xref: /freebsd/lib/libprocstat/libprocstat.c (revision 7e9ed7352231d59b01f8270d35c2b201d3c1c052)
1 /*-
2  * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
3  * Copyright (c) 1988, 1993
4  *      The Regents of the University of California.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  * 3. All advertising materials mentioning features or use of this software
15  *    must display the following acknowledgement:
16  *      This product includes software developed by the University of
17  *      California, Berkeley and its contributors.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/elf.h>
40 #include <sys/time.h>
41 #include <sys/resourcevar.h>
42 #define	_WANT_UCRED
43 #include <sys/ucred.h>
44 #undef _WANT_UCRED
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/stat.h>
48 #include <sys/vnode.h>
49 #include <sys/socket.h>
50 #include <sys/socketvar.h>
51 #include <sys/domain.h>
52 #include <sys/protosw.h>
53 #include <sys/un.h>
54 #include <sys/unpcb.h>
55 #include <sys/sysctl.h>
56 #include <sys/tty.h>
57 #include <sys/filedesc.h>
58 #include <sys/queue.h>
59 #define	_WANT_FILE
60 #include <sys/file.h>
61 #include <sys/conf.h>
62 #include <sys/ksem.h>
63 #include <sys/mman.h>
64 #define	_KERNEL
65 #include <sys/mount.h>
66 #include <sys/pipe.h>
67 #include <ufs/ufs/quota.h>
68 #include <ufs/ufs/inode.h>
69 #include <fs/devfs/devfs.h>
70 #include <fs/devfs/devfs_int.h>
71 #undef _KERNEL
72 #include <nfs/nfsproto.h>
73 #include <nfsclient/nfs.h>
74 #include <nfsclient/nfsnode.h>
75 
76 #include <vm/vm.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 
80 #include <net/route.h>
81 #include <netinet/in.h>
82 #include <netinet/in_systm.h>
83 #include <netinet/ip.h>
84 #include <netinet/in_pcb.h>
85 
86 #include <assert.h>
87 #include <ctype.h>
88 #include <err.h>
89 #include <fcntl.h>
90 #include <kvm.h>
91 #include <libutil.h>
92 #include <limits.h>
93 #include <paths.h>
94 #include <pwd.h>
95 #include <stdio.h>
96 #include <stdlib.h>
97 #include <stddef.h>
98 #include <string.h>
99 #include <unistd.h>
100 #include <netdb.h>
101 
102 #include <libprocstat.h>
103 #include "libprocstat_internal.h"
104 #include "common_kvm.h"
105 #include "core.h"
106 
107 int     statfs(const char *, struct statfs *);	/* XXX */
108 
109 #define	PROCSTAT_KVM	1
110 #define	PROCSTAT_SYSCTL	2
111 #define	PROCSTAT_CORE	3
112 
113 static char	**getargv(struct procstat *procstat, struct kinfo_proc *kp,
114     size_t nchr, int env);
115 static char	*getmnton(kvm_t *kd, struct mount *m);
116 static struct kinfo_vmentry *	kinfo_getvmmap_core(struct procstat_core *core,
117     int *cntp);
118 static Elf_Auxinfo	*procstat_getauxv_core(struct procstat_core *core,
119     unsigned int *cntp);
120 static Elf_Auxinfo	*procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
121 static struct filestat_list	*procstat_getfiles_kvm(
122     struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
123 static struct filestat_list	*procstat_getfiles_sysctl(
124     struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
125 static int	procstat_get_pipe_info_sysctl(struct filestat *fst,
126     struct pipestat *pipe, char *errbuf);
127 static int	procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
128     struct pipestat *pipe, char *errbuf);
129 static int	procstat_get_pts_info_sysctl(struct filestat *fst,
130     struct ptsstat *pts, char *errbuf);
131 static int	procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
132     struct ptsstat *pts, char *errbuf);
133 static int	procstat_get_sem_info_sysctl(struct filestat *fst,
134     struct semstat *sem, char *errbuf);
135 static int	procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
136     struct semstat *sem, char *errbuf);
137 static int	procstat_get_shm_info_sysctl(struct filestat *fst,
138     struct shmstat *shm, char *errbuf);
139 static int	procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
140     struct shmstat *shm, char *errbuf);
141 static int	procstat_get_socket_info_sysctl(struct filestat *fst,
142     struct sockstat *sock, char *errbuf);
143 static int	procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
144     struct sockstat *sock, char *errbuf);
145 static int	to_filestat_flags(int flags);
146 static int	procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
147     struct vnstat *vn, char *errbuf);
148 static int	procstat_get_vnode_info_sysctl(struct filestat *fst,
149     struct vnstat *vn, char *errbuf);
150 static gid_t	*procstat_getgroups_core(struct procstat_core *core,
151     unsigned int *count);
152 static gid_t *	procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
153     unsigned int *count);
154 static gid_t	*procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
155 static struct kinfo_kstack	*procstat_getkstack_sysctl(pid_t pid,
156     int *cntp);
157 static int	procstat_getosrel_core(struct procstat_core *core,
158     int *osrelp);
159 static int	procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
160     int *osrelp);
161 static int	procstat_getosrel_sysctl(pid_t pid, int *osrelp);
162 static int	procstat_getpathname_core(struct procstat_core *core,
163     char *pathname, size_t maxlen);
164 static int	procstat_getpathname_sysctl(pid_t pid, char *pathname,
165     size_t maxlen);
166 static int	procstat_getrlimit_core(struct procstat_core *core, int which,
167     struct rlimit* rlimit);
168 static int	procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
169     int which, struct rlimit* rlimit);
170 static int	procstat_getrlimit_sysctl(pid_t pid, int which,
171     struct rlimit* rlimit);
172 static int	procstat_getumask_core(struct procstat_core *core,
173     unsigned short *maskp);
174 static int	procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
175     unsigned short *maskp);
176 static int	procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
177 static int	vntype2psfsttype(int type);
178 
179 void
180 procstat_close(struct procstat *procstat)
181 {
182 
183 	assert(procstat);
184 	if (procstat->type == PROCSTAT_KVM)
185 		kvm_close(procstat->kd);
186 	else if (procstat->type == PROCSTAT_CORE)
187 		procstat_core_close(procstat->core);
188 	procstat_freeargv(procstat);
189 	procstat_freeenvv(procstat);
190 	free(procstat);
191 }
192 
193 struct procstat *
194 procstat_open_sysctl(void)
195 {
196 	struct procstat *procstat;
197 
198 	procstat = calloc(1, sizeof(*procstat));
199 	if (procstat == NULL) {
200 		warn("malloc()");
201 		return (NULL);
202 	}
203 	procstat->type = PROCSTAT_SYSCTL;
204 	return (procstat);
205 }
206 
207 struct procstat *
208 procstat_open_kvm(const char *nlistf, const char *memf)
209 {
210 	struct procstat *procstat;
211 	kvm_t *kd;
212 	char buf[_POSIX2_LINE_MAX];
213 
214 	procstat = calloc(1, sizeof(*procstat));
215 	if (procstat == NULL) {
216 		warn("malloc()");
217 		return (NULL);
218 	}
219 	kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
220 	if (kd == NULL) {
221 		warnx("kvm_openfiles(): %s", buf);
222 		free(procstat);
223 		return (NULL);
224 	}
225 	procstat->type = PROCSTAT_KVM;
226 	procstat->kd = kd;
227 	return (procstat);
228 }
229 
230 struct procstat *
231 procstat_open_core(const char *filename)
232 {
233 	struct procstat *procstat;
234 	struct procstat_core *core;
235 
236 	procstat = calloc(1, sizeof(*procstat));
237 	if (procstat == NULL) {
238 		warn("malloc()");
239 		return (NULL);
240 	}
241 	core = procstat_core_open(filename);
242 	if (core == NULL) {
243 		free(procstat);
244 		return (NULL);
245 	}
246 	procstat->type = PROCSTAT_CORE;
247 	procstat->core = core;
248 	return (procstat);
249 }
250 
251 struct kinfo_proc *
252 procstat_getprocs(struct procstat *procstat, int what, int arg,
253     unsigned int *count)
254 {
255 	struct kinfo_proc *p0, *p;
256 	size_t len, olen;
257 	int name[4];
258 	int cnt;
259 	int error;
260 
261 	assert(procstat);
262 	assert(count);
263 	p = NULL;
264 	if (procstat->type == PROCSTAT_KVM) {
265 		*count = 0;
266 		p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
267 		if (p0 == NULL || cnt <= 0)
268 			return (NULL);
269 		*count = cnt;
270 		len = *count * sizeof(*p);
271 		p = malloc(len);
272 		if (p == NULL) {
273 			warnx("malloc(%zu)", len);
274 			goto fail;
275 		}
276 		bcopy(p0, p, len);
277 		return (p);
278 	} else if (procstat->type == PROCSTAT_SYSCTL) {
279 		len = 0;
280 		name[0] = CTL_KERN;
281 		name[1] = KERN_PROC;
282 		name[2] = what;
283 		name[3] = arg;
284 		error = sysctl(name, 4, NULL, &len, NULL, 0);
285 		if (error < 0 && errno != EPERM) {
286 			warn("sysctl(kern.proc)");
287 			goto fail;
288 		}
289 		if (len == 0) {
290 			warnx("no processes?");
291 			goto fail;
292 		}
293 		do {
294 			len += len / 10;
295 			p = reallocf(p, len);
296 			if (p == NULL) {
297 				warnx("reallocf(%zu)", len);
298 				goto fail;
299 			}
300 			olen = len;
301 			error = sysctl(name, 4, p, &len, NULL, 0);
302 		} while (error < 0 && errno == ENOMEM && olen == len);
303 		if (error < 0 && errno != EPERM) {
304 			warn("sysctl(kern.proc)");
305 			goto fail;
306 		}
307 		/* Perform simple consistency checks. */
308 		if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
309 			warnx("kinfo_proc structure size mismatch (len = %zu)", len);
