2285 			continue;
2286 		strncpy(pathname, files[i].kf_path, maxlen);
2287 		result = 0;
2288 		break;
2289 	}
2290 	free(files);
2291 	return (result);
2292 }
2293 
2294 int
2295 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
2296     char *pathname, size_t maxlen)
2297 {
2298 	switch(procstat->type) {
2299 	case PROCSTAT_KVM:
2300 		/* XXX: Return empty string. */
2301 		if (maxlen > 0)
2302 			pathname[0] = '\0';
2303 		return (0);
2304 	case PROCSTAT_SYSCTL:
2305 		return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
2306 		    maxlen));
2307 	case PROCSTAT_CORE:
2308 		return (procstat_getpathname_core(procstat->core, pathname,
2309 		    maxlen));
2310 	default:
2311 		warnx("unknown access method: %d", procstat->type);
2312 		return (-1);
2313 	}
2314 }
2315 
2316 static int
2317 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
2318 {
2319 	struct proc proc;
2320 
2321 	assert(kd != NULL);
2322 	assert(kp != NULL);
2323 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2324 	    sizeof(proc))) {
2325 		warnx("can't read proc struct at %p for pid %d",
2326 		    kp->ki_paddr, kp->ki_pid);
2327 		return (-1);
2328 	}
2329 	*osrelp = proc.p_osrel;
2330 	return (0);
2331 }
2332 
2333 static int
2334 procstat_getosrel_sysctl(pid_t pid, int *osrelp)
2335 {
2336 	int error, name[4];
2337 	size_t len;
2338 
2339 	name[0] = CTL_KERN;
2340 	name[1] = KERN_PROC;
2341 	name[2] = KERN_PROC_OSREL;
2342 	name[3] = pid;
2343 	len = sizeof(*osrelp);
2344 	error = sysctl(name, nitems(name), osrelp, &len, NULL, 0);
2345 	if (error != 0 && errno != ESRCH)
2346 		warn("sysctl: kern.proc.osrel: %d", pid);
2347 	return (error);
2348 }
2349 
2350 static int
2351 procstat_getosrel_core(struct procstat_core *core, int *osrelp)
2352 {
2353 	size_t len;
2354 	int *buf;
2355 
2356 	buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
2357 	if (buf == NULL)
2358 		return (-1);
2359 	if (len < sizeof(*osrelp)) {
2360 		free(buf);
2361 		return (-1);
2362 	}
2363 	*osrelp = *buf;
2364 	free(buf);
2365 	return (0);
2366 }
2367 
2368 int
2369 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
2370 {
2371 	switch(procstat->type) {
2372 	case PROCSTAT_KVM:
2373 		return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
2374 	case PROCSTAT_SYSCTL:
2375 		return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
2376 	case PROCSTAT_CORE:
2377 		return (procstat_getosrel_core(procstat->core, osrelp));
2378 	default:
2379 		warnx("unknown access method: %d", procstat->type);
2380 		return (-1);
2381 	}
2382 }
2383 
2384 #define PROC_AUXV_MAX	256
2385 
2386 #if __ELF_WORD_SIZE == 64
2387 static const char *elf32_sv_names[] = {
2388 	"Linux ELF32",
2389 	"FreeBSD ELF32",
2390 };
2391 
2392 static int
2393 is_elf32_sysctl(pid_t pid)
2394 {
2395 	int error, name[4];
2396 	size_t len, i;
2397 	static char sv_name[256];
2398 
2399 	name[0] = CTL_KERN;
2400 	name[1] = KERN_PROC;
2401 	name[2] = KERN_PROC_SV_NAME;
2402 	name[3] = pid;
2403 	len = sizeof(sv_name);
2404 	error = sysctl(name, nitems(name), sv_name, &len, NULL, 0);
2405 	if (error != 0 || len == 0)
2406 		return (0);
2407 	for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
2408 		if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
2409 			return (1);
2410 	}
2411 	return (0);
2412 }
2413 
2414 static Elf_Auxinfo *
2415 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
2416 {
2417 	Elf_Auxinfo *auxv;
2418 	Elf32_Auxinfo *auxv32;
2419 	void *ptr;
2420 	size_t len;
2421 	unsigned int i, count;
2422 	int name[4];
2423 
2424 	name[0] = CTL_KERN;
2425 	name[1] = KERN_PROC;
2426 	name[2] = KERN_PROC_AUXV;
2427 	name[3] = pid;
2428 	len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
2429 	auxv = NULL;
2430 	auxv32 = malloc(len);
2431 	if (auxv32 == NULL) {
2432 		warn("malloc(%zu)", len);
2433 		goto out;
2434 	}
2435 	if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) {
2436 		if (errno != ESRCH && errno != EPERM)
2437 			warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2438 		goto out;
2439 	}
2440 	count = len / sizeof(Elf_Auxinfo);
2441 	auxv = malloc(count  * sizeof(Elf_Auxinfo));
2442 	if (auxv == NULL) {
2443 		warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
2444 		goto out;
2445 	}
2446 	for (i = 0; i < count; i++) {
2447 		/*
2448 		 * XXX: We expect that values for a_type on a 32-bit platform
2449 		 * are directly mapped to values on 64-bit one, which is not
2450 		 * necessarily true.
