1 /*- 2 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org> 3 * Copyright (c) 1988, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by the University of 17 * California, Berkeley and its contributors. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/elf.h> 40 #include <sys/time.h> 41 #include <sys/resourcevar.h> 42 #define _WANT_UCRED 43 #include <sys/ucred.h> 44 #undef _WANT_UCRED 45 #include <sys/proc.h> 46 #include <sys/user.h> 47 #include <sys/stat.h> 48 #include <sys/vnode.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/domain.h> 52 #include <sys/protosw.h> 53 #include <sys/un.h> 54 #include <sys/unpcb.h> 55 #include <sys/sysctl.h> 56 #include <sys/tty.h> 57 #include <sys/filedesc.h> 58 #include <sys/queue.h> 59 #define _WANT_FILE 60 #include <sys/file.h> 61 #include <sys/conf.h> 62 #include <sys/ksem.h> 63 #include <sys/mman.h> 64 #include <sys/capsicum.h> 65 #define _KERNEL 66 #include <sys/mount.h> 67 #include <sys/pipe.h> 68 #include <ufs/ufs/quota.h> 69 #include <ufs/ufs/inode.h> 70 #include <fs/devfs/devfs.h> 71 #include <fs/devfs/devfs_int.h> 72 #undef _KERNEL 73 #include <nfs/nfsproto.h> 74 #include <nfsclient/nfs.h> 75 #include <nfsclient/nfsnode.h> 76 77 #include <vm/vm.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_object.h> 80 81 #include <net/route.h> 82 #include <netinet/in.h> 83 #include <netinet/in_systm.h> 84 #include <netinet/ip.h> 85 #include <netinet/in_pcb.h> 86 87 #include <assert.h> 88 #include <ctype.h> 89 #include <err.h> 90 #include <fcntl.h> 91 #include <kvm.h> 92 #include <libutil.h> 93 #include <limits.h> 94 #include <paths.h> 95 #include <pwd.h> 96 #include <stdio.h> 97 #include <stdlib.h> 98 #include <stddef.h> 99 #include <string.h> 100 #include <unistd.h> 101 #include <netdb.h> 102 103 #include <libprocstat.h> 104 #include "libprocstat_internal.h" 105 #include "common_kvm.h" 106 #include "core.h" 107 108 int statfs(const char *, struct statfs *); /* XXX */ 109 110 #define PROCSTAT_KVM 1 111 #define PROCSTAT_SYSCTL 2 112 #define PROCSTAT_CORE 3 113 114 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, 115 size_t nchr, int env); 116 static char *getmnton(kvm_t *kd, struct mount *m); 117 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, 118 int *cntp); 119 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, 120 unsigned int *cntp); 121 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); 122 static struct filestat_list *procstat_getfiles_kvm( 123 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 124 static struct filestat_list *procstat_getfiles_sysctl( 125 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 126 static int procstat_get_pipe_info_sysctl(struct filestat *fst, 127 struct pipestat *pipe, char *errbuf); 128 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 129 struct pipestat *pipe, char *errbuf); 130 static int procstat_get_pts_info_sysctl(struct filestat *fst, 131 struct ptsstat *pts, char *errbuf); 132 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 133 struct ptsstat *pts, char *errbuf); 134 static int procstat_get_sem_info_sysctl(struct filestat *fst, 135 struct semstat *sem, char *errbuf); 136 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 137 struct semstat *sem, char *errbuf); 138 static int procstat_get_shm_info_sysctl(struct filestat *fst, 139 struct shmstat *shm, char *errbuf); 140 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 141 struct shmstat *shm, char *errbuf); 142 static int procstat_get_socket_info_sysctl(struct filestat *fst, 143 struct sockstat *sock, char *errbuf); 144 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 145 struct sockstat *sock, char *errbuf); 146 static int to_filestat_flags(int flags); 147 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 148 struct vnstat *vn, char *errbuf); 149 static int procstat_get_vnode_info_sysctl(struct filestat *fst, 150 struct vnstat *vn, char *errbuf); 151 static gid_t *procstat_getgroups_core(struct procstat_core *core, 152 unsigned int *count); 153 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, 154 unsigned int *count); 155 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); 156 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, 157 int *cntp); 158 static int procstat_getosrel_core(struct procstat_core *core, 159 int *osrelp); 160 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, 161 int *osrelp); 162 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); 163 static int procstat_getpathname_core(struct procstat_core *core, 164 char *pathname, size_t maxlen); 165 static int procstat_getpathname_sysctl(pid_t pid, char *pathname, 166 size_t maxlen); 167 static int procstat_getrlimit_core(struct procstat_core *core, int which, 168 struct rlimit* rlimit); 169 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, 170 int which, struct rlimit* rlimit); 171 static int procstat_getrlimit_sysctl(pid_t pid, int which, 172 struct rlimit* rlimit); 173 static int procstat_getumask_core(struct procstat_core *core, 174 unsigned short *maskp); 175 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, 176 unsigned short *maskp); 177 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); 178 static int vntype2psfsttype(int type); 179 180 void 181 procstat_close(struct procstat *procstat) 182 { 183 184 assert(procstat); 185 if (procstat->type == PROCSTAT_KVM) 186 kvm_close(procstat->kd); 187 else if (procstat->type == PROCSTAT_CORE) 188 procstat_core_close(procstat->core); 189 procstat_freeargv(procstat); 190 procstat_freeenvv(procstat); 191 free(procstat); 192 } 193 194 struct procstat * 195 procstat_open_sysctl(void) 196 { 197 struct procstat *procstat; 198 199 procstat = calloc(1, sizeof(*procstat)); 200 if (procstat == NULL) { 201 warn("malloc()"); 202 return (NULL); 203 } 204 procstat->type = PROCSTAT_SYSCTL; 205 return (procstat); 206 } 207 208 struct procstat * 209 procstat_open_kvm(const char *nlistf, const char *memf) 210 { 211 struct procstat *procstat; 212 kvm_t *kd; 213 char buf[_POSIX2_LINE_MAX]; 214 215 procstat = calloc(1, sizeof(*procstat)); 216 if (procstat == NULL) { 217 warn("malloc()"); 218 return (NULL); 219 } 220 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); 221 if (kd == NULL) { 222 warnx("kvm_openfiles(): %s", buf); 223 free(procstat); 224 return (NULL); 225 } 226 procstat->type = PROCSTAT_KVM; 227 procstat->kd = kd; 228 return (procstat); 229 } 230 231 struct procstat * 232 procstat_open_core(const char *filename) 233 { 234 struct procstat *procstat; 235 struct procstat_core *core; 236 237 procstat = calloc(1, sizeof(*procstat)); 238 if (procstat == NULL) { 239 warn("malloc()"); 240 return (NULL); 241 } 242 core = procstat_core_open(filename); 243 if (core == NULL) { 244 free(procstat); 245 return (NULL); 246 } 247 procstat->type = PROCSTAT_CORE; 248 procstat->core = core; 249 return (procstat); 250 } 251 252 struct kinfo_proc * 253 procstat_getprocs(struct procstat *procstat, int what, int arg, 254 unsigned int *count) 255 { 256 struct kinfo_proc *p0, *p; 257 size_t len, olen; 258 int name[4]; 259 int cnt; 260 int error; 261 262 assert(procstat); 263 assert(count); 264 p = NULL; 265 if (procstat->type == PROCSTAT_KVM) { 266 *count = 0; 267 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); 268 if (p0 == NULL || cnt <= 0) 269 return (NULL); 270 *count = cnt; 271 len = *count * sizeof(*p); 272 p = malloc(len); 273 if (p == NULL) { 274 warnx("malloc(%zu)", len); 275 goto fail; 276 } 277 bcopy(p0, p, len); 278 return (p); 279 } else if (procstat->type == PROCSTAT_SYSCTL) { 280 len = 0; 281 name[0] = CTL_KERN; 282 name[1] = KERN_PROC; 283 name[2] = what; 284 name[3] = arg; 285 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 286 if (error < 0 && errno != EPERM) { 287 warn("sysctl(kern.proc)"); 288 goto fail; 289 } 290 if (len == 0) { 291 warnx("no processes?"); 292 goto fail; 293 } 294 do { 295 len += len / 10; 296 p = reallocf(p, len); 297 if (p == NULL) { 298 warnx("reallocf(%zu)", len); 299 goto fail; 300 } 301 olen = len; 302 error = sysctl(name, nitems(name), p, &len, NULL, 0); 303 } while (error < 0 && errno == ENOMEM && olen == len); 304 if (error < 0 && errno != EPERM) { 305 warn("sysctl(kern.proc)"); 306 goto fail; 307 } 308 /* Perform simple consistency checks. */ 309 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 310 warnx("kinfo_proc