310 			goto fail;
311 		}
312 		*count = len / sizeof(*p);
313 		return (p);
314 	} else if (procstat->type == PROCSTAT_CORE) {
315 		p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
316 		    &len);
317 		if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
318 			warnx("kinfo_proc structure size mismatch");
319 			goto fail;
320 		}
321 		*count = len / sizeof(*p);
322 		return (p);
323 	} else {
324 		warnx("unknown access method: %d", procstat->type);
325 		return (NULL);
326 	}
327 fail:
328 	if (p)
329 		free(p);
330 	return (NULL);
331 }
332 
333 void
334 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
335 {
336 
337 	if (p != NULL)
338 		free(p);
339 	p = NULL;
340 }
341 
342 struct filestat_list *
343 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
344 {
345 
346 	switch(procstat->type) {
347 	case PROCSTAT_KVM:
348 		return (procstat_getfiles_kvm(procstat, kp, mmapped));
349 	case PROCSTAT_SYSCTL:
350 	case PROCSTAT_CORE:
351 		return (procstat_getfiles_sysctl(procstat, kp, mmapped));
352 	default:
353 		warnx("unknown access method: %d", procstat->type);
354 		return (NULL);
355 	}
356 }
357 
358 void
359 procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
360 {
361 	struct filestat *fst, *tmp;
362 
363 	STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
364 		if (fst->fs_path != NULL)
365 			free(fst->fs_path);
366 		free(fst);
367 	}
368 	free(head);
369 	if (procstat->vmentries != NULL) {
370 		free(procstat->vmentries);
371 		procstat->vmentries = NULL;
372 	}
373 	if (procstat->files != NULL) {
374 		free(procstat->files);
375 		procstat->files = NULL;
376 	}
377 }
378 
379 static struct filestat *
380 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
381     int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
382 {
383 	struct filestat *entry;
384 
385 	entry = calloc(1, sizeof(*entry));
386 	if (entry == NULL) {
387 		warn("malloc()");
388 		return (NULL);
389 	}
390 	entry->fs_typedep = typedep;
391 	entry->fs_fflags = fflags;
392 	entry->fs_uflags = uflags;
393 	entry->fs_fd = fd;
394 	entry->fs_type = type;
395 	entry->fs_ref_count = refcount;
396 	entry->fs_offset = offset;
397 	entry->fs_path = path;
398 	entry->fs_cap_rights = *cap_rightsp;
399 	return (entry);
400 }
401 
402 static struct vnode *
403 getctty(kvm_t *kd, struct kinfo_proc *kp)
404 {
405 	struct pgrp pgrp;
406 	struct proc proc;
407 	struct session sess;
408 	int error;
409 
410 	assert(kp);
411 	error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
412 	    sizeof(proc));
413 	if (error == 0) {
414 		warnx("can't read proc struct at %p for pid %d",
415 		    kp->ki_paddr, kp->ki_pid);
416 		return (NULL);
417 	}
418 	if (proc.p_pgrp == NULL)
419 		return (NULL);
420 	error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
421 	    sizeof(pgrp));
422 	if (error == 0) {
423 		warnx("can't read pgrp struct at %p for pid %d",
424 		    proc.p_pgrp, kp->ki_pid);
425 		return (NULL);
426 	}
427 	error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
428 	    sizeof(sess));
429 	if (error == 0) {
430 		warnx("can't read session struct at %p for pid %d",
431 		    pgrp.pg_session, kp->ki_pid);
432 		return (NULL);
433 	}
434 	return (sess.s_ttyvp);
435 }
436 
437 static struct filestat_list *
438 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
439 {
440 	struct file file;
441 	struct filedesc filed;
442 	struct vm_map_entry vmentry;
443 	struct vm_object object;
444 	struct vmspace vmspace;
445 	vm_map_entry_t entryp;
446 	vm_map_t map;
447 	vm_object_t objp;
448 	struct vnode *vp;
449 	struct file **ofiles;
450 	struct filestat *entry;
451 	struct filestat_list *head;
452 	kvm_t *kd;
453 	void *data;
454 	int i, fflags;
455 	int prot, type;
456 	unsigned int nfiles;
457 
458 	assert(procstat);
459 	kd = procstat->kd;
460 	if (kd == NULL)
461 		return (NULL);
462 	if (kp->ki_fd == NULL)
463 		return (NULL);
464 	if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
465 	    sizeof(filed))) {
466 		warnx("can't read filedesc at %p", (void *)kp->ki_fd);
467 		return (NULL);
468 	}
469 
470 	/*
471 	 * Allocate list head.
472 	 */
473 	head = malloc(sizeof(*head));
474 	if (head == NULL)
475 		return (NULL);
476 	STAILQ_INIT(head);
477 
478 	/* root directory vnode, if one. */
479 	if (filed.fd_rdir) {
480 		entry = filestat_new_entry(filed.fd_rdir, PS_FST_TYPE_VNODE, -1,
481 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, 0);
482 		if (entry != NULL)
483 			STAILQ_INSERT_TAIL(head, entry, next);
484 	}
485 	/* current working directory vnode. */
486 	if (filed.fd_cdir) {
487 		entry = filestat_new_entry(filed.fd_cdir, PS_FST_TYPE_VNODE, -1,
488 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, 0);
489 		if (entry != NULL)
490 			STAILQ_INSERT_TAIL(head, entry, next);
491 	}
492 	/* jail root, if any. */
493 	if (filed.fd_jdir) {
494 		entry = filestat_new_entry(filed.fd_jdir, PS_FST_TYPE_VNODE, -1,
495 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, 0);
496 		if (entry != NULL)
497 			STAILQ_INSERT_TAIL(head, entry, next);
498 	}
499 	/* ktrace vnode, if one */
500 	if (kp->ki_tracep) {
501 		entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
502 		    PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
503 		    PS_FST_UFLAG_TRACE, 0, 0, NULL, 0);
504 		if (entry != NULL)
505 			STAILQ_INSERT_TAIL(head, entry, next);
506 	}
507 	/* text vnode, if one */
508 	if (kp->ki_textvp) {
509 		entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
510 		    PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, 0);
511 		if (entry != NULL)
512 			STAILQ_INSERT_TAIL(head, entry, next);
513 	}
514 	/* Controlling terminal. */
515 	if ((vp = getctty(kd, kp)) != NULL) {
516 		entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
517 		    PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
518 		    PS_FST_UFLAG_CTTY, 0, 0, NULL, 0);
519 		if (entry != NULL)
520 			STAILQ_INSERT_TAIL(head, entry, next);
521 	}
522 
523 	nfiles = filed.fd_lastfile + 1;
524 	ofiles = malloc(nfiles * sizeof(struct file *));
525 	if (ofiles == NULL) {
526 		warn("malloc(%zu)", nfiles * sizeof(struct file *));
527 		goto do_mmapped;
528 	}
529 	if (!kvm_read_all(kd, (unsigned long)filed.fd_ofiles, ofiles,
530 	    nfiles * sizeof(struct file *))) {
531 		warnx("cannot read file structures at %p",
532 		    (void *)filed.fd_ofiles);
533 		free(ofiles);
534 		goto do_mmapped;
535 	}
536 	for (i = 0; i <= filed.fd_lastfile; i++) {
537 		if (ofiles[i] == NULL)
538 			continue;
539 		if (!kvm_read_all(kd, (unsigned long)ofiles[i], &file,
540 		    sizeof(struct file))) {
541 			warnx("can't read file %d at %p", i,
542 			    (void *)ofiles[i]);
543 			continue;
544 		}
545 		switch (file.f_type) {
546 		case DTYPE_VNODE:
547 			type = PS_FST_TYPE_VNODE;
548 			data = file.f_vnode;
549 			break;
550 		case DTYPE_SOCKET:
551 			type = PS_FST_TYPE_SOCKET;
552 			data = file.f_data;
553 			break;
554 		case DTYPE_PIPE:
555 			type = PS_FST_TYPE_PIPE;
556 			data = file.f_data;
557 			break;
558 		case DTYPE_FIFO:
559 			type = PS_FST_TYPE_FIFO;
560 			data = file.f_vnode;
561 			break;
562 #ifdef DTYPE_PTS
563 		case DTYPE_PTS:
564 			type = PS_FST_TYPE_PTS;
565 			data = file.f_data;
566 			break;
567 #endif
568 		case DTYPE_SEM:
569 			type = PS_FST_TYPE_SEM;
570 			data = file.f_data;
571 			break;
572 		case DTYPE_SHM:
573 			type = PS_FST_TYPE_SHM;
574 			data = file.f_data;
575 			break;
576 		default:
577 			continue;
578 		}
579 		/* XXXRW: No capability rights support for kvm yet. */
580 		entry = filestat_new_entry(data, type, i,
581 		    to_filestat_flags(file.f_flag), 0, 0, 0, NULL, 0);
582 		if (entry != NULL)
583 			STAILQ_INSERT_TAIL(head, entry, next);
584 	}
585 	free(ofiles);
586 
587 do_mmapped:
588 
589 	/*
590 	 * Process mmapped files if requested.
591 	 */
592 	if (mmapped) {
593 		if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
594 		    sizeof(vmspace))) {
595 			warnx("can't read vmspace at %p",
596 			    (void *)kp->ki_vmspace);
597 			goto exit;
598 		}
599 		map = &vmspace.vm_map;
600 
601 		for (entryp = map->header.next;
602 		    entryp != &kp->ki_vmspace->vm_map.header;
603 		    entryp = vmentry.next) {
604 			if (!kvm_read_all(kd, (unsigned long)entryp, &vmentry,
605 			    sizeof(vmentry))) {
606 				warnx("can't read vm_map_entry at %p",
607 				    (void *)entryp);
608 				continue;
609 			}
610 			if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
611 				continue;
612 			if ((objp = vmentry.object.vm_object) == NULL)
613 				continue;
614 			for (; objp; objp = object.backing_object) {
615 				if (!kvm_read_all(kd, (unsigned long)objp,
616 				    &object, sizeof(object))) {
617 					warnx("can't read vm_object at %p",
618 					    (void *)objp);
619 					break;
620 				}
621 			}
622 
623 			/* We want only vnode objects. */
624 			if (object.type != OBJT_VNODE)
625 				continue;
626 
627 			prot = vmentry.protection;
628 			fflags = 0;
629 			if (prot & VM_PROT_READ)
630 				fflags = PS_FST_FFLAG_READ;
631 			if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
632 			    prot & VM_PROT_WRITE)
633 				fflags |= PS_FST_FFLAG_WRITE;
634 
635 			/*
636 			 * Create filestat entry.
