1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org> 6 * Copyright (c) 1988, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 __FBSDID("$FreeBSD$"); 40 41 #include <sys/param.h> 42 #include <sys/elf.h> 43 #include <sys/time.h> 44 #include <sys/resourcevar.h> 45 #define _WANT_UCRED 46 #include <sys/ucred.h> 47 #undef _WANT_UCRED 48 #include <sys/proc.h> 49 #include <sys/user.h> 50 #include <sys/stat.h> 51 #include <sys/vnode.h> 52 #include <sys/socket.h> 53 #define _WANT_SOCKET 54 #include <sys/socketvar.h> 55 #include <sys/domain.h> 56 #include <sys/protosw.h> 57 #include <sys/un.h> 58 #define _WANT_UNPCB 59 #include <sys/unpcb.h> 60 #include <sys/sysctl.h> 61 #include <sys/tty.h> 62 #include <sys/filedesc.h> 63 #include <sys/queue.h> 64 #define _WANT_FILE 65 #include <sys/file.h> 66 #include <sys/conf.h> 67 #include <sys/ksem.h> 68 #include <sys/mman.h> 69 #include <sys/capsicum.h> 70 #include <sys/ptrace.h> 71 #define _KERNEL 72 #include <sys/mount.h> 73 #include <sys/pipe.h> 74 #include <ufs/ufs/quota.h> 75 #include <ufs/ufs/inode.h> 76 #include <fs/devfs/devfs.h> 77 #include <fs/devfs/devfs_int.h> 78 #undef _KERNEL 79 #include <nfs/nfsproto.h> 80 #include <nfsclient/nfs.h> 81 #include <nfsclient/nfsnode.h> 82 83 #include <vm/vm.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 87 #include <net/route.h> 88 #include <netinet/in.h> 89 #include <netinet/in_systm.h> 90 #include <netinet/ip.h> 91 #define _WANT_INPCB 92 #include <netinet/in_pcb.h> 93 94 #include <assert.h> 95 #include <ctype.h> 96 #include <err.h> 97 #include <fcntl.h> 98 #include <kvm.h> 99 #include <libutil.h> 100 #include <limits.h> 101 #include <paths.h> 102 #include <pwd.h> 103 #include <stdio.h> 104 #include <stdlib.h> 105 #include <stddef.h> 106 #include <string.h> 107 #include <unistd.h> 108 #include <netdb.h> 109 110 #include <libprocstat.h> 111 #include "libprocstat_internal.h" 112 #include "common_kvm.h" 113 #include "core.h" 114 115 int statfs(const char *, struct statfs *); /* XXX */ 116 117 #define PROCSTAT_KVM 1 118 #define PROCSTAT_SYSCTL 2 119 #define PROCSTAT_CORE 3 120 121 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, 122 size_t nchr, int env); 123 static char *getmnton(kvm_t *kd, struct mount *m); 124 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, 125 int *cntp); 126 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, 127 unsigned int *cntp); 128 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); 129 static struct filestat_list *procstat_getfiles_kvm( 130 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 131 static struct filestat_list *procstat_getfiles_sysctl( 132 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 133 static int procstat_get_pipe_info_sysctl(struct filestat *fst, 134 struct pipestat *pipe, char *errbuf); 135 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 136 struct pipestat *pipe, char *errbuf); 137 static int procstat_get_pts_info_sysctl(struct filestat *fst, 138 struct ptsstat *pts, char *errbuf); 139 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 140 struct ptsstat *pts, char *errbuf); 141 static int procstat_get_sem_info_sysctl(struct filestat *fst, 142 struct semstat *sem, char *errbuf); 143 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 144 struct semstat *sem, char *errbuf); 145 static int procstat_get_shm_info_sysctl(struct filestat *fst, 146 struct shmstat *shm, char *errbuf); 147 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 148 struct shmstat *shm, char *errbuf); 149 static int procstat_get_socket_info_sysctl(struct filestat *fst, 150 struct sockstat *sock, char *errbuf); 151 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 152 struct sockstat *sock, char *errbuf); 153 static int to_filestat_flags(int flags); 154 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 