structure size mismatch (len = %zu)", len); 311 goto fail; 312 } 313 *count = len / sizeof(*p); 314 return (p); 315 } else if (procstat->type == PROCSTAT_CORE) { 316 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, 317 &len); 318 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 319 warnx("kinfo_proc structure size mismatch"); 320 goto fail; 321 } 322 *count = len / sizeof(*p); 323 return (p); 324 } else { 325 warnx("unknown access method: %d", procstat->type); 326 return (NULL); 327 } 328 fail: 329 if (p) 330 free(p); 331 return (NULL); 332 } 333 334 void 335 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) 336 { 337 338 if (p != NULL) 339 free(p); 340 p = NULL; 341 } 342 343 struct filestat_list * 344 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 345 { 346 347 switch(procstat->type) { 348 case PROCSTAT_KVM: 349 return (procstat_getfiles_kvm(procstat, kp, mmapped)); 350 case PROCSTAT_SYSCTL: 351 case PROCSTAT_CORE: 352 return (procstat_getfiles_sysctl(procstat, kp, mmapped)); 353 default: 354 warnx("unknown access method: %d", procstat->type); 355 return (NULL); 356 } 357 } 358 359 void 360 procstat_freefiles(struct procstat *procstat, struct filestat_list *head) 361 { 362 struct filestat *fst, *tmp; 363 364 STAILQ_FOREACH_SAFE(fst, head, next, tmp) { 365 if (fst->fs_path != NULL) 366 free(fst->fs_path); 367 free(fst); 368 } 369 free(head); 370 if (procstat->vmentries != NULL) { 371 free(procstat->vmentries); 372 procstat->vmentries = NULL; 373 } 374 if (procstat->files != NULL) { 375 free(procstat->files); 376 procstat->files = NULL; 377 } 378 } 379 380 static struct filestat * 381 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, 382 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp) 383 { 384 struct filestat *entry; 385 386 entry = calloc(1, sizeof(*entry)); 387 if (entry == NULL) { 388 warn("malloc()"); 389 return (NULL); 390 } 391 entry->fs_typedep = typedep; 392 entry->fs_fflags = fflags; 393 entry->fs_uflags = uflags; 394 entry->fs_fd = fd; 395 entry->fs_type = type; 396 entry->fs_ref_count = refcount; 397 entry->fs_offset = offset; 398 entry->fs_path = path; 399 if (cap_rightsp != NULL) 400 entry->fs_cap_rights = *cap_rightsp; 401 else 402 cap_rights_init(&entry->fs_cap_rights); 403 return (entry); 404 } 405 406 static struct vnode * 407 getctty(kvm_t *kd, struct kinfo_proc *kp) 408 { 409 struct pgrp pgrp; 410 struct proc proc; 411 struct session sess; 412 int error; 413 414 assert(kp); 415 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 416 sizeof(proc)); 417 if (error == 0) { 418 warnx("can't read proc struct at %p for pid %d", 419 kp->ki_paddr, kp->ki_pid); 420 return (NULL); 421 } 422 if (proc.p_pgrp == NULL) 423 return (NULL); 424 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, 425 sizeof(pgrp)); 426 if (error == 0) { 427 warnx("can't read pgrp struct at %p for pid %d", 428 proc.p_pgrp, kp->ki_pid); 429 return (NULL); 430 } 431 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, 432 sizeof(sess)); 433 if (error == 0) { 434 warnx("can't read session struct at %p for pid %d", 435 pgrp.pg_session, kp->ki_pid); 436 return (NULL); 437 } 438 return (sess.s_ttyvp); 439 } 440 441 static struct filestat_list * 442 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 443 { 444 struct file file; 445 struct filedesc filed; 446 struct vm_map_entry vmentry; 447 struct vm_object object; 448 struct vmspace vmspace; 449 vm_map_entry_t entryp; 450 vm_map_t map; 451 vm_object_t objp; 452 struct vnode *vp; 453 struct file **ofiles; 454 struct filestat *entry; 455 struct filestat_list *head; 456 kvm_t *kd; 457 void *data; 458 int i, fflags; 459 int prot, type; 460 unsigned int nfiles; 461 462 assert(procstat); 463 kd = procstat->kd; 464 if (kd == NULL) 465 return (NULL); 466 if (kp->ki_fd == NULL) 467 return (NULL); 468 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, 469 sizeof(filed))) { 470 warnx("can't read filedesc at %p", (void *)kp->ki_fd); 471 return (NULL); 472 } 473 474 /* 475 * Allocate list head. 476 */ 477 head = malloc(sizeof(*head)); 478 if (head == NULL) 479 return (NULL); 480 STAILQ_INIT(head); 481 482 /* root directory vnode, if one. */ 483 if (filed.fd_rdir) { 484 entry = filestat_new_entry(filed.fd_rdir, PS_FST_TYPE_VNODE, -1, 485 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL); 486 if (entry != NULL) 487 STAILQ_INSERT_TAIL(head, entry, next); 488 } 489 /* current working directory vnode. */ 490 if (filed.fd_cdir) { 491 entry = filestat_new_entry(filed.fd_cdir, PS_FST_TYPE_VNODE, -1, 492 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL); 493 if (entry != NULL) 494 STAILQ_INSERT_TAIL(head, entry, next); 495 } 496 /* jail root, if any. */ 497 if (filed.fd_jdir) { 498 entry = filestat_new_entry(filed.fd_jdir, PS_FST_TYPE_VNODE, -1, 499 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL); 500 if (entry != NULL) 501 STAILQ_INSERT_TAIL(head, entry, next); 502 } 503 /* ktrace vnode, if one */ 504 if (kp->ki_tracep) { 505 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, 506 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 507 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL); 508 if (entry != NULL) 509 STAILQ_INSERT_TAIL(head, entry, next); 510 } 511 /* text vnode, if one */ 512 if (kp->ki_textvp) { 513 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, 514 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL); 515 if (entry != NULL) 516 STAILQ_INSERT_TAIL(head, entry, next); 517 } 518 /* Controlling terminal. */ 519 if ((vp = getctty(kd, kp)) != NULL) { 520 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, 521 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 522 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL); 523 if (entry != NULL) 524 STAILQ_INSERT_TAIL(head, entry, next); 525 } 526 527 nfiles = filed.fd_lastfile + 1; 528 ofiles = malloc(nfiles * sizeof(struct file *)); 529 if (ofiles == NULL) { 530 warn("malloc(%zu)", nfiles * sizeof(struct file *)); 531 goto do_mmapped; 532 } 533 if (!kvm_read_all(kd, (unsigned long)filed.fd_ofiles, ofiles, 534 nfiles * sizeof(struct file *))) { 535 warnx("cannot read file structures at %p", 536 (void *)filed.fd_ofiles); 537 free(ofiles); 538 goto do_mmapped; 539 } 540 for (i = 0; i <= filed.fd_lastfile; i++) { 541 if (ofiles[i] == NULL) 542 continue; 543 if (!kvm_read_all(kd, (unsigned long)ofiles[i], &file, 544 sizeof(struct file))) { 545 warnx("can't read file %d at %p", i, 546 (void *)ofiles[i]); 547 continue; 548 } 549 switch (file.f_type) { 550 case DTYPE_VNODE: 551 type = PS_FST_TYPE_VNODE; 552 data = file.f_vnode; 553 break; 554 case DTYPE_SOCKET: 555 type = PS_FST_TYPE_SOCKET; 556 data = file.f_data; 557 break; 558 case DTYPE_PIPE: 559 type = PS_FST_TYPE_PIPE; 560 data = file.f_data; 561 break; 562 case DTYPE_FIFO: 563 type = PS_FST_TYPE_FIFO; 564 data = file.f_vnode; 565 break; 566 #ifdef DTYPE_PTS 567 case DTYPE_PTS: 568 type = PS_FST_TYPE_PTS; 569 data = file.f_data; 570 break; 571 #endif 572 case DTYPE_SEM: 573 type = PS_FST_TYPE_SEM; 574 data = file.f_data; 575 break; 576 case DTYPE_SHM: 577 type = PS_FST_TYPE_SHM; 578 data = file.f_data; 579 break; 580 default: 581 continue; 582 } 583 /* XXXRW: No capability rights support for kvm yet. */ 584 entry = filestat_new_entry(data, type, i, 585 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL); 586 if (entry != NULL) 587 STAILQ_INSERT_TAIL(head, entry, next); 588 } 589 free(ofiles); 590 591 do_mmapped: 592 593 /* 594 * Process mmapped files if requested. 595 */ 596 if (mmapped) { 597 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, 598 sizeof(vmspace))) { 599 warnx("can't read vmspace at %p", 600 (void *)kp->ki_vmspace); 601 goto exit; 602 } 603 map = &vmspace.vm_map; 604 605 for (entryp = map->header.next; 606 entryp != &kp->ki_vmspace->vm_map.header; 607 entryp = vmentry.next) { 608 if (!kvm_read_all(kd, (unsigned long)entryp, &vmentry, 609 sizeof(vmentry))) { 610 warnx("can't read vm_map_entry at %p", 611 (void *)entryp); 612 continue; 613 } 614 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) 615 continue; 616 if ((objp = vmentry.object.vm_object) == NULL) 617 continue; 618 for (; objp; objp = object.backing_object) { 619 if (!kvm_read_all(kd, (unsigned long)objp, 620 &object, sizeof(object))) { 621 warnx("can't read vm_object at %p", 622 (void *)objp); 623 break; 624 } 625 } 626 627 /* We want only vnode objects. */ 628 if (object.type != OBJT_VNODE) 629 continue; 630 631 prot = vmentry.protection; 632 fflags = 0; 633 if (prot & VM_PROT_READ) 634 fflags = PS_FST_FFLAG_READ; 635 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && 636 prot & VM_PROT_WRITE) 637 fflags |= PS_FST_FFLAG_WRITE; 638 639 /* 640 * Create filestat entry. 