637 			 */
638 			entry = filestat_new_entry(object.handle,
639 			    PS_FST_TYPE_VNODE, -1, fflags,
640 			    PS_FST_UFLAG_MMAP, 0, 0, NULL, 0);
641 			if (entry != NULL)
642 				STAILQ_INSERT_TAIL(head, entry, next);
643 		}
644 	}
645 exit:
646 	return (head);
647 }
648 
649 /*
650  * kinfo types to filestat translation.
651  */
652 static int
653 kinfo_type2fst(int kftype)
654 {
655 	static struct {
656 		int	kf_type;
657 		int	fst_type;
658 	} kftypes2fst[] = {
659 		{ KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO },
660 		{ KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
661 		{ KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
662 		{ KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
663 		{ KF_TYPE_NONE, PS_FST_TYPE_NONE },
664 		{ KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
665 		{ KF_TYPE_PTS, PS_FST_TYPE_PTS },
666 		{ KF_TYPE_SEM, PS_FST_TYPE_SEM },
667 		{ KF_TYPE_SHM, PS_FST_TYPE_SHM },
668 		{ KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
669 		{ KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
670 		{ KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
671 	};
672 #define NKFTYPES	(sizeof(kftypes2fst) / sizeof(*kftypes2fst))
673 	unsigned int i;
674 
675 	for (i = 0; i < NKFTYPES; i++)
676 		if (kftypes2fst[i].kf_type == kftype)
677 			break;
678 	if (i == NKFTYPES)
679 		return (PS_FST_TYPE_UNKNOWN);
680 	return (kftypes2fst[i].fst_type);
681 }
682 
683 /*
684  * kinfo flags to filestat translation.
685  */
686 static int
687 kinfo_fflags2fst(int kfflags)
688 {
689 	static struct {
690 		int	kf_flag;
691 		int	fst_flag;
692 	} kfflags2fst[] = {
693 		{ KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
694 		{ KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
695 		{ KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
696 		{ KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
697 		{ KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
698 		{ KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
699 		{ KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
700 		{ KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
701 		{ KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
702 		{ KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
703 		{ KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
704 		{ KF_FLAG_READ, PS_FST_FFLAG_READ },
705 		{ KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
706 		{ KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
707 		{ KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
708 	};
709 #define NKFFLAGS	(sizeof(kfflags2fst) / sizeof(*kfflags2fst))
710 	unsigned int i;
711 	int flags;
712 
713 	flags = 0;
714 	for (i = 0; i < NKFFLAGS; i++)
715 		if ((kfflags & kfflags2fst[i].kf_flag) != 0)
716 			flags |= kfflags2fst[i].fst_flag;
717 	return (flags);
718 }
719 
720 static int
721 kinfo_uflags2fst(int fd)
722 {
723 
724 	switch (fd) {
725 	case KF_FD_TYPE_CTTY:
726 		return (PS_FST_UFLAG_CTTY);
727 	case KF_FD_TYPE_CWD:
728 		return (PS_FST_UFLAG_CDIR);
729 	case KF_FD_TYPE_JAIL:
730 		return (PS_FST_UFLAG_JAIL);
731 	case KF_FD_TYPE_TEXT:
732 		return (PS_FST_UFLAG_TEXT);
733 	case KF_FD_TYPE_TRACE:
734 		return (PS_FST_UFLAG_TRACE);
735 	case KF_FD_TYPE_ROOT:
736 		return (PS_FST_UFLAG_RDIR);
737 	}
738 	return (0);
739 }
740 
741 static struct kinfo_file *
742 kinfo_getfile_core(struct procstat_core *core, int *cntp)
743 {
744 	int cnt;
745 	size_t len;
746 	char *buf, *bp, *eb;
747 	struct kinfo_file *kif, *kp, *kf;
748 
749 	buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
750 	if (buf == NULL)
751 		return (NULL);
752 	/*
753 	 * XXXMG: The code below is just copy&past from libutil.
754 	 * The code duplication can be avoided if libutil
755 	 * is extended to provide something like:
756 	 *   struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
757 	 *       size_t len, int *cntp);
758 	 */
759 
760 	/* Pass 1: count items */
761 	cnt = 0;
762 	bp = buf;
763 	eb = buf + len;
764 	while (bp < eb) {
765 		kf = (struct kinfo_file *)(uintptr_t)bp;
766 		bp += kf->kf_structsize;
767 		cnt++;
768 	}
769 
770 	kif = calloc(cnt, sizeof(*kif));
771 	if (kif == NULL) {
772 		free(buf);
773 		return (NULL);
774 	}
775 	bp = buf;
776 	eb = buf + len;
777 	kp = kif;
778 	/* Pass 2: unpack */
779 	while (bp < eb) {
780 		kf = (struct kinfo_file *)(uintptr_t)bp;
781 		/* Copy/expand into pre-zeroed buffer */
782 		memcpy(kp, kf, kf->kf_structsize);
783 		/* Advance to next packed record */
784 		bp += kf->kf_structsize;
785 		/* Set field size to fixed length, advance */
786 		kp->kf_structsize = sizeof(*kp);
787 		kp++;
788 	}
789 	free(buf);
790 	*cntp = cnt;
791 	return (kif);	/* Caller must free() return value */
792 }
793 
794 static struct filestat_list *
795 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
796     int mmapped)
797 {
798 	struct kinfo_file *kif, *files;
799 	struct kinfo_vmentry *kve, *vmentries;
800 	struct filestat_list *head;
801 	struct filestat *entry;
802 	char *path;
803 	off_t offset;
804 	int cnt, fd, fflags;
805 	int i, type, uflags;
806 	int refcount;
807 	cap_rights_t cap_rights;
808 
809 	assert(kp);
810 	if (kp->ki_fd == NULL)
811 		return (NULL);
812 	switch(procstat->type) {
813 	case PROCSTAT_SYSCTL:
814 		files = kinfo_getfile(kp->ki_pid, &cnt);
815 		break;
816 	case PROCSTAT_CORE:
817 		files = kinfo_getfile_core(procstat->core, &cnt);
818 		break;
819 	default:
820 		assert(!"invalid type");
821 	}
822 	if (files == NULL && errno != EPERM) {
823 		warn("kinfo_getfile()");
824 		return (NULL);
825 	}
826 	procstat->files = files;
827 
828 	/*
829 	 * Allocate list head.
830 	 */
831 	head = malloc(sizeof(*head));
832 	if (head == NULL)
833 		return (NULL);
834 	STAILQ_INIT(head);
835 	for (i = 0; i < cnt; i++) {
836 		kif = &files[i];
837 
838 		type = kinfo_type2fst(kif->kf_type);
839 		fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
840 		fflags = kinfo_fflags2fst(kif->kf_flags);
841 		uflags = kinfo_uflags2fst(kif->kf_fd);
842 		refcount = kif->kf_ref_count;
843 		offset = kif->kf_offset;
844 		if (*kif->kf_path != '\0')
845 			path = strdup(kif->kf_path);
846 		else
847 			path = NULL;
848 		cap_rights = kif->kf_cap_rights;
849 
850 		/*
851 		 * Create filestat entry.