2451 		 */
2452 		auxv[i].a_type = auxv32[i].a_type;
2453 		ptr = &auxv32[i].a_un;
2454 		auxv[i].a_un.a_val = *((uint32_t *)ptr);
2455 	}
2456 	*cntp = count;
2457 out:
2458 	free(auxv32);
2459 	return (auxv);
2460 }
2461 #endif /* __ELF_WORD_SIZE == 64 */
2462 
2463 static Elf_Auxinfo *
2464 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
2465 {
2466 	Elf_Auxinfo *auxv;
2467 	int name[4];
2468 	size_t len;
2469 
2470 #if __ELF_WORD_SIZE == 64
2471 	if (is_elf32_sysctl(pid))
2472 		return (procstat_getauxv32_sysctl(pid, cntp));
2473 #endif
2474 	name[0] = CTL_KERN;
2475 	name[1] = KERN_PROC;
2476 	name[2] = KERN_PROC_AUXV;
2477 	name[3] = pid;
2478 	len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
2479 	auxv = malloc(len);
2480 	if (auxv == NULL) {
2481 		warn("malloc(%zu)", len);
2482 		return (NULL);
2483 	}
2484 	if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) {
2485 		if (errno != ESRCH && errno != EPERM)
2486 			warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2487 		free(auxv);
2488 		return (NULL);
2489 	}
2490 	*cntp = len / sizeof(Elf_Auxinfo);
2491 	return (auxv);
2492 }
2493 
2494 static Elf_Auxinfo *
2495 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
2496 {
2497 	Elf_Auxinfo *auxv;
2498 	size_t len;
2499 
2500 	auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
2501 	if (auxv == NULL)
2502 		return (NULL);
2503 	*cntp = len / sizeof(Elf_Auxinfo);
2504 	return (auxv);
2505 }
2506 
2507 Elf_Auxinfo *
2508 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
2509     unsigned int *cntp)
2510 {
2511 	switch(procstat->type) {
2512 	case PROCSTAT_KVM:
2513 		warnx("kvm method is not supported");
2514 		return (NULL);
2515 	case PROCSTAT_SYSCTL:
2516 		return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
2517 	case PROCSTAT_CORE:
2518 		return (procstat_getauxv_core(procstat->core, cntp));
2519 	default:
2520 		warnx("unknown access method: %d", procstat->type);
2521 		return (NULL);
2522 	}
2523 }
2524 
2525 void
2526 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
2527 {
2528 
2529 	free(auxv);
2530 }
2531 
2532 static struct ptrace_lwpinfo *
2533 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp)
2534 {
2535 	void *buf;
2536 	struct ptrace_lwpinfo *pl;
2537 	unsigned int cnt;
2538 	size_t len;
2539 
2540 	cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO);
2541 	if (cnt == 0)
2542 		return (NULL);
2543 
2544 	len = cnt * sizeof(*pl);
2545 	buf = calloc(1, len);
2546 	pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len);
2547 	if (pl == NULL) {
2548 		free(buf);
2549 		return (NULL);
2550 	}
2551 	*cntp = len / sizeof(*pl);
2552 	return (pl);
2553 }
2554 
2555 struct ptrace_lwpinfo *
2556 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp)
2557 {
2558 	switch (procstat->type) {
2559 	case PROCSTAT_KVM:
2560 		warnx("kvm method is not supported");