641 */ 642 entry = filestat_new_entry(object.handle, 643 PS_FST_TYPE_VNODE, -1, fflags, 644 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL); 645 if (entry != NULL) 646 STAILQ_INSERT_TAIL(head, entry, next); 647 } 648 } 649 exit: 650 return (head); 651 } 652 653 /* 654 * kinfo types to filestat translation. 655 */ 656 static int 657 kinfo_type2fst(int kftype) 658 { 659 static struct { 660 int kf_type; 661 int fst_type; 662 } kftypes2fst[] = { 663 { KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO }, 664 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, 665 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, 666 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, 667 { KF_TYPE_NONE, PS_FST_TYPE_NONE }, 668 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, 669 { KF_TYPE_PTS, PS_FST_TYPE_PTS }, 670 { KF_TYPE_SEM, PS_FST_TYPE_SEM }, 671 { KF_TYPE_SHM, PS_FST_TYPE_SHM }, 672 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, 673 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, 674 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } 675 }; 676 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) 677 unsigned int i; 678 679 for (i = 0; i < NKFTYPES; i++) 680 if (kftypes2fst[i].kf_type == kftype) 681 break; 682 if (i == NKFTYPES) 683 return (PS_FST_TYPE_UNKNOWN); 684 return (kftypes2fst[i].fst_type); 685 } 686 687 /* 688 * kinfo flags to filestat translation. 689 */ 690 static int 691 kinfo_fflags2fst(int kfflags) 692 { 693 static struct { 694 int kf_flag; 695 int fst_flag; 696 } kfflags2fst[] = { 697 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, 698 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, 699 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, 700 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, 701 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, 702 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, 703 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, 704 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, 705 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, 706 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 707 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 708 { KF_FLAG_READ, PS_FST_FFLAG_READ }, 709 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, 710 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, 711 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } 712 }; 713 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) 714 unsigned int i; 715 int flags; 716 717 flags = 0; 718 for (i = 0; i < NKFFLAGS; i++) 719 if ((kfflags & kfflags2fst[i].kf_flag) != 0) 720 flags |= kfflags2fst[i].fst_flag; 721 return (flags); 722 } 723 724 static int 725 kinfo_uflags2fst(int fd) 726 { 727 728 switch (fd) { 729 case KF_FD_TYPE_CTTY: 730 return (PS_FST_UFLAG_CTTY); 731 case KF_FD_TYPE_CWD: 732 return (PS_FST_UFLAG_CDIR); 733 case KF_FD_TYPE_JAIL: 734 return (PS_FST_UFLAG_JAIL); 735 case KF_FD_TYPE_TEXT: 736 return (PS_FST_UFLAG_TEXT); 737 case KF_FD_TYPE_TRACE: 738 return (PS_FST_UFLAG_TRACE); 739 case KF_FD_TYPE_ROOT: 740 return (PS_FST_UFLAG_RDIR); 741 } 742 return (0); 743 } 744 745 static struct kinfo_file * 746 kinfo_getfile_core(struct procstat_core *core, int *cntp) 747 { 748 int cnt; 749 size_t len; 750 char *buf, *bp, *eb; 751 struct kinfo_file *kif, *kp, *kf; 752 753 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); 754 if (buf == NULL) 755 return (NULL); 756 /* 757 * XXXMG: The code below is just copy&past from libutil. 758 * The code duplication can be avoided if libutil 759 * is extended to provide something like: 760 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, 761 * size_t len, int *cntp); 762 */ 763 764 /* Pass 1: count items */ 765 cnt = 0; 766 bp = buf; 767 eb = buf + len; 768 while (bp < eb) { 769 kf = (struct kinfo_file *)(uintptr_t)bp; 770 if (kf->kf_structsize == 0) 771 break; 772 bp += kf->kf_structsize; 773 cnt++; 774 } 775 776 kif = calloc(cnt, sizeof(*kif)); 777 if (kif == NULL) { 778 free(buf); 779 return (NULL); 780 } 781 bp = buf; 782 eb = buf + len; 783 kp = kif; 784 /* Pass 2: unpack */ 785 while (bp < eb) { 786 kf = (struct kinfo_file *)(uintptr_t)bp; 787 if (kf->kf_structsize == 0) 788 break; 789 /* Copy/expand into pre-zeroed buffer */ 790 memcpy(kp, kf, kf->kf_structsize); 791 /* Advance to next packed record */ 792 bp += kf->kf_structsize; 793 /* Set field size to fixed length, advance */ 794 kp->kf_structsize = sizeof(*kp); 795 kp++; 796 } 797 free(buf); 798 *cntp = cnt; 799 return (kif); /* Caller must free() return value */ 800 } 801 802 static struct filestat_list * 803 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, 804 int mmapped) 805 { 806 struct kinfo_file *kif, *files; 807 struct kinfo_vmentry *kve, *vmentries; 808 struct filestat_list *head; 809 struct filestat *entry; 810 char *path; 811 off_t offset; 812 int cnt, fd, fflags; 813 int i, type, uflags; 814 int refcount; 815 cap_rights_t cap_rights; 816 817 assert(kp); 818 if (kp->ki_fd == NULL) 819 return (NULL); 820 switch(procstat->type) { 821 case PROCSTAT_SYSCTL: 822 files = kinfo_getfile(kp->ki_pid, &cnt); 823 break; 824 case PROCSTAT_CORE: 825 files = kinfo_getfile_core(procstat->core, &cnt); 826 break; 827 default: 828 assert(!"invalid type"); 829 } 830 if (files == NULL && errno != EPERM) { 831 warn("kinfo_getfile()"); 832 return (NULL); 833 } 834 procstat->files = files; 835 836 /* 837 * Allocate list head. 838 */ 839 head = malloc(sizeof(*head)); 840 if (head == NULL) 841 return (NULL); 842 STAILQ_INIT(head); 843 for (i = 0; i < cnt; i++) { 844 kif = &files[i]; 845 846 type = kinfo_type2fst(kif->kf_type); 847 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; 848 fflags = kinfo_fflags2fst(kif->kf_flags); 849 uflags = kinfo_uflags2fst(kif->kf_fd); 850 refcount = kif->kf_ref_count; 851 offset = kif->kf_offset; 852 if (*kif->kf_path != '\0') 853 path = strdup(kif->kf_path); 854 else 855 path = NULL; 856 cap_rights = kif->kf_cap_rights; 857 858 /* 859 * Create filestat entry. 860 */ 861 entry = filestat_new_entry(kif, type, fd, fflags, uflags, 862 refcount, offset, path, &cap_rights); 863 if (entry != NULL) 864 STAILQ_INSERT_TAIL(head, entry, next); 865 } 866 if (mmapped != 0) { 867 vmentries = procstat_getvmmap(procstat, kp, &cnt); 868 procstat->vmentries = vmentries; 869 if (vmentries == NULL || cnt == 0) 870 goto fail; 871 for (i = 0; i < cnt; i++) { 872 kve = &vmentries[i]; 873 if (kve->kve_type != KVME_TYPE_VNODE) 874 continue; 875 fflags = 0; 876 if (kve->kve_protection & KVME_PROT_READ) 877 fflags = PS_FST_FFLAG_READ; 878 if ((kve->kve_flags & KVME_FLAG_COW) == 0 && 879 kve->kve_protection & KVME_PROT_WRITE) 880 fflags |= PS_FST_FFLAG_WRITE; 881 offset = kve->kve_offset; 882 refcount = kve->kve_ref_count; 883 if (*kve->kve_path != '\0') 884 path = strdup(kve->kve_path); 885 else 886 path = NULL; 887 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, 888 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, 889 NULL); 890 if (entry != NULL) 891 STAILQ_INSERT_TAIL(head, entry, next); 892 } 893 } 894 fail: 895 return (head); 896 } 897 898 int 899 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, 900 struct pipestat *ps, char *errbuf) 901 { 902 903 assert(ps); 904 if (procstat->type == PROCSTAT_KVM) { 905 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, 906 errbuf)); 907 } else if (procstat->type == PROCSTAT_SYSCTL || 908 procstat->type == PROCSTAT_CORE) { 909 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); 910 } else { 911 warnx("unknown access method: %d", procstat->type); 912 if (errbuf != NULL) 913 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 914 return (1); 915 } 916 } 917 918 static int 919 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 920 struct pipestat *ps, char *errbuf) 921 { 922 struct pipe pi; 923 void *pipep; 924 925 assert(kd); 926 assert(ps); 927 assert(fst); 928 bzero(ps, sizeof(*ps)); 929 pipep = fst->fs_typedep; 930 if (pipep == NULL) 931 goto fail; 932 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { 933 warnx("can't read pipe at %p", (void *)pipep); 934 goto fail; 935 } 936 ps->addr = (uintptr_t)pipep; 937 ps->peer = (uintptr_t)pi.pipe_peer; 938 ps->buffer_cnt = pi.pipe_buffer.cnt; 939 return (0); 940 941 fail: 942 if (errbuf != NULL) 943 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 944 return (1); 945 } 946 947 static int 948 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, 949 char *errbuf __unused) 950 { 951 struct kinfo_file *kif; 952 953 assert(ps); 954 assert(fst); 955 bzero(ps, sizeof(*ps)); 956 kif = fst->fs_typedep; 957 if (kif == NULL) 958 return (1); 959 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; 960 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; 961 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; 962 return (0); 963 } 964 965 int 966 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, 967 struct ptsstat *pts, char *errbuf) 968 { 969 970 assert(pts); 971 if (procstat->type == PROCSTAT_KVM) { 972 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, 973 errbuf)); 974 } else if (procstat->type == PROCSTAT_SYSCTL || 975 procstat->type == PROCSTAT_CORE) { 976 return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); 977 } else { 978 warnx("unknown access method: %d", procstat->type); 979 if (errbuf != NULL) 980 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 981 return (1); 982 } 983 } 984 985 static int 986 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 987 struct ptsstat *pts, char *errbuf) 988 { 989 struct tty tty; 990 void *ttyp; 991 992 assert(kd); 993 assert(pts); 994 assert(fst); 995 bzero(pts, sizeof(*pts)); 996 ttyp = fst->fs_typedep; 997 if (ttyp == NULL) 998 goto fail; 999 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { 1000 warnx("can't read tty at %p", (void *)ttyp); 1001 goto fail; 1002 } 1003 pts->dev = dev2udev(kd, tty.t_dev); 1004 (void)kdevtoname(kd, tty.t_dev, pts->devname); 1005 return (0); 1006 1007 fail: 1008 if (errbuf != NULL) 1009 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1010 return (1); 1011 } 1012 1013 static int 1014 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, 1015 char *errbuf __unused) 1016 { 1017 struct kinfo_file *kif; 1018 1019 assert(pts); 1020 assert(fst); 1021 bzero(pts, sizeof(*pts)); 1022 kif = fst->fs_typedep; 1023 if (kif == NULL) 1024 return (0); 1025 pts->dev = kif->kf_un.kf_pts.kf_pts_dev; 1026 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); 1027 return (0); 1028 } 1029 1030 int 1031 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, 1032 struct semstat *sem, char *errbuf) 1033 { 1034 1035 assert(sem); 1036 if (procstat->type == PROCSTAT_KVM) { 1037 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, 1038 errbuf)); 1039 } else if (procstat->type == PROCSTAT_SYSCTL || 1040 procstat->type == PROCSTAT_CORE) { 1041 return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); 1042 } else { 1043 warnx("unknown access method: %d", procstat->type); 1044 if (errbuf != NULL) 1045 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1046 return (1); 1047 } 1048 } 1049 1050 static int 1051 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 1052 struct semstat *sem, char *errbuf) 1053 { 1054 struct ksem ksem; 1055 void *ksemp; 1056 char *path; 1057 int i; 1058 1059 assert(kd); 1060 assert(sem); 1061 assert(fst); 1062 bzero(sem, sizeof(*sem)); 1063 ksemp = fst->fs_typedep; 1064 if (ksemp == NULL) 1065 goto fail; 1066 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, 1067 sizeof(struct ksem))) { 1068 warnx("can't read ksem at %p", (void *)ksemp); 1069 goto fail; 1070 } 1071 sem->mode = S_IFREG | ksem.ks_mode; 1072 sem->value = ksem.ks_value; 1073 if (fst->fs_path == NULL && ksem.ks_path != NULL) { 1074 path = malloc(MAXPATHLEN); 1075 for (i = 0; i < MAXPATHLEN - 1; i++) { 1076 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, 1077 path + i, 1)) 1078 break; 1079 if (path[i] == '\0') 1080 break; 1081 } 1082 path[i] = '\0'; 1083 if (i == 0) 1084 free(path); 1085 else 1086 fst->fs_path = path; 1087 } 1088 return (0); 1089 1090 fail: 1091 if (errbuf != NULL) 1092 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1093 return (1); 1094 } 1095 1096 static int 1097 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, 1098 char *errbuf __unused) 1099 { 1100 struct kinfo_file *kif; 1101 1102 assert(sem); 1103 assert(fst); 1104 bzero(sem, sizeof(*sem)); 1105 kif = fst->fs_typedep; 1106 if (kif == NULL) 1107 return (0); 1108 sem->value = kif->kf_un.kf_sem.kf_sem_value; 1109 sem->mode = kif->kf_un.kf_sem.kf_sem_mode; 1110 return (0); 1111 } 1112 1113 int 1114 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, 1115 struct shmstat *shm, char *errbuf) 1116 { 1117 1118 assert(shm); 1119 if (procstat->type == PROCSTAT_KVM) { 1120 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, 1121 errbuf)); 1122 } else if (procstat->type == PROCSTAT_SYSCTL || 1123 procstat->type == PROCSTAT_CORE) { 1124 return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); 1125 } else { 1126 warnx("unknown access method: %d", procstat->type); 1127 if (errbuf != NULL) 1128 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1129 return (1); 1130 } 1131 } 1132 1133 static int 1134 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 1135 struct shmstat *shm, char *errbuf) 1136 { 1137 struct shmfd shmfd; 1138 void *shmfdp; 1139 char *path; 1140 int i; 1141 1142 assert(kd); 1143 assert(shm); 1144 assert(fst); 1145 bzero(shm, sizeof(*shm)); 1146 shmfdp = fst->fs_typedep; 1147 if (shmfdp == NULL) 1148 goto fail; 1149 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, 1150 sizeof(struct shmfd))) { 1151 warnx("can't read shmfd at %p", (void *)shmfdp); 1152 goto fail; 1153 } 1154 shm->mode = S_IFREG | shmfd.shm_mode; 1155 shm->size = shmfd.shm_size; 1156 if (fst->fs_path == NULL && shmfd.shm_path != NULL) { 1157 path = malloc(MAXPATHLEN); 1158 for (i = 0; i < MAXPATHLEN - 1; i++) { 1159 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, 1160 path + i, 1)) 1161 break; 1162 if (path[i] == '\0') 1163 break; 1164 } 1165 path[i] = '\0'; 1166 if (i == 0) 1167 free(path); 1168 else 1169 fst->fs_path = path; 1170 } 1171 return (0); 1172 1173 fail: 1174 if (errbuf != NULL) 1175 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1176 return (1); 1177 } 1178 1179 static int 1180 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, 1181 char *errbuf __unused) 1182 { 1183 struct kinfo_file *kif; 1184 1185 assert(shm); 1186 assert(fst); 1187 bzero(shm, sizeof(*shm)); 1188 kif = fst->fs_typedep; 1189 if (kif == NULL) 1190 return (0); 1191 shm->size = kif->kf_un.kf_file.kf_file_size; 1192 shm->mode = kif->kf_un.kf_file.kf_file_mode; 1193 return (0); 1194 } 1195 1196 int 1197 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, 1198 struct vnstat *vn, char *errbuf) 1199 { 1200 1201 assert(vn); 1202 if (procstat->type == PROCSTAT_KVM) { 1203 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, 1204 errbuf)); 1205 } else if (procstat->type == PROCSTAT_SYSCTL || 1206 procstat->type == PROCSTAT_CORE) { 1207 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); 1208 } else { 1209 warnx("unknown access method: %d", procstat->type); 1210 if (errbuf != NULL) 1211 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1212 return (1); 1213 } 1214 } 1215 1216 static int 1217 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 1218 struct vnstat *vn, char *errbuf) 1219 { 1220 /* Filesystem specific handlers. */ 1221 #define FSTYPE(fst) {#fst, fst##_filestat} 1222 struct { 1223 const char *tag; 1224 int (*handler)(kvm_t *kd, struct vnode *vp, 1225 struct vnstat *vn); 1226 } fstypes[] = { 1227 FSTYPE(devfs), 1228 FSTYPE(isofs), 1229 FSTYPE(msdosfs), 1230 FSTYPE(nfs), 1231 FSTYPE(smbfs), 1232 FSTYPE(udf), 1233 FSTYPE(ufs), 1234 #ifdef LIBPROCSTAT_ZFS 1235 FSTYPE(zfs), 1236 #endif 1237 }; 1238 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) 1239 struct vnode vnode; 1240 char tagstr[12]; 1241 void *vp; 1242 int error; 1243 unsigned int i; 1244 1245 assert(kd); 1246 assert(vn); 1247 assert(fst); 1248 vp = fst->fs_typedep; 1249 if (vp == NULL) 1250 goto fail; 1251 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); 1252 if (error == 0) { 1253 warnx("can't read vnode at %p", (void *)vp); 1254 goto fail; 1255 } 1256 bzero(vn, sizeof(*vn)); 1257 vn->vn_type = vntype2psfsttype(vnode.v_type); 1258 if (vnode.v_type == VNON || vnode.v_type == VBAD) 1259 return (0); 1260 error = kvm_read_all(kd, (unsigned long)vnode.v_tag, tagstr, 1261 sizeof(tagstr)); 1262 if (error == 0) { 1263 warnx("can't read v_tag at %p", (void *)vp); 1264 goto fail; 1265 } 1266 tagstr[sizeof(tagstr) - 1] = '\0'; 1267 1268 /* 1269 * Find appropriate handler. 