852 		 */
853 		entry = filestat_new_entry(kif, type, fd, fflags, uflags,
854 		    refcount, offset, path, &cap_rights);
855 		if (entry != NULL)
856 			STAILQ_INSERT_TAIL(head, entry, next);
857 	}
858 	if (mmapped != 0) {
859 		vmentries = procstat_getvmmap(procstat, kp, &cnt);
860 		procstat->vmentries = vmentries;
861 		if (vmentries == NULL || cnt == 0)
862 			goto fail;
863 		for (i = 0; i < cnt; i++) {
864 			kve = &vmentries[i];
865 			if (kve->kve_type != KVME_TYPE_VNODE)
866 				continue;
867 			fflags = 0;
868 			if (kve->kve_protection & KVME_PROT_READ)
869 				fflags = PS_FST_FFLAG_READ;
870 			if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
871 			    kve->kve_protection & KVME_PROT_WRITE)
872 				fflags |= PS_FST_FFLAG_WRITE;
873 			offset = kve->kve_offset;
874 			refcount = kve->kve_ref_count;
875 			if (*kve->kve_path != '\0')
876 				path = strdup(kve->kve_path);
877 			else
878 				path = NULL;
879 			entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
880 			    fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
881 			    0);
882 			if (entry != NULL)
883 				STAILQ_INSERT_TAIL(head, entry, next);
884 		}
885 	}
886 fail:
887 	return (head);
888 }
889 
890 int
891 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
892     struct pipestat *ps, char *errbuf)
893 {
894 
895 	assert(ps);
896 	if (procstat->type == PROCSTAT_KVM) {
897 		return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
898 		    errbuf));
899 	} else if (procstat->type == PROCSTAT_SYSCTL ||
900 		procstat->type == PROCSTAT_CORE) {
901 		return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
902 	} else {
903 		warnx("unknown access method: %d", procstat->type);
904 		if (errbuf != NULL)
905 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
906 		return (1);
907 	}
908 }
909 
910 static int
911 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
912     struct pipestat *ps, char *errbuf)
913 {
914 	struct pipe pi;
915 	void *pipep;
916 
917 	assert(kd);
918 	assert(ps);
919 	assert(fst);
920 	bzero(ps, sizeof(*ps));
921 	pipep = fst->fs_typedep;
922 	if (pipep == NULL)
923 		goto fail;
924 	if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
925 		warnx("can't read pipe at %p", (void *)pipep);
926 		goto fail;
927 	}
928 	ps->addr = (uintptr_t)pipep;
929 	ps->peer = (uintptr_t)pi.pipe_peer;
930 	ps->buffer_cnt = pi.pipe_buffer.cnt;
931 	return (0);
932 
933 fail:
934 	if (errbuf != NULL)
935 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
936 	return (1);
937 }
938 
939 static int
940 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
941     char *errbuf __unused)
942 {
943 	struct kinfo_file *kif;
944 
945 	assert(ps);
946 	assert(fst);
947 	bzero(ps, sizeof(*ps));
948 	kif = fst->fs_typedep;
949 	if (kif == NULL)
950 		return (1);
951 	ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
952 	ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
953 	ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
954 	return (0);
955 }
956 
957 int
958 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
959     struct ptsstat *pts, char *errbuf)
960 {
961 
962 	assert(pts);
963 	if (procstat->type == PROCSTAT_KVM) {
964 		return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
965 		    errbuf));
966 	} else if (procstat->type == PROCSTAT_SYSCTL ||
967 		procstat->type == PROCSTAT_CORE) {
968 		return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
969 	} else {
970 		warnx("unknown access method: %d", procstat->type);
971 		if (errbuf != NULL)
972 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
973 		return (1);
974 	}
975 }
976 
977 static int
978 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
979     struct ptsstat *pts, char *errbuf)
980 {
981 	struct tty tty;
982 	void *ttyp;
983 
984 	assert(kd);
985 	assert(pts);
986 	assert(fst);
987 	bzero(pts, sizeof(*pts));
988 	ttyp = fst->fs_typedep;
989 	if (ttyp == NULL)
990 		goto fail;
991 	if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
992 		warnx("can't read tty at %p", (void *)ttyp);
993 		goto fail;
994 	}
995 	pts->dev = dev2udev(kd, tty.t_dev);
996 	(void)kdevtoname(kd, tty.t_dev, pts->devname);
997 	return (0);
998 
999 fail:
1000 	if (errbuf != NULL)
1001 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1002 	return (1);
1003 }
1004 
1005 static int
1006 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
1007     char *errbuf __unused)
1008 {
1009 	struct kinfo_file *kif;
1010 
1011 	assert(pts);
1012 	assert(fst);
1013 	bzero(pts, sizeof(*pts));
1014 	kif = fst->fs_typedep;
1015 	if (kif == NULL)
1016 		return (0);
1017 	pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
1018 	strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
1019 	return (0);
1020 }
1021 
1022 int
1023 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
1024     struct semstat *sem, char *errbuf)
1025 {
1026 
1027 	assert(sem);
1028 	if (procstat->type == PROCSTAT_KVM) {
1029 		return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
1030 		    errbuf));
1031 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1032 	    procstat->type == PROCSTAT_CORE) {
1033 		return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
1034 	} else {
1035 		warnx("unknown access method: %d", procstat->type);
1036 		if (errbuf != NULL)
1037 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1038 		return (1);
1039 	}
1040 }
1041 
1042 static int
1043 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
1044     struct semstat *sem, char *errbuf)
1045 {
1046 	struct ksem ksem;
1047 	void *ksemp;
1048 	char *path;
1049 	int i;
1050 
1051 	assert(kd);
1052 	assert(sem);
1053 	assert(fst);
1054 	bzero(sem, sizeof(*sem));
1055 	ksemp = fst->fs_typedep;
1056 	if (ksemp == NULL)
1057 		goto fail;
1058 	if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
1059 	    sizeof(struct ksem))) {
1060 		warnx("can't read ksem at %p", (void *)ksemp);
1061 		goto fail;
1062 	}
1063 	sem->mode = S_IFREG | ksem.ks_mode;
1064 	sem->value = ksem.ks_value;
1065 	if (fst->fs_path == NULL && ksem.ks_path != NULL) {
1066 		path = malloc(MAXPATHLEN);
1067 		for (i = 0; i < MAXPATHLEN - 1; i++) {
1068 			if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
1069 			    path + i, 1))
1070 				break;
1071 			if (path[i] == '\0')
1072 				break;
1073 		}
1074 		path[i] = '\0';
1075 		if (i == 0)
1076 			free(path);
1077 		else
1078 			fst->fs_path = path;
1079 	}
1080 	return (0);
1081 
1082 fail:
1083 	if (errbuf != NULL)
1084 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1085 	return (1);
1086 }
1087 
1088 static int
1089 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
1090     char *errbuf __unused)
1091 {
1092 	struct kinfo_file *kif;
1093 
1094 	assert(sem);
1095 	assert(fst);
1096 	bzero(sem, sizeof(*sem));
1097 	kif = fst->fs_typedep;
1098 	if (kif == NULL)
1099 		return (0);
1100 	sem->value = kif->kf_un.kf_sem.kf_sem_value;
1101 	sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
1102 	return (0);
1103 }
1104 
1105 int
1106 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
1107     struct shmstat *shm, char *errbuf)
1108 {
1109 
1110 	assert(shm);
1111 	if (procstat->type == PROCSTAT_KVM) {
1112 		return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
1113 		    errbuf));
1114 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1115 	    procstat->type == PROCSTAT_CORE) {
1116 		return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
1117 	} else {
1118 		warnx("unknown access method: %d", procstat->type);
1119 		if (errbuf != NULL)
1120 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1121 		return (1);
1122 	}
1123 }
1124 
1125 static int
1126 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
1127     struct shmstat *shm, char *errbuf)
1128 {
1129 	struct shmfd shmfd;
1130 	void *shmfdp;
1131 	char *path;
1132 	int i;
1133 
1134 	assert(kd);
1135 	assert(shm);
1136 	assert(fst);
1137 	bzero(shm, sizeof(*shm));
1138 	shmfdp = fst->fs_typedep;
1139 	if (shmfdp == NULL)
1140 		goto fail;
1141 	if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
1142 	    sizeof(struct shmfd))) {
1143 		warnx("can't read shmfd at %p", (void *)shmfdp);
1144 		goto fail;
1145 	}
1146 	shm->mode = S_IFREG | shmfd.shm_mode;
1147 	shm->size = shmfd.shm_size;
1148 	if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
1149 		path = malloc(MAXPATHLEN);
1150 		for (i = 0; i < MAXPATHLEN - 1; i++) {
1151 			if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
1152 			    path + i, 1))
1153 				break;
1154 			if (path[i] == '\0')
1155 				break;
1156 		}
1157 		path[i] = '\0';
1158 		if (i == 0)
1159 			free(path);
1160 		else
1161 			fst->fs_path = path;
1162 	}
1163 	return (0);
1164 
1165 fail:
1166 	if (errbuf != NULL)
1167 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1168 	return (1);
1169 }
1170 
1171 static int
1172 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
1173     char *errbuf __unused)
1174 {
1175 	struct kinfo_file *kif;
1176 
1177 	assert(shm);
1178 	assert(fst);
1179 	bzero(shm, sizeof(*shm));
1180 	kif = fst->fs_typedep;
1181 	if (kif == NULL)
1182 		return (0);
1183 	shm->size = kif->kf_un.kf_file.kf_file_size;
1184 	shm->mode = kif->kf_un.kf_file.kf_file_mode;
1185 	return (0);
1186 }
1187 
1188 int
1189 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
1190     struct vnstat *vn, char *errbuf)
1191 {
1192 
1193 	assert(vn);
1194 	if (procstat->type == PROCSTAT_KVM) {
1195 		return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
1196 		    errbuf));
1197 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1198 		procstat->type == PROCSTAT_CORE) {
1199 		return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
1200 	} else {
1201 		warnx("unknown access method: %d", procstat->type);
1202 		if (errbuf != NULL)
1203 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1204 		return (1);
1205 	}
1206 }
1207 
1208 static int
1209 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
1210     struct vnstat *vn, char *errbuf)
1211 {
1212 	/* Filesystem specific handlers. */
1213 	#define FSTYPE(fst)     {#fst, fst##_filestat}
1214 	struct {
1215 		const char	*tag;
1216 		int		(*handler)(kvm_t *kd, struct vnode *vp,
1217 		    struct vnstat *vn);
1218 	} fstypes[] = {
1219 		FSTYPE(devfs),
1220 		FSTYPE(isofs),
1221 		FSTYPE(msdosfs),
1222 		FSTYPE(nfs),
1223 		FSTYPE(smbfs),
1224 		FSTYPE(udf),
1225 		FSTYPE(ufs),
1226 #ifdef LIBPROCSTAT_ZFS
1227 		FSTYPE(zfs),
1228 #endif
1229 	};
1230 #define	NTYPES	(sizeof(fstypes) / sizeof(*fstypes))
1231 	struct vnode vnode;
1232 	char tagstr[12];
1233 	void *vp;
1234 	int error, found;
1235 	unsigned int i;
1236 
1237 	assert(kd);
1238 	assert(vn);
1239 	assert(fst);
1240 	vp = fst->fs_typedep;
1241 	if (vp == NULL)
1242 		goto fail;
1243 	error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
1244 	if (error == 0) {
1245 		warnx("can't read vnode at %p", (void *)vp);
1246 		goto fail;
1247 	}
1248 	bzero(vn, sizeof(*vn));
1249 	vn->vn_type = vntype2psfsttype(vnode.v_type);
1250 	if (vnode.v_type == VNON || vnode.v_type == VBAD)
1251 		return (0);
1252 	error = kvm_read_all(kd, (unsigned long)vnode.v_tag, tagstr,
1253 	    sizeof(tagstr));
1254 	if (error == 0) {
1255 		warnx("can't read v_tag at %p", (void *)vp);
1256 		goto fail;
1257 	}
1258 	tagstr[sizeof(tagstr) - 1] = '\0';
1259 
1260 	/*
1261 	 * Find appropriate handler.
1262 	 */
1263 	for (i = 0, found = 0; i < NTYPES; i++)
1264 		if (!strcmp(fstypes[i].tag, tagstr)) {
1265 			if (fstypes[i].handler(kd, &vnode, vn) != 0) {
1266 				goto fail;
1267 			}
1268 			break;
1269 		}
1270 	if (i == NTYPES) {
1271 		if (errbuf != NULL)
1272 			snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
1273 		return (1);
1274 	}
1275 	vn->vn_mntdir = getmnton(kd, vnode.v_mount);
1276 	if ((vnode.v_type == VBLK || vnode.v_type == VCHR) &&
1277 	    vnode.v_rdev != NULL){
1278 		vn->vn_dev = dev2udev(kd, vnode.v_rdev);
1279 		(void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
1280 	} else {
1281 		vn->vn_dev = -1;
1282 	}
1283 	return (0);
1284 
1285 fail:
1286 	if (errbuf != NULL)
1287 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1288 	return (1);
1289 }
1290 
1291 /*
1292  * kinfo vnode type to filestat translation.