2561 		return (NULL);
2562 	case PROCSTAT_SYSCTL:
2563 		warnx("sysctl method is not supported");
2564 		return (NULL);
2565 	case PROCSTAT_CORE:
2566 	 	return (procstat_getptlwpinfo_core(procstat->core, cntp));
2567 	default:
2568 		warnx("unknown access method: %d", procstat->type);
2569 		return (NULL);
2570 	}
2571 }
2572 
2573 void
2574 procstat_freeptlwpinfo(struct procstat *procstat __unused,
2575     struct ptrace_lwpinfo *pl)
2576 {
2577 	free(pl);
2578 }
2579 
2580 static struct kinfo_kstack *
2581 procstat_getkstack_sysctl(pid_t pid, int *cntp)
2582 {
2583 	struct kinfo_kstack *kkstp;
2584 	int error, name[4];
2585 	size_t len;
2586 
2587 	name[0] = CTL_KERN;
2588 	name[1] = KERN_PROC;
2589 	name[2] = KERN_PROC_KSTACK;
2590 	name[3] = pid;
2591 
2592 	len = 0;
2593 	error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2594 	if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
2595 		warn("sysctl: kern.proc.kstack: %d", pid);
2596 		return (NULL);
2597 	}
2598 	if (error == -1 && errno == ENOENT) {
2599 		warnx("sysctl: kern.proc.kstack unavailable"
2600 		    " (options DDB or options STACK required in kernel)");
2601 		return (NULL);
2602 	}
2603 	if (error == -1)
2604 		return (NULL);
2605 	kkstp = malloc(len);
2606 	if (kkstp == NULL) {
2607 		warn("malloc(%zu)", len);
2608 		return (NULL);
2609 	}
2610 	if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1 &&
2611 	    errno != ENOMEM) {
2612 		warn("sysctl: kern.proc.pid: %d", pid);
2613 		free(kkstp);
2614 		return (NULL);
2615 	}
2616 	*cntp = len / sizeof(*kkstp);
2617 
2618 	return (kkstp);
2619 }
2620 
2621 struct kinfo_kstack *
2622 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
2623     unsigned int *cntp)
2624 {
2625 	switch(procstat->type) {
2626 	case PROCSTAT_KVM:
2627 		warnx("kvm method is not supported");
2628 		return (NULL);
2629 	case PROCSTAT_SYSCTL:
2630 		return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
2631 	case PROCSTAT_CORE:
2632 		warnx("core method is not supported");
2633 		return (NULL);
2634 	default:
2635 		warnx("unknown access method: %d", procstat->type);
2636 		return (NULL);
2637 	}
2638 }
2639 
2640 void
2641 procstat_freekstack(struct procstat *procstat __unused,
2642     struct kinfo_kstack *kkstp)
2643 {
2644 
2645 	free(kkstp);
2646 }
2647 
2648 static struct advlock_list *
2649 procstat_getadvlock_sysctl(struct procstat *procstat __unused)
2650 {
2651 	struct advlock_list *res;
2652 	struct advlock *a;
2653 	void *buf;
2654 	char *c;
2655 	struct kinfo_lockf *kl;
2656 	size_t buf_len;
2657 	int error;
2658 	static const int kl_name[] = { CTL_KERN, KERN_LOCKF };
2659 
2660 	res = malloc(sizeof(*res));
2661 	if (res == NULL)
2662 		return (NULL);
2663 	STAILQ_INIT(res);
2664 	buf = NULL;
2665 
2666 	buf_len = 0;
2667 	error = sysctl(kl_name, nitems(kl_name), NULL, &buf_len, NULL, 0);