1270 */ 1271 for (i = 0; i < NTYPES; i++) 1272 if (!strcmp(fstypes[i].tag, tagstr)) { 1273 if (fstypes[i].handler(kd, &vnode, vn) != 0) { 1274 goto fail; 1275 } 1276 break; 1277 } 1278 if (i == NTYPES) { 1279 if (errbuf != NULL) 1280 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); 1281 return (1); 1282 } 1283 vn->vn_mntdir = getmnton(kd, vnode.v_mount); 1284 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) && 1285 vnode.v_rdev != NULL){ 1286 vn->vn_dev = dev2udev(kd, vnode.v_rdev); 1287 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); 1288 } else { 1289 vn->vn_dev = -1; 1290 } 1291 return (0); 1292 1293 fail: 1294 if (errbuf != NULL) 1295 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1296 return (1); 1297 } 1298 1299 /* 1300 * kinfo vnode type to filestat translation. 1301 */ 1302 static int 1303 kinfo_vtype2fst(int kfvtype) 1304 { 1305 static struct { 1306 int kf_vtype; 1307 int fst_vtype; 1308 } kfvtypes2fst[] = { 1309 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, 1310 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, 1311 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, 1312 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, 1313 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, 1314 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, 1315 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, 1316 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, 1317 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } 1318 }; 1319 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) 1320 unsigned int i; 1321 1322 for (i = 0; i < NKFVTYPES; i++) 1323 if (kfvtypes2fst[i].kf_vtype == kfvtype) 1324 break; 1325 if (i == NKFVTYPES) 1326 return (PS_FST_VTYPE_UNKNOWN); 1327 return (kfvtypes2fst[i].fst_vtype); 1328 } 1329 1330 static int 1331 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, 1332 char *errbuf) 1333 { 1334 struct statfs stbuf; 1335 struct kinfo_file *kif; 1336 struct kinfo_vmentry *kve; 1337 uint64_t fileid; 1338 uint64_t size; 1339 char *name, *path; 1340 uint32_t fsid; 1341 uint16_t mode; 1342 uint32_t rdev; 1343 int vntype; 1344 int status; 1345 1346 assert(fst); 1347 assert(vn); 1348 bzero(vn, sizeof(*vn)); 1349 if (fst->fs_typedep == NULL) 1350 return (1); 1351 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { 1352 kve = fst->fs_typedep; 1353 fileid = kve->kve_vn_fileid; 1354 fsid = kve->kve_vn_fsid; 1355 mode = kve->kve_vn_mode; 1356 path = kve->kve_path; 1357 rdev = kve->kve_vn_rdev; 1358 size = kve->kve_vn_size; 1359 vntype = kinfo_vtype2fst(kve->kve_vn_type); 1360 status = kve->kve_status; 1361 } else { 1362 kif = fst->fs_typedep; 1363 fileid = kif->kf_un.kf_file.kf_file_fileid; 1364 fsid = kif->kf_un.kf_file.kf_file_fsid; 1365 mode = kif->kf_un.kf_file.kf_file_mode; 1366 path = kif->kf_path; 1367 rdev = kif->kf_un.kf_file.kf_file_rdev; 1368 size = kif->kf_un.kf_file.kf_file_size; 1369 vntype = kinfo_vtype2fst(kif->kf_vnode_type); 1370 status = kif->kf_status; 1371 } 1372 vn->vn_type = vntype; 1373 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) 1374 return (0); 1375 if ((status & KF_ATTR_VALID) == 0) { 1376 if (errbuf != NULL) { 1377 snprintf(errbuf, _POSIX2_LINE_MAX, 1378 "? (no info available)"); 1379 } 1380 return (1); 1381 } 1382 if (path && *path) { 1383 statfs(path, &stbuf); 1384 vn->vn_mntdir = strdup(stbuf.f_mntonname); 1385 } else 1386 vn->vn_mntdir = strdup("-"); 1387 vn->vn_dev = rdev; 1388 if (vntype == PS_FST_VTYPE_VBLK) { 1389 name = devname(rdev, S_IFBLK); 1390 if (name != NULL) 1391 strlcpy(vn->vn_devname, name, 1392 sizeof(vn->vn_devname)); 1393 } else if (vntype == PS_FST_VTYPE_VCHR) { 1394 name = devname(vn->vn_dev, S_IFCHR); 1395 if (name != NULL) 1396 strlcpy(vn->vn_devname, name, 1397 sizeof(vn->vn_devname)); 1398 } 1399 vn->vn_fsid = fsid; 1400 vn->vn_fileid = fileid; 1401 vn->vn_size = size; 1402 vn->vn_mode = mode; 1403 return (0); 1404 } 1405 1406 int 1407 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, 1408 struct sockstat *sock, char *errbuf) 1409 { 1410 1411 assert(sock); 1412 if (procstat->type == PROCSTAT_KVM) { 1413 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, 1414 errbuf)); 1415 } else if (procstat->type == PROCSTAT_SYSCTL || 1416 procstat->type == PROCSTAT_CORE) { 1417 return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); 1418 } else { 1419 warnx("unknown access method: %d", procstat->type); 1420 if (errbuf != NULL) 1421 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1422 return (1); 1423 } 1424 } 1425 1426 static int 1427 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 1428 struct sockstat *sock, char *errbuf) 1429 { 1430 struct domain dom; 1431 struct inpcb inpcb; 1432 struct protosw proto; 1433 struct socket s; 1434 struct unpcb unpcb; 1435 ssize_t len; 1436 void *so; 1437 1438 assert(kd); 1439 assert(sock); 1440 assert(fst); 1441 bzero(sock, sizeof(*sock)); 1442 so = fst->fs_typedep; 1443 if (so == NULL) 1444 goto fail; 1445 sock->so_addr = (uintptr_t)so; 1446 /* fill in socket */ 1447 if (!kvm_read_all(kd, (unsigned long)so, &s, 1448 sizeof(struct socket))) { 1449 warnx("can't read sock at %p", (void *)so); 1450 goto fail; 1451 } 1452 /* fill in protosw entry */ 1453 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, 1454 sizeof(struct protosw))) { 1455 warnx("can't read protosw at %p", (void *)s.so_proto); 1456 goto fail; 1457 } 1458 /* fill in domain */ 1459 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, 1460 sizeof(struct domain))) { 1461 warnx("can't read domain at %p", 1462 (void *)proto.pr_domain); 1463 goto fail; 1464 } 1465 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, 1466 sizeof(sock->dname) - 1)) < 0) { 1467 warnx("can't read domain name at %p", (void *)dom.dom_name); 1468 sock->dname[0] = '\0'; 1469 } 1470 else 1471 sock->dname[len] = '\0'; 1472 1473 /* 1474 * Fill in known data. 1475 */ 1476 sock->type = s.so_type; 1477 sock->proto = proto.pr_protocol; 1478 sock->dom_family = dom.dom_family; 1479 sock->so_pcb = (uintptr_t)s.so_pcb; 1480 1481 /* 1482 * Protocol specific data. 1483 */ 1484 switch(dom.dom_family) { 1485 case AF_INET: 1486 case AF_INET6: 1487 if (proto.pr_protocol == IPPROTO_TCP) { 1488 if (s.so_pcb) { 1489 if (kvm_read(kd, (u_long)s.so_pcb, 1490 (char *)&inpcb, sizeof(struct inpcb)) 1491 != sizeof(struct inpcb)) { 1492 warnx("can't read inpcb at %p", 1493 (void *)s.so_pcb); 1494 } else 1495 sock->inp_ppcb = 1496 (uintptr_t)inpcb.inp_ppcb; 1497 } 1498 } 1499 break; 1500 case AF_UNIX: 1501 if (s.so_pcb) { 1502 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, 1503 sizeof(struct unpcb)) != sizeof(struct unpcb)){ 1504 warnx("can't read unpcb at %p", 1505 (void *)s.so_pcb); 1506 } else if (unpcb.unp_conn) { 1507 sock->so_rcv_sb_state = s.so_rcv.sb_state; 1508 sock->so_snd_sb_state = s.so_snd.sb_state; 1509 sock->unp_conn = (uintptr_t)unpcb.unp_conn; 1510 } 1511 } 1512 break; 1513 default: 1514 break; 1515 } 1516 return (0); 1517 1518 fail: 1519 if (errbuf != NULL) 1520 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1521 return (1); 1522 } 1523 1524 static int 1525 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, 1526 char *errbuf __unused) 1527 { 1528 struct kinfo_file *kif; 1529 1530 assert(sock); 1531 assert(fst); 1532 bzero(sock, sizeof(*sock)); 1533 kif = fst->fs_typedep; 1534 if (kif == NULL) 1535 return (0); 1536 1537 /* 1538 * Fill in known data. 1539 */ 1540 sock->type = kif->kf_sock_type; 1541 sock->proto = kif->kf_sock_protocol; 1542 sock->dom_family = kif->kf_sock_domain; 1543 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; 1544 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); 1545 bcopy(&kif->kf_sa_local, &sock->sa_local, kif->kf_sa_local.ss_len); 1546 bcopy(&kif->kf_sa_peer, &sock->sa_peer, kif->kf_sa_peer.ss_len); 1547 1548 /* 1549 * Protocol specific data. 1550 */ 1551 switch(sock->dom_family) { 1552 case AF_INET: 1553 case AF_INET6: 1554 if (sock->proto == IPPROTO_TCP) 1555 sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb; 1556 break; 1557 case AF_UNIX: 1558 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { 1559 sock->so_rcv_sb_state = 1560 kif->kf_un.kf_sock.kf_sock_rcv_sb_state; 1561 sock->so_snd_sb_state = 1562 kif->kf_un.kf_sock.kf_sock_snd_sb_state; 1563 sock->unp_conn = 1564 kif->kf_un.kf_sock.kf_sock_unpconn; 1565 } 1566 break; 1567 default: 1568 break; 1569 } 1570 return (0); 1571 } 1572 1573 /* 1574 * Descriptor flags to filestat translation. 