1293  */
1294 static int
1295 kinfo_vtype2fst(int kfvtype)
1296 {
1297 	static struct {
1298 		int	kf_vtype;
1299 		int	fst_vtype;
1300 	} kfvtypes2fst[] = {
1301 		{ KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
1302 		{ KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
1303 		{ KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
1304 		{ KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
1305 		{ KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
1306 		{ KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
1307 		{ KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
1308 		{ KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
1309 		{ KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
1310 	};
1311 #define	NKFVTYPES	(sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
1312 	unsigned int i;
1313 
1314 	for (i = 0; i < NKFVTYPES; i++)
1315 		if (kfvtypes2fst[i].kf_vtype == kfvtype)
1316 			break;
1317 	if (i == NKFVTYPES)
1318 		return (PS_FST_VTYPE_UNKNOWN);
1319 	return (kfvtypes2fst[i].fst_vtype);
1320 }
1321 
1322 static int
1323 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
1324     char *errbuf)
1325 {
1326 	struct statfs stbuf;
1327 	struct kinfo_file *kif;
1328 	struct kinfo_vmentry *kve;
1329 	uint64_t fileid;
1330 	uint64_t size;
1331 	char *name, *path;
1332 	uint32_t fsid;
1333 	uint16_t mode;
1334 	uint32_t rdev;
1335 	int vntype;
1336 	int status;
1337 
1338 	assert(fst);
1339 	assert(vn);
1340 	bzero(vn, sizeof(*vn));
1341 	if (fst->fs_typedep == NULL)
1342 		return (1);
1343 	if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
1344 		kve = fst->fs_typedep;
1345 		fileid = kve->kve_vn_fileid;
1346 		fsid = kve->kve_vn_fsid;
1347 		mode = kve->kve_vn_mode;
1348 		path = kve->kve_path;
1349 		rdev = kve->kve_vn_rdev;
1350 		size = kve->kve_vn_size;
1351 		vntype = kinfo_vtype2fst(kve->kve_vn_type);
1352 		status = kve->kve_status;
1353 	} else {
1354 		kif = fst->fs_typedep;
1355 		fileid = kif->kf_un.kf_file.kf_file_fileid;
1356 		fsid = kif->kf_un.kf_file.kf_file_fsid;
1357 		mode = kif->kf_un.kf_file.kf_file_mode;
1358 		path = kif->kf_path;
1359 		rdev = kif->kf_un.kf_file.kf_file_rdev;
1360 		size = kif->kf_un.kf_file.kf_file_size;
1361 		vntype = kinfo_vtype2fst(kif->kf_vnode_type);
1362 		status = kif->kf_status;
1363 	}
1364 	vn->vn_type = vntype;
1365 	if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
1366 		return (0);
1367 	if ((status & KF_ATTR_VALID) == 0) {
1368 		if (errbuf != NULL) {
1369 			snprintf(errbuf, _POSIX2_LINE_MAX,
1370 			    "? (no info available)");
1371 		}
1372 		return (1);
1373 	}
1374 	if (path && *path) {
1375 		statfs(path, &stbuf);
1376 		vn->vn_mntdir = strdup(stbuf.f_mntonname);
1377 	} else
1378 		vn->vn_mntdir = strdup("-");
1379 	vn->vn_dev = rdev;
1380 	if (vntype == PS_FST_VTYPE_VBLK) {
1381 		name = devname(rdev, S_IFBLK);
1382 		if (name != NULL)
1383 			strlcpy(vn->vn_devname, name,
1384 			    sizeof(vn->vn_devname));
1385 	} else if (vntype == PS_FST_VTYPE_VCHR) {
1386 		name = devname(vn->vn_dev, S_IFCHR);
1387 		if (name != NULL)
1388 			strlcpy(vn->vn_devname, name,
1389 			    sizeof(vn->vn_devname));
1390 	}
1391 	vn->vn_fsid = fsid;
1392 	vn->vn_fileid = fileid;
1393 	vn->vn_size = size;
1394 	vn->vn_mode = mode;
1395 	return (0);
1396 }
1397 
1398 int
1399 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
1400     struct sockstat *sock, char *errbuf)
1401 {
1402 
1403 	assert(sock);
1404 	if (procstat->type == PROCSTAT_KVM) {
1405 		return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
1406 		    errbuf));
1407 	} else if (procstat->type == PROCSTAT_SYSCTL ||
1408 		procstat->type == PROCSTAT_CORE) {
1409 		return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
1410 	} else {
1411 		warnx("unknown access method: %d", procstat->type);
1412 		if (errbuf != NULL)
1413 			snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1414 		return (1);
1415 	}
1416 }
1417 
1418 static int
1419 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
1420     struct sockstat *sock, char *errbuf)
1421 {
1422 	struct domain dom;
1423 	struct inpcb inpcb;
1424 	struct protosw proto;
1425 	struct socket s;
1426 	struct unpcb unpcb;
1427 	ssize_t len;
1428 	void *so;
1429 
1430 	assert(kd);
1431 	assert(sock);
1432 	assert(fst);
1433 	bzero(sock, sizeof(*sock));
1434 	so = fst->fs_typedep;
1435 	if (so == NULL)
1436 		goto fail;
1437 	sock->so_addr = (uintptr_t)so;
1438 	/* fill in socket */
1439 	if (!kvm_read_all(kd, (unsigned long)so, &s,
1440 	    sizeof(struct socket))) {
1441 		warnx("can't read sock at %p", (void *)so);
1442 		goto fail;
1443 	}
1444 	/* fill in protosw entry */
1445 	if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
1446 	    sizeof(struct protosw))) {
1447 		warnx("can't read protosw at %p", (void *)s.so_proto);
1448 		goto fail;
1449 	}
1450 	/* fill in domain */
1451 	if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
1452 	    sizeof(struct domain))) {
1453 		warnx("can't read domain at %p",
1454 		    (void *)proto.pr_domain);
1455 		goto fail;
1456 	}
1457 	if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
1458 	    sizeof(sock->dname) - 1)) < 0) {
1459 		warnx("can't read domain name at %p", (void *)dom.dom_name);
1460 		sock->dname[0] = '\0';
1461 	}
1462 	else
1463 		sock->dname[len] = '\0';
1464 
1465 	/*
1466 	 * Fill in known data.
1467 	 */
1468 	sock->type = s.so_type;
1469 	sock->proto = proto.pr_protocol;
1470 	sock->dom_family = dom.dom_family;
1471 	sock->so_pcb = (uintptr_t)s.so_pcb;
1472 
1473 	/*
1474 	 * Protocol specific data.
1475 	 */
1476 	switch(dom.dom_family) {
1477 	case AF_INET:
1478 	case AF_INET6:
1479 		if (proto.pr_protocol == IPPROTO_TCP) {
1480 			if (s.so_pcb) {
1481 				if (kvm_read(kd, (u_long)s.so_pcb,
1482 				    (char *)&inpcb, sizeof(struct inpcb))
1483 				    != sizeof(struct inpcb)) {
1484 					warnx("can't read inpcb at %p",
1485 					    (void *)s.so_pcb);
1486 				} else
1487 					sock->inp_ppcb =
1488 					    (uintptr_t)inpcb.inp_ppcb;
1489 			}
1490 		}
1491 		break;
1492 	case AF_UNIX:
1493 		if (s.so_pcb) {
1494 			if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
1495 			    sizeof(struct unpcb)) != sizeof(struct unpcb)){
1496 				warnx("can't read unpcb at %p",
1497 				    (void *)s.so_pcb);
1498 			} else if (unpcb.unp_conn) {
1499 				sock->so_rcv_sb_state = s.so_rcv.sb_state;
1500 				sock->so_snd_sb_state = s.so_snd.sb_state;
1501 				sock->unp_conn = (uintptr_t)unpcb.unp_conn;
1502 			}
1503 		}
1504 		break;
1505 	default:
1506 		break;
1507 	}
1508 	return (0);
1509 
1510 fail:
1511 	if (errbuf != NULL)
1512 		snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1513 	return (1);
1514 }
1515 
1516 static int
1517 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
1518     char *errbuf __unused)
1519 {
1520 	struct kinfo_file *kif;
1521 
1522 	assert(sock);
1523 	assert(fst);
1524 	bzero(sock, sizeof(*sock));
1525 	kif = fst->fs_typedep;
1526 	if (kif == NULL)
1527 		return (0);
1528 
1529 	/*
1530 	 * Fill in known data.
1531 	 */
1532 	sock->type = kif->kf_sock_type;
1533 	sock->proto = kif->kf_sock_protocol;
1534 	sock->dom_family = kif->kf_sock_domain;
1535 	sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
1536 	strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
1537 	bcopy(&kif->kf_sa_local, &sock->sa_local, kif->kf_sa_local.ss_len);
1538 	bcopy(&kif->kf_sa_peer, &sock->sa_peer, kif->kf_sa_peer.ss_len);
1539 
1540 	/*
1541 	 * Protocol specific data.
1542 	 */
1543 	switch(sock->dom_family) {
1544 	case AF_INET:
1545 	case AF_INET6:
1546 		if (sock->proto == IPPROTO_TCP)
1547 			sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb;
1548 		break;
1549 	case AF_UNIX:
1550 		if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
1551 				sock->so_rcv_sb_state =
1552 				    kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
1553 				sock->so_snd_sb_state =
1554 				    kif->kf_un.kf_sock.kf_sock_snd_sb_state;
1555 				sock->unp_conn =
1556 				    kif->kf_un.kf_sock.kf_sock_unpconn;
1557 		}
1558 		break;
1559 	default:
1560 		break;
1561 	}
1562 	return (0);
1563 }
1564 
1565 /*
1566  * Descriptor flags to filestat translation.