2668 	if (error != 0) {
2669 		warn("sysctl KERN_LOCKF size");
2670 		goto fail;
2671 	}
2672 	buf_len *= 2;
2673 	buf = malloc(buf_len);
2674 	if (buf == NULL) {
2675 		warn("malloc");
2676 		goto fail;
2677 	}
2678 	error = sysctl(kl_name, nitems(kl_name), buf, &buf_len, NULL, 0);
2679 	if (error != 0) {
2680 		warn("sysctl KERN_LOCKF data");
2681 		goto fail;
2682 	}
2683 
2684 	for (c = buf; (char *)c < (char *)buf + buf_len;
2685 	    c += kl->kl_structsize) {
2686 		kl = (struct kinfo_lockf *)(void *)c;
2687 		if (sizeof(*kl) < (size_t)kl->kl_structsize) {
2688 			warn("ABI broken");
2689 			goto fail;
2690 		}
2691 		a = malloc(sizeof(*a));
2692 		if (a == NULL) {
2693 			warn("malloc advlock");
2694 			goto fail;
2695 		}
2696 		switch (kl->kl_rw) {
2697 		case KLOCKF_RW_READ:
2698 			a->rw = PS_ADVLOCK_RO;
2699 			break;
2700 		case KLOCKF_RW_WRITE:
2701 			a->rw = PS_ADVLOCK_RW;
2702 			break;
2703 		default:
2704 			warn("ABI broken");
2705 			free(a);
2706 			goto fail;
2707 		}
2708 		switch (kl->kl_type) {
2709 		case KLOCKF_TYPE_FLOCK:
2710 			a->type = PS_ADVLOCK_TYPE_FLOCK;
2711 			break;
2712 		case KLOCKF_TYPE_PID:
2713 			a->type = PS_ADVLOCK_TYPE_PID;
2714 			break;
2715 		case KLOCKF_TYPE_REMOTE:
2716 			a->type = PS_ADVLOCK_TYPE_REMOTE;
2717 			break;
2718 		default:
2719 			warn("ABI broken");
2720 			free(a);
2721 			goto fail;
2722 		}
2723 		a->pid = kl->kl_pid;
2724 		a->sysid = kl->kl_sysid;
2725 		a->file_fsid = kl->kl_file_fsid;
2726 		a->file_rdev = kl->kl_file_rdev;
2727 		a->file_fileid = kl->kl_file_fileid;
2728 		a->start = kl->kl_start;
2729 		a->len = kl->kl_len;
2730 		if (kl->kl_path[0] != '\0') {
2731 			a->path = strdup(kl->kl_path);
2732 			if (a->path == NULL) {
2733 				warn("malloc");
2734 				free(a);
2735 				goto fail;
2736 			}
2737 		} else
2738 			a->path = NULL;
2739 		STAILQ_INSERT_TAIL(res, a, next);
2740 	}
2741 
2742 	free(buf);
2743 	return (res);
2744 
2745 fail:
2746 	free(buf);
2747 	procstat_freeadvlock(procstat, res);
2748 	return (NULL);
2749 }
2750 
2751 struct advlock_list *
2752 procstat_getadvlock(struct procstat *procstat)
2753 {
2754 	switch(procstat->type) {
2755 	case PROCSTAT_KVM:
2756 		warnx("kvm method is not supported");
2757 		return (NULL);
2758 	case PROCSTAT_SYSCTL:
2759 		return (procstat_getadvlock_sysctl(procstat));
2760 	case PROCSTAT_CORE:
2761 		warnx("core method is not supported");
2762 		return (NULL);
2763 	default:
2764 		warnx("unknown access method: %d", procstat->type);
2765 		return (NULL);
2766 	}
2767 }
2768 
2769 void
2770 procstat_freeadvlock(struct procstat *procstat __unused,
2771     struct advlock_list *lst)
2772 {
2773 	struct advlock *a, *a1;
2774 
2775 	STAILQ_FOREACH_SAFE(a, lst, next, a1) {
2776 		free(__DECONST(char *, a->path));
2777 		free(a);
2778 	}
2779 	free(lst);
2780 }
2781 
2782