1575 */ 1576 static int 1577 to_filestat_flags(int flags) 1578 { 1579 static struct { 1580 int flag; 1581 int fst_flag; 1582 } fstflags[] = { 1583 { FREAD, PS_FST_FFLAG_READ }, 1584 { FWRITE, PS_FST_FFLAG_WRITE }, 1585 { O_APPEND, PS_FST_FFLAG_APPEND }, 1586 { O_ASYNC, PS_FST_FFLAG_ASYNC }, 1587 { O_CREAT, PS_FST_FFLAG_CREAT }, 1588 { O_DIRECT, PS_FST_FFLAG_DIRECT }, 1589 { O_EXCL, PS_FST_FFLAG_EXCL }, 1590 { O_EXEC, PS_FST_FFLAG_EXEC }, 1591 { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, 1592 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 1593 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 1594 { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, 1595 { O_SYNC, PS_FST_FFLAG_SYNC }, 1596 { O_TRUNC, PS_FST_FFLAG_TRUNC } 1597 }; 1598 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) 1599 int fst_flags; 1600 unsigned int i; 1601 1602 fst_flags = 0; 1603 for (i = 0; i < NFSTFLAGS; i++) 1604 if (flags & fstflags[i].flag) 1605 fst_flags |= fstflags[i].fst_flag; 1606 return (fst_flags); 1607 } 1608 1609 /* 1610 * Vnode type to filestate translation. 1611 */ 1612 static int 1613 vntype2psfsttype(int type) 1614 { 1615 static struct { 1616 int vtype; 1617 int fst_vtype; 1618 } vt2fst[] = { 1619 { VBAD, PS_FST_VTYPE_VBAD }, 1620 { VBLK, PS_FST_VTYPE_VBLK }, 1621 { VCHR, PS_FST_VTYPE_VCHR }, 1622 { VDIR, PS_FST_VTYPE_VDIR }, 1623 { VFIFO, PS_FST_VTYPE_VFIFO }, 1624 { VLNK, PS_FST_VTYPE_VLNK }, 1625 { VNON, PS_FST_VTYPE_VNON }, 1626 { VREG, PS_FST_VTYPE_VREG }, 1627 { VSOCK, PS_FST_VTYPE_VSOCK } 1628 }; 1629 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) 1630 unsigned int i, fst_type; 1631 1632 fst_type = PS_FST_VTYPE_UNKNOWN; 1633 for (i = 0; i < NVFTYPES; i++) { 1634 if (type == vt2fst[i].vtype) { 1635 fst_type = vt2fst[i].fst_vtype; 1636 break; 1637 } 1638 } 1639 return (fst_type); 1640 } 1641 1642 static char * 1643 getmnton(kvm_t *kd, struct mount *m) 1644 { 1645 struct mount mnt; 1646 static struct mtab { 1647 struct mtab *next; 1648 struct mount *m; 1649 char mntonname[MNAMELEN + 1]; 1650 } *mhead = NULL; 1651 struct mtab *mt; 1652 1653 for (mt = mhead; mt != NULL; mt = mt->next) 1654 if (m == mt->m) 1655 return (mt->mntonname); 1656 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { 1657 warnx("can't read mount table at %p", (void *)m); 1658 return (NULL); 1659 } 1660 if ((mt = malloc(sizeof (struct mtab))) == NULL) 1661 err(1, NULL); 1662 mt->m = m; 1663 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); 1664 mt->mntonname[MNAMELEN] = '\0'; 1665 mt->next = mhead; 1666 mhead = mt; 1667 return (mt->mntonname); 1668 } 1669 1670 /* 1671 * Auxiliary structures and functions to get process environment or 1672 * command line arguments. 1673 */ 1674 struct argvec { 1675 char *buf; 1676 size_t bufsize; 1677 char **argv; 1678 size_t argc; 1679 }; 1680 1681 static struct argvec * 1682 argvec_alloc(size_t bufsize) 1683 { 1684 struct argvec *av; 1685 1686 av = malloc(sizeof(*av)); 1687 if (av == NULL) 1688 return (NULL); 1689 av->bufsize = bufsize; 1690 av->buf = malloc(av->bufsize); 1691 if (av->buf == NULL) { 1692 free(av); 1693 return (NULL); 1694 } 1695 av->argc = 32; 1696 av->argv = malloc(sizeof(char *) * av->argc); 1697 if (av->argv == NULL) { 1698 free(av->buf); 1699 free(av); 1700 return (NULL); 1701 } 1702 return av; 1703 } 1704 1705 static void 1706 argvec_free(struct argvec * av) 1707 { 1708 1709 free(av->argv); 1710 free(av->buf); 1711 free(av); 1712 } 1713 1714 static char ** 1715 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) 1716 { 1717 int error, name[4], argc, i; 1718 struct argvec *av, **avp; 1719 enum psc_type type; 1720 size_t len; 1721 char *p, **argv; 1722 1723 assert(procstat); 1724 assert(kp); 1725 if (procstat->type == PROCSTAT_KVM) { 1726 warnx("can't use kvm access method"); 1727 return (NULL); 1728 } 1729 if (procstat->type != PROCSTAT_SYSCTL && 1730 procstat->type != PROCSTAT_CORE) { 1731 warnx("unknown access method: %d", procstat->type); 1732 return (NULL); 1733 } 1734 1735 if (nchr == 0 || nchr > ARG_MAX) 1736 nchr = ARG_MAX; 1737 1738 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); 1739 av = *avp; 1740 1741 if (av == NULL) 1742 { 1743 av = argvec_alloc(nchr); 1744 if (av == NULL) 1745 { 1746 warn("malloc(%zu)", nchr); 1747 return (NULL); 1748 } 1749 *avp = av; 1750 } else if (av->bufsize < nchr) { 1751 av->buf = reallocf(av->buf, nchr); 1752 if (av->buf == NULL) { 1753 warn("malloc(%zu)", nchr); 1754 return (NULL); 1755 } 1756 } 1757 if (procstat->type == PROCSTAT_SYSCTL) { 1758 name[0] = CTL_KERN; 1759 name[1] = KERN_PROC; 1760 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 1761 name[3] = kp->ki_pid; 1762 len = nchr; 1763 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0); 1764 if (error != 0 && errno != ESRCH && errno != EPERM) 1765 warn("sysctl(kern.proc.%s)", env ? "env" : "args"); 1766 if (error != 0 || len == 0) 1767 return (NULL); 1768 } else /* procstat->type == PROCSTAT_CORE */ { 1769 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; 1770 len = nchr; 1771 if (procstat_core_get(procstat->core, type, av->buf, &len) 1772 == NULL) { 1773 return (NULL); 1774 } 1775 } 1776 1777 argv = av->argv; 1778 argc = av->argc; 1779 i = 0; 1780 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { 1781 argv[i++] = p; 1782 if (i < argc) 1783 continue; 1784 /* Grow argv. */ 1785 argc += argc; 1786 argv = realloc(argv, sizeof(char *) * argc); 1787 if (argv == NULL) { 1788 warn("malloc(%zu)", sizeof(char *) * argc); 1789 return (NULL); 1790 } 1791 av->argv = argv; 1792 av->argc = argc; 1793 } 1794 argv[i] = NULL; 1795 1796 return (argv); 1797 } 1798 1799 /* 1800 * Return process command line arguments. 1801 */ 1802 char ** 1803 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1804 { 1805 1806 return (getargv(procstat, p, nchr, 0)); 1807 } 1808 1809 /* 1810 * Free the buffer allocated by procstat_getargv(). 1811 */ 1812 void 1813 procstat_freeargv(struct procstat *procstat) 1814 { 1815 1816 if (procstat->argv != NULL) { 1817 argvec_free(procstat->argv); 1818 procstat->argv = NULL; 1819 } 1820 } 1821 1822 /* 1823 * Return process environment. 1824 */ 1825 char ** 1826 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1827 { 1828 1829 return (getargv(procstat, p, nchr, 1)); 1830 } 1831 1832 /* 1833 * Free the buffer allocated by procstat_getenvv(). 1834 */ 1835 void 1836 procstat_freeenvv(struct procstat *procstat) 1837 { 1838 if (procstat->envv != NULL) { 1839 argvec_free(procstat->envv); 1840 procstat->envv = NULL; 1841 } 1842 } 1843 1844 static struct kinfo_vmentry * 1845 kinfo_getvmmap_core(struct procstat_core *core, int *cntp) 1846 { 1847 int cnt; 1848 size_t len; 1849 char *buf, *bp, *eb; 1850 struct kinfo_vmentry *kiv, *kp, *kv; 1851 1852 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); 1853 if (buf == NULL) 1854 return (NULL); 1855 1856 /* 1857 * XXXMG: The code below is just copy&past from libutil. 