1567  */
1568 static int
1569 to_filestat_flags(int flags)
1570 {
1571 	static struct {
1572 		int flag;
1573 		int fst_flag;
1574 	} fstflags[] = {
1575 		{ FREAD, PS_FST_FFLAG_READ },
1576 		{ FWRITE, PS_FST_FFLAG_WRITE },
1577 		{ O_APPEND, PS_FST_FFLAG_APPEND },
1578 		{ O_ASYNC, PS_FST_FFLAG_ASYNC },
1579 		{ O_CREAT, PS_FST_FFLAG_CREAT },
1580 		{ O_DIRECT, PS_FST_FFLAG_DIRECT },
1581 		{ O_EXCL, PS_FST_FFLAG_EXCL },
1582 		{ O_EXEC, PS_FST_FFLAG_EXEC },
1583 		{ O_EXLOCK, PS_FST_FFLAG_EXLOCK },
1584 		{ O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
1585 		{ O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
1586 		{ O_SHLOCK, PS_FST_FFLAG_SHLOCK },
1587 		{ O_SYNC, PS_FST_FFLAG_SYNC },
1588 		{ O_TRUNC, PS_FST_FFLAG_TRUNC }
1589 	};
1590 #define NFSTFLAGS	(sizeof(fstflags) / sizeof(*fstflags))
1591 	int fst_flags;
1592 	unsigned int i;
1593 
1594 	fst_flags = 0;
1595 	for (i = 0; i < NFSTFLAGS; i++)
1596 		if (flags & fstflags[i].flag)
1597 			fst_flags |= fstflags[i].fst_flag;
1598 	return (fst_flags);
1599 }
1600 
1601 /*
1602  * Vnode type to filestate translation.
1603  */
1604 static int
1605 vntype2psfsttype(int type)
1606 {
1607 	static struct {
1608 		int	vtype;
1609 		int	fst_vtype;
1610 	} vt2fst[] = {
1611 		{ VBAD, PS_FST_VTYPE_VBAD },
1612 		{ VBLK, PS_FST_VTYPE_VBLK },
1613 		{ VCHR, PS_FST_VTYPE_VCHR },
1614 		{ VDIR, PS_FST_VTYPE_VDIR },
1615 		{ VFIFO, PS_FST_VTYPE_VFIFO },
1616 		{ VLNK, PS_FST_VTYPE_VLNK },
1617 		{ VNON, PS_FST_VTYPE_VNON },
1618 		{ VREG, PS_FST_VTYPE_VREG },
1619 		{ VSOCK, PS_FST_VTYPE_VSOCK }
1620 	};
1621 #define	NVFTYPES	(sizeof(vt2fst) / sizeof(*vt2fst))
1622 	unsigned int i, fst_type;
1623 
1624 	fst_type = PS_FST_VTYPE_UNKNOWN;
1625 	for (i = 0; i < NVFTYPES; i++) {
1626 		if (type == vt2fst[i].vtype) {
1627 			fst_type = vt2fst[i].fst_vtype;
1628 			break;
1629 		}
1630 	}
1631 	return (fst_type);
1632 }
1633 
1634 static char *
1635 getmnton(kvm_t *kd, struct mount *m)
1636 {
1637 	struct mount mnt;
1638 	static struct mtab {
1639 		struct mtab *next;
1640 		struct mount *m;
1641 		char mntonname[MNAMELEN + 1];
1642 	} *mhead = NULL;
1643 	struct mtab *mt;
1644 
1645 	for (mt = mhead; mt != NULL; mt = mt->next)
1646 		if (m == mt->m)
1647 			return (mt->mntonname);
1648 	if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
1649 		warnx("can't read mount table at %p", (void *)m);
1650 		return (NULL);
1651 	}
1652 	if ((mt = malloc(sizeof (struct mtab))) == NULL)
1653 		err(1, NULL);
1654 	mt->m = m;
1655 	bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
1656 	mt->mntonname[MNAMELEN] = '\0';
1657 	mt->next = mhead;
1658 	mhead = mt;
1659 	return (mt->mntonname);
1660 }
1661 
1662 /*
1663  * Auxiliary structures and functions to get process environment or
1664  * command line arguments.
1665  */
1666 struct argvec {
1667 	char	*buf;
1668 	size_t	bufsize;
1669 	char	**argv;
1670 	size_t	argc;
1671 };
1672 
1673 static struct argvec *
1674 argvec_alloc(size_t bufsize)
1675 {
1676 	struct argvec *av;
1677 
1678 	av = malloc(sizeof(*av));
1679 	if (av == NULL)
1680 		return (NULL);
1681 	av->bufsize = bufsize;
1682 	av->buf = malloc(av->bufsize);
1683 	if (av->buf == NULL) {
1684 		free(av);
1685 		return (NULL);
1686 	}
1687 	av->argc = 32;
1688 	av->argv = malloc(sizeof(char *) * av->argc);
1689 	if (av->argv == NULL) {
1690 		free(av->buf);
1691 		free(av);
1692 		return (NULL);
1693 	}
1694 	return av;
1695 }
1696 
1697 static void
1698 argvec_free(struct argvec * av)
1699 {
1700 
1701 	free(av->argv);
1702 	free(av->buf);
1703 	free(av);
1704 }
1705 
1706 static char **
1707 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
1708 {
1709 	int error, name[4], argc, i;
1710 	struct argvec *av, **avp;
1711 	enum psc_type type;
1712 	size_t len;
1713 	char *p, **argv;
1714 
1715 	assert(procstat);
1716 	assert(kp);
1717 	if (procstat->type == PROCSTAT_KVM) {
1718 		warnx("can't use kvm access method");
1719 		return (NULL);
1720 	}
1721 	if (procstat->type != PROCSTAT_SYSCTL &&
1722 	    procstat->type != PROCSTAT_CORE) {
1723 		warnx("unknown access method: %d", procstat->type);
1724 		return (NULL);
1725 	}
1726 
1727 	if (nchr == 0 || nchr > ARG_MAX)
1728 		nchr = ARG_MAX;
1729 
1730 	avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
1731 	av = *avp;
1732 
1733 	if (av == NULL)
1734 	{
1735 		av = argvec_alloc(nchr);
1736 		if (av == NULL)
1737 		{
1738 			warn("malloc(%zu)", nchr);
1739 			return (NULL);
1740 		}
1741 		*avp = av;
1742 	} else if (av->bufsize < nchr) {
1743 		av->buf = reallocf(av->buf, nchr);
1744 		if (av->buf == NULL) {
1745 			warn("malloc(%zu)", nchr);
1746 			return (NULL);
1747 		}
1748 	}
1749 	if (procstat->type == PROCSTAT_SYSCTL) {
1750 		name[0] = CTL_KERN;
1751 		name[1] = KERN_PROC;
1752 		name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
1753 		name[3] = kp->ki_pid;
1754 		len = nchr;
1755 		error = sysctl(name, 4, av->buf, &len, NULL, 0);
1756 		if (error != 0 && errno != ESRCH && errno != EPERM)
1757 			warn("sysctl(kern.proc.%s)", env ? "env" : "args");
1758 		if (error != 0 || len == 0)
1759 			return (NULL);
1760 	} else /* procstat->type == PROCSTAT_CORE */ {
1761 		type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
1762 		len = nchr;
1763 		if (procstat_core_get(procstat->core, type, av->buf, &len)
1764 		    == NULL) {
1765 			return (NULL);
1766 		}
1767 	}
1768 
1769 	argv = av->argv;
1770 	argc = av->argc;
1771 	i = 0;
1772 	for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
1773 		argv[i++] = p;
1774 		if (i < argc)
1775 			continue;
1776 		/* Grow argv. */
1777 		argc += argc;
1778 		argv = realloc(argv, sizeof(char *) * argc);
1779 		if (argv == NULL) {
1780 			warn("malloc(%zu)", sizeof(char *) * argc);
1781 			return (NULL);
1782 		}
1783 		av->argv = argv;
1784 		av->argc = argc;
1785 	}
1786 	argv[i] = NULL;
1787 
1788 	return (argv);
1789 }
1790 
1791 /*
1792  * Return process command line arguments.
1793  */
1794 char **
1795 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1796 {
1797 
1798 	return (getargv(procstat, p, nchr, 0));
1799 }
1800 
1801 /*
1802  * Free the buffer allocated by procstat_getargv().
1803  */
1804 void
1805 procstat_freeargv(struct procstat *procstat)
1806 {
1807 
1808 	if (procstat->argv != NULL) {
1809 		argvec_free(procstat->argv);
1810 		procstat->argv = NULL;
1811 	}
1812 }
1813 
1814 /*
1815  * Return process environment.
1816  */
1817 char **
1818 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1819 {
1820 
1821 	return (getargv(procstat, p, nchr, 1));
1822 }
1823 
1824 /*
1825  * Free the buffer allocated by procstat_getenvv().
1826  */
1827 void
1828 procstat_freeenvv(struct procstat *procstat)
1829 {
1830 	if (procstat->envv != NULL) {
1831 		argvec_free(procstat->envv);
1832 		procstat->envv = NULL;
1833 	}
1834 }
1835 
1836 static struct kinfo_vmentry *
1837 kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
1838 {
1839 	int cnt;
1840 	size_t len;
1841 	char *buf, *bp, *eb;
1842 	struct kinfo_vmentry *kiv, *kp, *kv;
1843 
1844 	buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
1845 	if (buf == NULL)
1846 		return (NULL);
1847 
1848 	/*
1849 	 * XXXMG: The code below is just copy&past from libutil.