155 struct vnstat *vn, char *errbuf); 156 static int procstat_get_vnode_info_sysctl(struct filestat *fst, 157 struct vnstat *vn, char *errbuf); 158 static gid_t *procstat_getgroups_core(struct procstat_core *core, 159 unsigned int *count); 160 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, 161 unsigned int *count); 162 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); 163 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, 164 int *cntp); 165 static int procstat_getosrel_core(struct procstat_core *core, 166 int *osrelp); 167 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, 168 int *osrelp); 169 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); 170 static int procstat_getpathname_core(struct procstat_core *core, 171 char *pathname, size_t maxlen); 172 static int procstat_getpathname_sysctl(pid_t pid, char *pathname, 173 size_t maxlen); 174 static int procstat_getrlimit_core(struct procstat_core *core, int which, 175 struct rlimit* rlimit); 176 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, 177 int which, struct rlimit* rlimit); 178 static int procstat_getrlimit_sysctl(pid_t pid, int which, 179 struct rlimit* rlimit); 180 static int procstat_getumask_core(struct procstat_core *core, 181 unsigned short *maskp); 182 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, 183 unsigned short *maskp); 184 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); 185 static int vntype2psfsttype(int type); 186 187 void 188 procstat_close(struct procstat *procstat) 189 { 190 191 assert(procstat); 192 if (procstat->type == PROCSTAT_KVM) 193 kvm_close(procstat->kd); 194 else if (procstat->type == PROCSTAT_CORE) 195 procstat_core_close(procstat->core); 196 procstat_freeargv(procstat); 197 procstat_freeenvv(procstat); 198 free(procstat); 199 } 200 201 struct procstat * 202 procstat_open_sysctl(void) 203 { 204 struct procstat *procstat; 205 206 procstat = calloc(1, sizeof(*procstat)); 207 if (procstat == NULL) { 208 warn("malloc()"); 209 return (NULL); 210 } 211 procstat->type = PROCSTAT_SYSCTL; 212 return (procstat); 213 } 214 215 struct procstat * 216 procstat_open_kvm(const char *nlistf, const char *memf) 217 { 218 struct procstat *procstat; 219 kvm_t *kd; 220 char buf[_POSIX2_LINE_MAX]; 221 222 procstat = calloc(1, sizeof(*procstat)); 223 if (procstat == NULL) { 224 warn("malloc()"); 225 return (NULL); 226 } 227 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); 228 if (kd == NULL) { 229 warnx("kvm_openfiles(): %s", buf); 230 free(procstat); 231 return (NULL); 232 } 233 procstat->type = PROCSTAT_KVM; 234 procstat->kd = kd; 235 return (procstat); 236 } 237 238 struct procstat * 239 procstat_open_core(const char *filename) 240 { 241 struct procstat *procstat; 242 struct procstat_core *core; 243 244 procstat = calloc(1, sizeof(*procstat)); 245 if (procstat == NULL) { 246 warn("malloc()"); 247 return (NULL); 248 } 249 core = procstat_core_open(filename); 250 if (core == NULL) { 251 free(procstat); 252 return (NULL); 253 } 254 procstat->type = PROCSTAT_CORE; 255 procstat->core = core; 256 return (procstat); 257 } 258 259 struct kinfo_proc * 260 procstat_getprocs(struct procstat *procstat, int what, int arg, 261 unsigned int *count) 262 { 263 struct kinfo_proc *p0, *p; 264 size_t len, olen; 265 int name[4]; 266 int cnt; 267 int error; 268 269 assert(procstat); 270 assert(count); 271 p = NULL; 272 if (procstat->type == PROCSTAT_KVM) { 273 *count = 0; 274 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); 275 if (p0 == NULL || cnt <= 0) 276 return (NULL); 277 *count = cnt; 278 len = *count * sizeof(*p); 279 p = malloc(len); 280 if (p == NULL) { 281 warnx("malloc(%zu)", len); 282 goto fail; 283 } 284 bcopy(p0, p, len); 285 return (p); 286 } else if (procstat->type == PROCSTAT_SYSCTL) { 287 len = 0; 288 name[0] = CTL_KERN; 