1858 * The code duplication can be avoided if libutil 1859 * is extended to provide something like: 1860 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, 1861 * size_t len, int *cntp); 1862 */ 1863 1864 /* Pass 1: count items */ 1865 cnt = 0; 1866 bp = buf; 1867 eb = buf + len; 1868 while (bp < eb) { 1869 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1870 if (kv->kve_structsize == 0) 1871 break; 1872 bp += kv->kve_structsize; 1873 cnt++; 1874 } 1875 1876 kiv = calloc(cnt, sizeof(*kiv)); 1877 if (kiv == NULL) { 1878 free(buf); 1879 return (NULL); 1880 } 1881 bp = buf; 1882 eb = buf + len; 1883 kp = kiv; 1884 /* Pass 2: unpack */ 1885 while (bp < eb) { 1886 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1887 if (kv->kve_structsize == 0) 1888 break; 1889 /* Copy/expand into pre-zeroed buffer */ 1890 memcpy(kp, kv, kv->kve_structsize); 1891 /* Advance to next packed record */ 1892 bp += kv->kve_structsize; 1893 /* Set field size to fixed length, advance */ 1894 kp->kve_structsize = sizeof(*kp); 1895 kp++; 1896 } 1897 free(buf); 1898 *cntp = cnt; 1899 return (kiv); /* Caller must free() return value */ 1900 } 1901 1902 struct kinfo_vmentry * 1903 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, 1904 unsigned int *cntp) 1905 { 1906 1907 switch(procstat->type) { 1908 case PROCSTAT_KVM: 1909 warnx("kvm method is not supported"); 1910 return (NULL); 1911 case PROCSTAT_SYSCTL: 1912 return (kinfo_getvmmap(kp->ki_pid, cntp)); 1913 case PROCSTAT_CORE: 1914 return (kinfo_getvmmap_core(procstat->core, cntp)); 1915 default: 1916 warnx("unknown access method: %d", procstat->type); 1917 return (NULL); 1918 } 1919 } 1920 1921 void 1922 procstat_freevmmap(struct procstat *procstat __unused, 1923 struct kinfo_vmentry *vmmap) 1924 { 1925 1926 free(vmmap); 1927 } 1928 1929 static gid_t * 1930 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) 1931 { 1932 struct proc proc; 1933 struct ucred ucred; 1934 gid_t *groups; 1935 size_t len; 1936 1937 assert(kd != NULL); 1938 assert(kp != NULL); 1939 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 1940 sizeof(proc))) { 1941 warnx("can't read proc struct at %p for pid %d", 1942 kp->ki_paddr, kp->ki_pid); 1943 return (NULL); 1944 } 1945 if (proc.p_ucred == NOCRED) 1946 return (NULL); 1947 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, 1948 sizeof(ucred))) { 1949 warnx("can't read ucred struct at %p for pid %d", 1950 proc.p_ucred, kp->ki_pid); 1951 return (NULL); 1952 } 1953 len = ucred.cr_ngroups * sizeof(gid_t); 1954 groups = malloc(len); 1955 if (groups == NULL) { 1956 warn("malloc(%zu)", len); 1957 return (NULL); 1958 } 1959 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { 1960 warnx("can't read groups at %p for pid %d", 1961 ucred.cr_groups, kp->ki_pid); 1962 free(groups); 1963 return (NULL); 1964 } 1965 *cntp = ucred.cr_ngroups; 1966 return (groups); 1967 } 1968 1969 static gid_t * 1970 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) 1971 { 1972 int mib[4]; 1973 size_t len; 1974 gid_t *groups; 1975 1976 mib[0] = CTL_KERN; 1977 mib[1] = KERN_PROC; 1978 mib[2] = KERN_PROC_GROUPS; 1979 mib[3] = pid; 1980 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); 1981 groups = malloc(len); 1982 if (groups == NULL) { 1983 warn("malloc(%zu)", len); 1984 return (NULL); 1985 } 1986 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) { 1987 warn("sysctl: kern.proc.groups: %d", pid); 1988 free(groups); 1989 return (NULL); 1990 } 1991 *cntp = len / sizeof(gid_t); 1992 return (groups); 1993 } 1994 1995 static gid_t * 1996 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) 1997 { 1998 size_t len; 1999 gid_t *groups; 2000 2001 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); 2002 if (groups == NULL) 2003 return (NULL); 2004 *cntp = len / sizeof(gid_t); 2005 return (groups); 2006 } 2007 2008 gid_t * 2009 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, 2010 unsigned int *cntp) 2011 { 2012 switch(procstat->type) { 2013 case PROCSTAT_KVM: 2014 return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); 2015 case PROCSTAT_SYSCTL: 2016 return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); 2017 case PROCSTAT_CORE: 2018 return (procstat_getgroups_core(procstat->core, cntp)); 2019 default: 2020 warnx("unknown access method: %d", procstat->type); 2021 return (NULL); 2022 } 2023 } 2024 2025 void 2026 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) 2027 { 2028 2029 free(groups); 2030 } 2031 2032 static int 2033 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) 2034 { 2035 struct filedesc fd; 2036 2037 assert(kd != NULL); 2038 assert(kp != NULL); 2039 if (kp->ki_fd == NULL) 2040 return (-1); 2041 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) { 2042 warnx("can't read filedesc at %p for pid %d", kp->ki_fd, 2043 kp->ki_pid); 2044 return (-1); 2045 } 2046 *maskp = fd.fd_cmask; 2047 return (0); 2048 } 2049 2050 static int 2051 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) 2052 { 2053 int error; 2054 int mib[4]; 2055 size_t len; 2056 2057 mib[0] = CTL_KERN; 2058 mib[1] = KERN_PROC; 2059 mib[2] = KERN_PROC_UMASK; 2060 mib[3] = pid; 2061 len = sizeof(*maskp); 2062 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0); 2063 if (error != 0 && errno != ESRCH && errno != EPERM) 2064 warn("sysctl: kern.proc.umask: %d", pid); 2065 return (error); 2066 } 2067 2068 static int 2069 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) 2070 { 2071 size_t len; 2072 unsigned short *buf; 2073 2074 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); 2075 if (buf == NULL) 2076 return (-1); 2077 if (len < sizeof(*maskp)) { 2078 free(buf); 2079 return (-1); 2080 } 2081 *maskp = *buf; 2082 free(buf); 2083 return (0); 2084 } 2085 2086 int 2087 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, 2088 unsigned short *maskp) 2089 { 2090 switch(procstat->type) { 2091 case PROCSTAT_KVM: 2092 return (procstat_getumask_kvm(procstat->kd, kp, maskp)); 2093 case PROCSTAT_SYSCTL: 2094 return (procstat_getumask_sysctl(kp->ki_pid, maskp)); 2095 case PROCSTAT_CORE: 2096 return (procstat_getumask_core(procstat->core, maskp)); 2097 default: 2098 warnx("unknown access method: %d", procstat->type); 2099 return (-1); 2100 } 2101 } 2102 2103 static int 2104 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, 2105 struct rlimit* rlimit) 2106 { 2107 struct proc proc; 2108 unsigned long offset; 2109 2110 assert(kd != NULL); 2111 assert(kp != NULL); 2112 assert(which >= 0 && which < RLIM_NLIMITS); 2113 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2114 sizeof(proc))) { 2115 warnx("can't read proc struct at %p for pid %d", 2116 kp->ki_paddr, kp->ki_pid); 2117 return (-1); 2118 } 2119 if (proc.p_limit == NULL) 2120 return (-1); 2121 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; 2122 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { 2123 warnx("can't read rlimit struct at %p for pid %d", 2124 (void *)offset, kp->ki_pid); 2125 return (-1); 2126 } 2127 return (0); 2128 } 2129 2130 static int 2131 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) 2132 { 2133 int error, name[5]; 2134 size_t len; 2135 2136 name[0] = CTL_KERN; 2137 name[1] = KERN_PROC; 2138 name[2] = KERN_PROC_RLIMIT; 2139 name[3] = pid; 2140 name[4] = which; 2141 len = sizeof(struct rlimit); 2142 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0); 2143 if (error < 0 && errno != ESRCH) { 2144 warn("sysctl: kern.proc.rlimit: %d", pid); 2145 return (-1); 2146 } 2147 if (error < 0 || len != sizeof(struct rlimit)) 2148 return (-1); 2149 return (0); 2150 } 2151 2152 static int 2153 procstat_getrlimit_core(struct procstat_core *core, int which, 2154 struct rlimit* rlimit) 2155 { 2156 size_t len; 2157 struct rlimit* rlimits; 2158 2159 if (which < 0 || which >= RLIM_NLIMITS) { 2160 errno = EINVAL; 2161 warn("getrlimit: which"); 2162 return (-1); 2163 } 2164 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); 2165 if (rlimits == NULL) 2166 return (-1); 2167 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { 2168 free(rlimits); 2169 return (-1); 2170 } 2171 *rlimit = rlimits[which]; 2172 return (0); 2173 } 2174 2175 int 2176 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, 2177 struct rlimit* rlimit) 2178 { 2179 switch(procstat->type) { 2180 case PROCSTAT_KVM: 2181 return (procstat_getrlimit_kvm(procstat->kd, kp, which, 2182 rlimit)); 2183 case PROCSTAT_SYSCTL: 2184 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); 2185 case PROCSTAT_CORE: 2186 return (procstat_getrlimit_core(procstat->core, which, rlimit)); 2187 default: 2188 warnx("unknown access method: %d", procstat->type); 2189 return (-1); 2190 } 2191 } 2192 2193 static int 2194 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) 2195 { 2196 int error, name[4]; 2197 size_t len; 2198 2199 name[0] = CTL_KERN; 2200 name[1] = KERN_PROC; 2201 name[2] = KERN_PROC_PATHNAME; 2202 name[3] = pid; 2203 len = maxlen; 2204 error = sysctl(name, nitems(name), pathname, &len, NULL, 0); 2205 if (error != 0 && errno != ESRCH) 2206 warn("sysctl: kern.proc.pathname: %d", pid); 2207 if (len == 0) 2208 pathname[0] = '\0'; 2209 return (error); 2210 } 2211 2212 static