1850 	 * The code duplication can be avoided if libutil
1851 	 * is extended to provide something like:
1852 	 *   struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
1853 	 *       size_t len, int *cntp);
1854 	 */
1855 
1856 	/* Pass 1: count items */
1857 	cnt = 0;
1858 	bp = buf;
1859 	eb = buf + len;
1860 	while (bp < eb) {
1861 		kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1862 		bp += kv->kve_structsize;
1863 		cnt++;
1864 	}
1865 
1866 	kiv = calloc(cnt, sizeof(*kiv));
1867 	if (kiv == NULL) {
1868 		free(buf);
1869 		return (NULL);
1870 	}
1871 	bp = buf;
1872 	eb = buf + len;
1873 	kp = kiv;
1874 	/* Pass 2: unpack */
1875 	while (bp < eb) {
1876 		kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1877 		/* Copy/expand into pre-zeroed buffer */
1878 		memcpy(kp, kv, kv->kve_structsize);
1879 		/* Advance to next packed record */
1880 		bp += kv->kve_structsize;
1881 		/* Set field size to fixed length, advance */
1882 		kp->kve_structsize = sizeof(*kp);
1883 		kp++;
1884 	}
1885 	free(buf);
1886 	*cntp = cnt;
1887 	return (kiv);	/* Caller must free() return value */
1888 }
1889 
1890 struct kinfo_vmentry *
1891 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
1892     unsigned int *cntp)
1893 {
1894 
1895 	switch(procstat->type) {
1896 	case PROCSTAT_KVM:
1897 		warnx("kvm method is not supported");
1898 		return (NULL);
1899 	case PROCSTAT_SYSCTL:
1900 		return (kinfo_getvmmap(kp->ki_pid, cntp));
1901 	case PROCSTAT_CORE:
1902 		return (kinfo_getvmmap_core(procstat->core, cntp));
1903 	default:
1904 		warnx("unknown access method: %d", procstat->type);
1905 		return (NULL);
1906 	}
1907 }
1908 
1909 void
1910 procstat_freevmmap(struct procstat *procstat __unused,
1911     struct kinfo_vmentry *vmmap)
1912 {
1913 
1914 	free(vmmap);
1915 }
1916 
1917 static gid_t *
1918 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
1919 {
1920 	struct proc proc;
1921 	struct ucred ucred;
1922 	gid_t *groups;
1923 	size_t len;
1924 
1925 	assert(kd != NULL);
1926 	assert(kp != NULL);
1927 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
1928 	    sizeof(proc))) {
1929 		warnx("can't read proc struct at %p for pid %d",
1930 		    kp->ki_paddr, kp->ki_pid);
1931 		return (NULL);
1932 	}
1933 	if (proc.p_ucred == NOCRED)
1934 		return (NULL);
1935 	if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
1936 	    sizeof(ucred))) {
1937 		warnx("can't read ucred struct at %p for pid %d",
1938 		    proc.p_ucred, kp->ki_pid);
1939 		return (NULL);
1940 	}
1941 	len = ucred.cr_ngroups * sizeof(gid_t);
1942 	groups = malloc(len);
1943 	if (groups == NULL) {
1944 		warn("malloc(%zu)", len);
1945 		return (NULL);
1946 	}
1947 	if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
1948 		warnx("can't read groups at %p for pid %d",
1949 		    ucred.cr_groups, kp->ki_pid);
1950 		free(groups);
1951 		return (NULL);
1952 	}
1953 	*cntp = ucred.cr_ngroups;
1954 	return (groups);
1955 }
1956 
1957 static gid_t *
1958 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
1959 {
1960 	int mib[4];
1961 	size_t len;
1962 	gid_t *groups;
1963 
1964 	mib[0] = CTL_KERN;
1965 	mib[1] = KERN_PROC;
1966 	mib[2] = KERN_PROC_GROUPS;
1967 	mib[3] = pid;
1968 	len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
1969 	groups = malloc(len);
1970 	if (groups == NULL) {
1971 		warn("malloc(%zu)", len);
1972 		return (NULL);
1973 	}
1974 	if (sysctl(mib, 4, groups, &len, NULL, 0) == -1) {
1975 		warn("sysctl: kern.proc.groups: %d", pid);
1976 		free(groups);
1977 		return (NULL);
1978 	}
1979 	*cntp = len / sizeof(gid_t);
1980 	return (groups);
1981 }
1982 
1983 static gid_t *
1984 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
1985 {
1986 	size_t len;
1987 	gid_t *groups;
1988 
1989 	groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
1990 	if (groups == NULL)
1991 		return (NULL);
1992 	*cntp = len / sizeof(gid_t);
1993 	return (groups);
1994 }
1995 
1996 gid_t *
1997 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
1998     unsigned int *cntp)
1999 {
2000 	switch(procstat->type) {
2001 	case PROCSTAT_KVM:
2002 		return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
2003 	case PROCSTAT_SYSCTL:
2004 		return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
2005 	case PROCSTAT_CORE:
2006 		return (procstat_getgroups_core(procstat->core, cntp));
2007 	default:
2008 		warnx("unknown access method: %d", procstat->type);
2009 		return (NULL);
2010 	}
2011 }
2012 
2013 void
2014 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
2015 {
2016 
2017 	free(groups);
2018 }
2019 
2020 static int
2021 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
2022 {
2023 	struct filedesc fd;
2024 
2025 	assert(kd != NULL);
2026 	assert(kp != NULL);
2027 	if (kp->ki_fd == NULL)
2028 		return (-1);
2029 	if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) {
2030 		warnx("can't read filedesc at %p for pid %d", kp->ki_fd,
2031 		    kp->ki_pid);
2032 		return (-1);
2033 	}
2034 	*maskp = fd.fd_cmask;
2035 	return (0);
2036 }
2037 
2038 static int
2039 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
2040 {
2041 	int error;
2042 	int mib[4];
2043 	size_t len;
2044 
2045 	mib[0] = CTL_KERN;
2046 	mib[1] = KERN_PROC;
2047 	mib[2] = KERN_PROC_UMASK;
2048 	mib[3] = pid;
2049 	len = sizeof(*maskp);
2050 	error = sysctl(mib, 4, maskp, &len, NULL, 0);
2051 	if (error != 0 && errno != ESRCH)
2052 		warn("sysctl: kern.proc.umask: %d", pid);
2053 	return (error);
2054 }
2055 
2056 static int
2057 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
2058 {
2059 	size_t len;
2060 	unsigned short *buf;
2061 
2062 	buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
2063 	if (buf == NULL)
2064 		return (-1);
2065 	if (len < sizeof(*maskp)) {
2066 		free(buf);
2067 		return (-1);
2068 	}
2069 	*maskp = *buf;
2070 	free(buf);
2071 	return (0);
2072 }
2073 
2074 int
2075 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
2076     unsigned short *maskp)
2077 {
2078 	switch(procstat->type) {
2079 	case PROCSTAT_KVM:
2080 		return (procstat_getumask_kvm(procstat->kd, kp, maskp));
2081 	case PROCSTAT_SYSCTL:
2082 		return (procstat_getumask_sysctl(kp->ki_pid, maskp));
2083 	case PROCSTAT_CORE:
2084 		return (procstat_getumask_core(procstat->core, maskp));
2085 	default:
2086 		warnx("unknown access method: %d", procstat->type);
2087 		return (-1);
2088 	}
2089 }
2090 
2091 static int
2092 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
2093     struct rlimit* rlimit)
2094 {
2095 	struct proc proc;
2096 	unsigned long offset;
2097 
2098 	assert(kd != NULL);
2099 	assert(kp != NULL);
2100 	assert(which >= 0 && which < RLIM_NLIMITS);
2101 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2102 	    sizeof(proc))) {
2103 		warnx("can't read proc struct at %p for pid %d",
2104 		    kp->ki_paddr, kp->ki_pid);
2105 		return (-1);
2106 	}
2107 	if (proc.p_limit == NULL)
2108 		return (-1);
2109 	offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
2110 	if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
2111 		warnx("can't read rlimit struct at %p for pid %d",
2112 		    (void *)offset, kp->ki_pid);
2113 		return (-1);
2114 	}
2115 	return (0);
2116 }
2117 
2118 static int
2119 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
2120 {
2121 	int error, name[5];
2122 	size_t len;
2123 
2124 	name[0] = CTL_KERN;
2125 	name[1] = KERN_PROC;
2126 	name[2] = KERN_PROC_RLIMIT;
2127 	name[3] = pid;
2128 	name[4] = which;
2129 	len = sizeof(struct rlimit);
2130 	error = sysctl(name, 5, rlimit, &len, NULL, 0);
2131 	if (error < 0 && errno != ESRCH) {
2132 		warn("sysctl: kern.proc.rlimit: %d", pid);
2133 		return (-1);
2134 	}
2135 	if (error < 0 || len != sizeof(struct rlimit))
2136 		return (-1);
2137 	return (0);
2138 }
2139 
2140 static int
2141 procstat_getrlimit_core(struct procstat_core *core, int which,
2142     struct rlimit* rlimit)
2143 {
2144 	size_t len;
2145 	struct rlimit* rlimits;
2146 
2147 	if (which < 0 || which >= RLIM_NLIMITS) {
2148 		errno = EINVAL;
2149 		warn("getrlimit: which");
2150 		return (-1);
2151 	}
2152 	rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
2153 	if (rlimits == NULL)
2154 		return (-1);
2155 	if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
2156 		free(rlimits);
2157 		return (-1);
2158 	}
2159 	*rlimit = rlimits[which];
2160 	return (0);
2161 }
2162 
2163 int
2164 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
2165     struct rlimit* rlimit)
2166 {
2167 	switch(procstat->type) {
2168 	case PROCSTAT_KVM:
2169 		return (procstat_getrlimit_kvm(procstat->kd, kp, which,
2170 		    rlimit));
2171 	case PROCSTAT_SYSCTL:
2172 		return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
2173 	case PROCSTAT_CORE:
2174 		return (procstat_getrlimit_core(procstat->core, which, rlimit));
2175 	default:
2176 		warnx("unknown access method: %d", procstat->type);
2177 		return (-1);
2178 	}
2179 }
2180 
2181 static int
2182 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
2183 {
2184 	int error, name[4];
2185 	size_t len;
2186 