289 name[1] = KERN_PROC; 290 name[2] = what; 291 name[3] = arg; 292 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 293 if (error < 0 && errno != EPERM) { 294 warn("sysctl(kern.proc)"); 295 goto fail; 296 } 297 if (len == 0) { 298 warnx("no processes?"); 299 goto fail; 300 } 301 do { 302 len += len / 10; 303 p = reallocf(p, len); 304 if (p == NULL) { 305 warnx("reallocf(%zu)", len); 306 goto fail; 307 } 308 olen = len; 309 error = sysctl(name, nitems(name), p, &len, NULL, 0); 310 } while (error < 0 && errno == ENOMEM && olen == len); 311 if (error < 0 && errno != EPERM) { 312 warn("sysctl(kern.proc)"); 313 goto fail; 314 } 315 /* Perform simple consistency checks. */ 316 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 317 warnx("kinfo_proc structure size mismatch (len = %zu)", len); 318 goto fail; 319 } 320 *count = len / sizeof(*p); 321 return (p); 322 } else if (procstat->type == PROCSTAT_CORE) { 323 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, 324 &len); 325 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 326 warnx("kinfo_proc structure size mismatch"); 327 goto fail; 328 } 329 *count = len / sizeof(*p); 330 return (p); 331 } else { 332 warnx("unknown access method: %d", procstat->type); 333 return (NULL); 334 } 335 fail: 336 if (p) 337 free(p); 338 return (NULL); 339 } 340 341 void 342 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) 343 { 344 345 if (p != NULL) 346 free(p); 347 p = NULL; 348 } 349 350 struct filestat_list * 351 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 352 { 353 354 switch(procstat->type) { 355 case PROCSTAT_KVM: 356 return (procstat_getfiles_kvm(procstat, kp, mmapped)); 357 case PROCSTAT_SYSCTL: 358 case PROCSTAT_CORE: 359 return (procstat_getfiles_sysctl(procstat, kp, mmapped)); 360 default: 361 warnx("unknown access method: %d", procstat->type); 362 return (NULL); 363 } 364 } 365 366 void 367 procstat_freefiles(struct procstat *procstat, struct filestat_list *head) 368 { 369 struct filestat *fst, *tmp; 370 371 STAILQ_FOREACH_SAFE(fst, head, next, tmp) { 372 if (fst->fs_path != NULL) 373 free(fst->fs_path); 374 free(fst); 375 } 376 free(head); 377 if (procstat->vmentries != NULL) { 378 free(procstat->vmentries); 379 procstat->vmentries = NULL; 380 } 381 if (procstat->files != NULL) { 382 free(procstat->files); 383 procstat->files = NULL; 384 } 385 } 386 387 static struct filestat * 388 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, 389 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp) 390 { 391 struct filestat *entry; 392 393 entry = calloc(1, sizeof(*entry)); 394 if (entry == NULL) { 395 warn("malloc()"); 396 return (NULL); 397 } 398 entry->fs_typedep = typedep; 399 entry->fs_fflags = fflags; 400 entry->fs_uflags = uflags; 401 entry->fs_fd = fd; 402 entry->fs_type = type; 403 entry->fs_ref_count = refcount; 404 entry->fs_offset = offset; 405 entry->fs_path = path; 406 if (cap_rightsp != NULL) 407 entry->fs_cap_rights = *cap_rightsp; 408 else 409 cap_rights_init(&entry->fs_cap_rights); 410 return (entry); 411 } 412 413 static struct vnode * 414 getctty(kvm_t *kd, struct kinfo_proc *kp) 415 { 416 struct pgrp pgrp; 417 struct proc proc; 418 struct session sess; 419 int error; 420 421 assert(kp); 422 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 423 sizeof(proc)); 424 if (error == 0) { 425 warnx("can't read proc struct at %p for pid %d", 426 kp->ki_paddr, kp->ki_pid); 427 return (NULL); 428 } 429 if (proc.p_pgrp == NULL) 430 return (NULL); 431 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, 432 sizeof(pgrp)); 433 if (error == 0) { 434 warnx("can't read pgrp struct at %p for pid %d", 435 proc.p_pgrp, kp->ki_pid); 436 return (NULL); 437 } 438 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, 439 sizeof(sess)); 440 if (error == 0) { 441 warnx("can't