int 2213 procstat_getpathname_core(struct procstat_core *core, char *pathname, 2214 size_t maxlen) 2215 { 2216 struct kinfo_file *files; 2217 int cnt, i, result; 2218 2219 files = kinfo_getfile_core(core, &cnt); 2220 if (files == NULL) 2221 return (-1); 2222 result = -1; 2223 for (i = 0; i < cnt; i++) { 2224 if (files[i].kf_fd != KF_FD_TYPE_TEXT) 2225 continue; 2226 strncpy(pathname, files[i].kf_path, maxlen); 2227 result = 0; 2228 break; 2229 } 2230 free(files); 2231 return (result); 2232 } 2233 2234 int 2235 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, 2236 char *pathname, size_t maxlen) 2237 { 2238 switch(procstat->type) { 2239 case PROCSTAT_KVM: 2240 /* XXX: Return empty string. */ 2241 if (maxlen > 0) 2242 pathname[0] = '\0'; 2243 return (0); 2244 case PROCSTAT_SYSCTL: 2245 return (procstat_getpathname_sysctl(kp->ki_pid, pathname, 2246 maxlen)); 2247 case PROCSTAT_CORE: 2248 return (procstat_getpathname_core(procstat->core, pathname, 2249 maxlen)); 2250 default: 2251 warnx("unknown access method: %d", procstat->type); 2252 return (-1); 2253 } 2254 } 2255 2256 static int 2257 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) 2258 { 2259 struct proc proc; 2260 2261 assert(kd != NULL); 2262 assert(kp != NULL); 2263 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2264 sizeof(proc))) { 2265 warnx("can't read proc struct at %p for pid %d", 2266 kp->ki_paddr, kp->ki_pid); 2267 return (-1); 2268 } 2269 *osrelp = proc.p_osrel; 2270 return (0); 2271 } 2272 2273 static int 2274 procstat_getosrel_sysctl(pid_t pid, int *osrelp) 2275 { 2276 int error, name[4]; 2277 size_t len; 2278 2279 name[0] = CTL_KERN; 2280 name[1] = KERN_PROC; 2281 name[2] = KERN_PROC_OSREL; 2282 name[3] = pid; 2283 len = sizeof(*osrelp); 2284 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0); 2285 if (error != 0 && errno != ESRCH) 2286 warn("sysctl: kern.proc.osrel: %d", pid); 2287 return (error); 2288 } 2289 2290 static int 2291 procstat_getosrel_core(struct procstat_core *core, int *osrelp) 2292 { 2293 size_t len; 2294 int *buf; 2295 2296 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); 2297 if (buf == NULL) 2298 return (-1); 2299 if (len < sizeof(*osrelp)) { 2300 free(buf); 2301 return (-1); 2302 } 2303 *osrelp = *buf; 2304 free(buf); 2305 return (0); 2306 } 2307 2308 int 2309 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) 2310 { 2311 switch(procstat->type) { 2312 case PROCSTAT_KVM: 2313 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); 2314 case PROCSTAT_SYSCTL: 2315 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); 2316 case PROCSTAT_CORE: 2317 return (procstat_getosrel_core(procstat->core, osrelp)); 2318 default: 2319 warnx("unknown access method: %d", procstat->type); 2320 return (-1); 2321 } 2322 } 2323 2324 #define PROC_AUXV_MAX 256 2325 2326 #if __ELF_WORD_SIZE == 64 2327 static const char *elf32_sv_names[] = { 2328 "Linux ELF32", 2329 "FreeBSD ELF32", 2330 }; 2331 2332 static int 2333 is_elf32_sysctl(pid_t pid) 2334 { 2335 int error, name[4]; 2336 size_t len, i; 2337 static char sv_name[256]; 2338 2339 name[0] = CTL_KERN; 2340 name[1] = KERN_PROC; 2341 name[2] = KERN_PROC_SV_NAME; 2342 name[3] = pid; 2343 len = sizeof(sv_name); 2344 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0); 2345 if (error != 0 || len == 0) 2346 return (0); 2347 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { 2348 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) 2349 return (1); 2350 } 2351 return (0); 2352 } 2353 2354 static Elf_Auxinfo * 2355 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) 2356 { 2357 Elf_Auxinfo *auxv; 2358 Elf32_Auxinfo *auxv32; 2359 void *ptr; 2360 size_t len; 2361 unsigned int i, count; 2362 int name[4]; 2363 2364 name[0] = CTL_KERN; 2365 name[1] = KERN_PROC; 2366 name[2] = KERN_PROC_AUXV; 2367 name[3] = pid; 2368 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); 2369 auxv = NULL; 2370 auxv32 = malloc(len); 2371 if (auxv32 == NULL) { 2372 warn("malloc(%zu)", len); 2373 goto out; 2374 } 2375 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) { 2376 if (errno != ESRCH && errno != EPERM) 2377 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2378 goto out; 2379 } 2380 count = len / sizeof(Elf_Auxinfo); 2381 auxv = malloc(count * sizeof(Elf_Auxinfo)); 2382 if (auxv == NULL) { 2383 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); 2384 goto out; 2385 } 2386 for (i = 0; i < count; i++) { 2387 /* 2388 * XXX: We expect that values for a_type on a 32-bit platform 2389 * are directly mapped to values on 64-bit one, which is not 2390 * necessarily true. 2391 */ 2392 auxv[i].a_type = auxv32[i].a_type; 2393 ptr = &auxv32[i].a_un; 2394 auxv[i].a_un.a_val = *((uint32_t *)ptr); 2395 } 2396 *cntp = count; 2397 out: 2398 free(auxv32); 2399 return (auxv); 2400 } 2401 #endif /* __ELF_WORD_SIZE == 64 */ 2402 2403 static Elf_Auxinfo * 2404 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) 2405 { 2406 Elf_Auxinfo *auxv; 2407 int name[4]; 2408 size_t len; 2409 2410 #if __ELF_WORD_SIZE == 64 2411 if (is_elf32_sysctl(pid)) 2412 return (procstat_getauxv32_sysctl(pid, cntp)); 2413 #endif 2414 name[0] = CTL_KERN; 2415 name[1] = KERN_PROC; 2416 name[2] = KERN_PROC_AUXV; 2417 name[3] = pid; 2418 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); 2419 auxv = malloc(len); 2420 if (auxv == NULL) { 2421 warn("malloc(%zu)", len); 2422 return (NULL); 2423 } 2424 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) { 2425 if (errno != ESRCH && errno != EPERM) 2426 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2427 free(auxv); 2428 return (NULL); 2429 } 2430 *cntp = len / sizeof(Elf_Auxinfo); 2431 return (auxv); 2432 } 2433 2434 static Elf_Auxinfo * 2435 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) 2436 { 2437 Elf_Auxinfo *auxv; 2438 size_t len; 2439 2440 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); 2441 if (auxv == NULL) 2442 return (NULL); 2443 *cntp = len / sizeof(Elf_Auxinfo); 2444 return (auxv); 2445 } 2446 2447 Elf_Auxinfo * 2448 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, 2449 unsigned int *cntp) 2450 { 2451 switch(procstat->type) { 2452 case PROCSTAT_KVM: 2453 warnx("kvm method is not supported"); 2454 return (NULL); 2455 case PROCSTAT_SYSCTL: 2456 return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); 2457 case PROCSTAT_CORE: 2458 return (procstat_getauxv_core(procstat->core, cntp)); 2459 default: 2460 warnx("unknown access method: %d", procstat->type); 2461 return (NULL); 2462 } 2463 } 2464 2465 void 2466 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) 2467 { 2468 2469 free(auxv); 2470 } 2471 2472 static struct kinfo_kstack * 2473 procstat_getkstack_sysctl(pid_t pid, int *cntp) 2474 { 2475 struct kinfo_kstack *kkstp; 2476 int error, name[4]; 2477 size_t len; 2478 2479 name[0] = CTL_KERN; 2480 name[1] = KERN_PROC; 2481 name[2] = KERN_PROC_KSTACK; 2482 name[3] = pid; 2483 2484 len = 0; 2485 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 2486 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { 2487 warn("sysctl: kern.proc.kstack: %d", pid); 2488 return (NULL); 2489 } 2490 if (error == -1 && errno == ENOENT) { 2491 warnx("sysctl: kern.proc.kstack unavailable" 2492 " (options DDB or options STACK required in kernel)"); 2493 return (NULL); 2494 } 2495 if (error == -1) 2496 return (NULL); 2497 kkstp = malloc(len); 2498 if (kkstp == NULL) { 2499 warn("malloc(%zu)", len); 2500 return (NULL); 2501 } 2502 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1) { 2503 warn("sysctl: kern.proc.pid: %d", pid); 2504 free(kkstp); 2505 return (NULL); 2506 } 2507 *cntp = len / sizeof(*kkstp); 2508 2509 return (kkstp); 2510 } 2511 2512 struct kinfo_kstack * 2513 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, 2514 unsigned int *cntp) 2515 { 2516 switch(procstat->type) { 2517 case PROCSTAT_KVM: 2518 warnx("kvm method is not supported"); 2519 return (NULL); 2520 case PROCSTAT_SYSCTL: 2521 return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); 2522 case PROCSTAT_CORE: 2523 warnx("core method is not supported"); 2524 return (NULL); 2525 default: 2526 warnx("unknown access method: %d", procstat->type); 2527 return (NULL); 2528 } 2529 } 2530 2531 void 2532 procstat_freekstack(struct procstat *procstat __unused, 2533 struct kinfo_kstack *kkstp) 2534 { 2535 2536 free(kkstp); 2537 } 2538