2187 	name[0] = CTL_KERN;
2188 	name[1] = KERN_PROC;
2189 	name[2] = KERN_PROC_PATHNAME;
2190 	name[3] = pid;
2191 	len = maxlen;
2192 	error = sysctl(name, 4, pathname, &len, NULL, 0);
2193 	if (error != 0 && errno != ESRCH)
2194 		warn("sysctl: kern.proc.pathname: %d", pid);
2195 	if (len == 0)
2196 		pathname[0] = '\0';
2197 	return (error);
2198 }
2199 
2200 static int
2201 procstat_getpathname_core(struct procstat_core *core, char *pathname,
2202     size_t maxlen)
2203 {
2204 	struct kinfo_file *files;
2205 	int cnt, i, result;
2206 
2207 	files = kinfo_getfile_core(core, &cnt);
2208 	if (files == NULL)
2209 		return (-1);
2210 	result = -1;
2211 	for (i = 0; i < cnt; i++) {
2212 		if (files[i].kf_fd != KF_FD_TYPE_TEXT)
2213 			continue;
2214 		strncpy(pathname, files[i].kf_path, maxlen);
2215 		result = 0;
2216 		break;
2217 	}
2218 	free(files);
2219 	return (result);
2220 }
2221 
2222 int
2223 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
2224     char *pathname, size_t maxlen)
2225 {
2226 	switch(procstat->type) {
2227 	case PROCSTAT_KVM:
2228 		/* XXX: Return empty string. */
2229 		if (maxlen > 0)
2230 			pathname[0] = '\0';
2231 		return (0);
2232 	case PROCSTAT_SYSCTL:
2233 		return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
2234 		    maxlen));
2235 	case PROCSTAT_CORE:
2236 		return (procstat_getpathname_core(procstat->core, pathname,
2237 		    maxlen));
2238 	default:
2239 		warnx("unknown access method: %d", procstat->type);
2240 		return (-1);
2241 	}
2242 }
2243 
2244 static int
2245 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
2246 {
2247 	struct proc proc;
2248 
2249 	assert(kd != NULL);
2250 	assert(kp != NULL);
2251 	if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2252 	    sizeof(proc))) {
2253 		warnx("can't read proc struct at %p for pid %d",
2254 		    kp->ki_paddr, kp->ki_pid);
2255 		return (-1);
2256 	}
2257 	*osrelp = proc.p_osrel;
2258 	return (0);
2259 }
2260 
2261 static int
2262 procstat_getosrel_sysctl(pid_t pid, int *osrelp)
2263 {
2264 	int error, name[4];
2265 	size_t len;
2266 
2267 	name[0] = CTL_KERN;
2268 	name[1] = KERN_PROC;
2269 	name[2] = KERN_PROC_OSREL;
2270 	name[3] = pid;
2271 	len = sizeof(*osrelp);
2272 	error = sysctl(name, 4, osrelp, &len, NULL, 0);
2273 	if (error != 0 && errno != ESRCH)
2274 		warn("sysctl: kern.proc.osrel: %d", pid);
2275 	return (error);
2276 }
2277 
2278 static int
2279 procstat_getosrel_core(struct procstat_core *core, int *osrelp)
2280 {
2281 	size_t len;
2282 	int *buf;
2283 
2284 	buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
2285 	if (buf == NULL)
2286 		return (-1);
2287 	if (len < sizeof(*osrelp)) {
2288 		free(buf);
2289 		return (-1);
2290 	}
2291 	*osrelp = *buf;
2292 	free(buf);
2293 	return (0);
2294 }
2295 
2296 int
2297 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
2298 {
2299 	switch(procstat->type) {
2300 	case PROCSTAT_KVM:
2301 		return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
2302 	case PROCSTAT_SYSCTL:
2303 		return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
2304 	case PROCSTAT_CORE:
2305 		return (procstat_getosrel_core(procstat->core, osrelp));
2306 	default:
2307 		warnx("unknown access method: %d", procstat->type);
2308 		return (-1);
2309 	}
2310 }
2311 
2312 #define PROC_AUXV_MAX	256
2313 
2314 #if __ELF_WORD_SIZE == 64
2315 static const char *elf32_sv_names[] = {
2316 	"Linux ELF32",
2317 	"FreeBSD ELF32",
2318 };
2319 
2320 static int
2321 is_elf32_sysctl(pid_t pid)
2322 {
2323 	int error, name[4];
2324 	size_t len, i;
2325 	static char sv_name[256];
2326 
2327 	name[0] = CTL_KERN;
2328 	name[1] = KERN_PROC;
2329 	name[2] = KERN_PROC_SV_NAME;
2330 	name[3] = pid;
2331 	len = sizeof(sv_name);
2332 	error = sysctl(name, 4, sv_name, &len, NULL, 0);
2333 	if (error != 0 || len == 0)
2334 		return (0);
2335 	for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
2336 		if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
2337 			return (1);
2338 	}
2339 	return (0);
2340 }
2341 
2342 static Elf_Auxinfo *
2343 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
2344 {
2345 	Elf_Auxinfo *auxv;
2346 	Elf32_Auxinfo *auxv32;
2347 	void *ptr;
2348 	size_t len;
2349 	unsigned int i, count;
2350 	int name[4];
2351 
2352 	name[0] = CTL_KERN;
2353 	name[1] = KERN_PROC;
2354 	name[2] = KERN_PROC_AUXV;
2355 	name[3] = pid;
2356 	len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
2357 	auxv = NULL;
2358 	auxv32 = malloc(len);
2359 	if (auxv32 == NULL) {
2360 		warn("malloc(%zu)", len);
2361 		goto out;
2362 	}
2363 	if (sysctl(name, 4, auxv32, &len, NULL, 0) == -1) {
2364 		if (errno != ESRCH && errno != EPERM)
2365 			warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2366 		goto out;
2367 	}
2368 	count = len / sizeof(Elf_Auxinfo);
2369 	auxv = malloc(count  * sizeof(Elf_Auxinfo));
2370 	if (auxv == NULL) {
2371 		warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
2372 		goto out;
2373 	}
2374 	for (i = 0; i < count; i++) {
2375 		/*
2376 		 * XXX: We expect that values for a_type on a 32-bit platform
2377 		 * are directly mapped to values on 64-bit one, which is not
2378 		 * necessarily true.
2379 		 */
2380 		auxv[i].a_type = auxv32[i].a_type;
2381 		ptr = &auxv32[i].a_un;
2382 		auxv[i].a_un.a_val = *((uint32_t *)ptr);
2383 	}
2384 	*cntp = count;
2385 out:
2386 	free(auxv32);
2387 	return (auxv);
2388 }
2389 #endif /* __ELF_WORD_SIZE == 64 */
2390 
2391 static Elf_Auxinfo *
2392 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
2393 {
2394 	Elf_Auxinfo *auxv;
2395 	int name[4];
2396 	size_t len;
2397 
2398 #if __ELF_WORD_SIZE == 64
2399 	if (is_elf32_sysctl(pid))
2400 		return (procstat_getauxv32_sysctl(pid, cntp));
2401 #endif
2402 	name[0] = CTL_KERN;
2403 	name[1] = KERN_PROC;
2404 	name[2] = KERN_PROC_AUXV;
2405 	name[3] = pid;
2406 	len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
2407 	auxv = malloc(len);
2408 	if (auxv == NULL) {
2409 		warn("malloc(%zu)", len);
2410 		return (NULL);
2411 	}
2412 	if (sysctl(name, 4, auxv, &len, NULL, 0) == -1) {
2413 		if (errno != ESRCH && errno != EPERM)
2414 			warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2415 		free(auxv);
2416 		return (NULL);
2417 	}
2418 	*cntp = len / sizeof(Elf_Auxinfo);
2419 	return (auxv);
2420 }
2421 
2422 static Elf_Auxinfo *
2423 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
2424 {
2425 	Elf_Auxinfo *auxv;
2426 	size_t len;
2427 
2428 	auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
2429 	if (auxv == NULL)
2430 		return (NULL);
2431 	*cntp = len / sizeof(Elf_Auxinfo);
2432 	return (auxv);
2433 }
2434 
2435 Elf_Auxinfo *
2436 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
2437     unsigned int *cntp)
2438 {
2439 	switch(procstat->type) {
2440 	case PROCSTAT_KVM:
2441 		warnx("kvm method is not supported");
2442 		return (NULL);
2443 	case PROCSTAT_SYSCTL:
2444 		return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
2445 	case PROCSTAT_CORE:
2446 		return (procstat_getauxv_core(procstat->core, cntp));
2447 	default:
2448 		warnx("unknown access method: %d", procstat->type);
2449 		return (NULL);
2450 	}
2451 }
2452 
2453 void
2454 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
2455 {
2456 
2457 	free(auxv);
2458 }
2459 
2460 static struct kinfo_kstack *
2461 procstat_getkstack_sysctl(pid_t pid, int *cntp)
2462 {
2463 	struct kinfo_kstack *kkstp;
2464 	int error, name[4];
2465 	size_t len;
2466 
2467 	name[0] = CTL_KERN;
2468 	name[1] = KERN_PROC;
2469 	name[2] = KERN_PROC_KSTACK;
2470 	name[3] = pid;
2471 
2472 	len = 0;
2473 	error = sysctl(name, 4, NULL, &len, NULL, 0);
2474 	if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
2475 		warn("sysctl: kern.proc.kstack: %d", pid);
2476 		return (NULL);
2477 	}
2478 	if (error == -1 && errno == ENOENT) {
2479 		warnx("sysctl: kern.proc.kstack unavailable"
2480 		    " (options DDB or options STACK required in kernel)");
2481 		return (NULL);
2482 	}
2483 	if (error == -1)
2484 		return (NULL);
2485 	kkstp = malloc(len);
2486 	if (kkstp == NULL) {
2487 		warn("malloc(%zu)", len);
2488 		return (NULL);
2489 	}
2490 	if (sysctl(name, 4, kkstp, &len, NULL, 0) == -1) {
2491 		warn("sysctl: kern.proc.pid: %d", pid);
2492 		free(kkstp);
2493 		return (NULL);
2494 	}
2495 	*cntp = len / sizeof(*kkstp);
2496 
2497 	return (kkstp);
2498 }
2499 
2500 struct kinfo_kstack *
2501 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
2502     unsigned int *cntp)
2503 {
2504 	switch(procstat->type) {
2505 	case PROCSTAT_KVM:
2506 		warnx("kvm method is not supported");
2507 		return (NULL);
2508 	case PROCSTAT_SYSCTL:
2509 		return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
2510 	case PROCSTAT_CORE:
2511 		warnx("core method is not supported");
2512 		return (NULL);
2513 	default:
2514 		warnx("unknown access method: %d", procstat->type);
2515 		return (NULL);
2516 	}
2517 }
2518 
2519 void
2520 procstat_freekstack(struct procstat *procstat __unused,
2521     struct kinfo_kstack *kkstp)
2522 {
2523 
2524 	free(kkstp);
2525 }
2526