read session struct at %p for pid %d", 442 pgrp.pg_session, kp->ki_pid); 443 return (NULL); 444 } 445 return (sess.s_ttyvp); 446 } 447 448 static int 449 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest) 450 { 451 kvm_t *kd; 452 453 kd = (kvm_t *)token; 454 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest))); 455 } 456 457 static struct filestat_list * 458 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 459 { 460 struct file file; 461 struct filedesc filed; 462 struct pwd pwd; 463 unsigned long pwd_addr; 464 struct vm_map_entry vmentry; 465 struct vm_object object; 466 struct vmspace vmspace; 467 vm_map_entry_t entryp; 468 vm_object_t objp; 469 struct vnode *vp; 470 struct file **ofiles; 471 struct filestat *entry; 472 struct filestat_list *head; 473 kvm_t *kd; 474 void *data; 475 int i, fflags; 476 int prot, type; 477 unsigned int nfiles; 478 bool haspwd; 479 480 assert(procstat); 481 kd = procstat->kd; 482 if (kd == NULL) 483 return (NULL); 484 if (kp->ki_fd == NULL) 485 return (NULL); 486 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, 487 sizeof(filed))) { 488 warnx("can't read filedesc at %p", (void *)kp->ki_fd); 489 return (NULL); 490 } 491 haspwd = false; 492 pwd_addr = (unsigned long)(FILEDESC_KVM_LOAD_PWD(&filed)); 493 if (pwd_addr != 0) { 494 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) { 495 warnx("can't read fd_pwd at %p", (void *)pwd_addr); 496 return (NULL); 497 } 498 haspwd = true; 499 } 500 501 /* 502 * Allocate list head. 503 */ 504 head = malloc(sizeof(*head)); 505 if (head == NULL) 506 return (NULL); 507 STAILQ_INIT(head); 508 509 /* root directory vnode, if one. */ 510 if (haspwd) { 511 if (pwd.pwd_rdir) { 512 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1, 513 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL); 514 if (entry != NULL) 515 STAILQ_INSERT_TAIL(head, entry, next); 516 } 517 /* current working directory vnode. */ 518 if (pwd.pwd_cdir) { 519 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1, 520 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL); 521 if (entry != NULL) 522 STAILQ_INSERT_TAIL(head, entry, next); 523 } 524 /* jail root, if any. */ 525 if (pwd.pwd_jdir) { 526 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1, 527 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL); 528 if (entry != NULL) 529 STAILQ_INSERT_TAIL(head, entry, next); 530 } 531 } 532 /* ktrace vnode, if one */ 533 if (kp->ki_tracep) { 534 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, 535 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 536 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL); 537 if (entry != NULL) 538 STAILQ_INSERT_TAIL(head, entry, next); 539 } 540 /* text vnode, if one */ 541 if (kp->ki_textvp) { 542 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, 543 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL); 544 if (entry != NULL) 545 STAILQ_INSERT_TAIL(head, entry, next); 546 } 547 /* Controlling terminal. */ 548 if ((vp = getctty(kd, kp)) != NULL) { 549 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, 550 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 551 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL); 552 if (entry != NULL) 553 STAILQ_INSERT_TAIL(head, entry, next); 554 } 555 556 nfiles = filed.fd_lastfile + 1; 557 ofiles = malloc(nfiles * sizeof(struct file *)); 558 if (ofiles == NULL) { 559 warn("malloc(%zu)", nfiles * sizeof(struct file *)); 560 goto do_mmapped; 561 } 562 if (!kvm_read_all(kd, (unsigned long)filed.fd_ofiles, ofiles, 563 nfiles * sizeof(struct file *))) { 564 warnx("cannot read file structures at %p", 565 (void *)filed.fd_ofiles); 566 free(ofiles); 567 goto do_mmapped; 568 } 569 for (i = 0; i <= filed.fd_lastfile; i++) { 570 if (ofiles[i] == NULL) 571 continue; 572 if (!kvm_read_all(kd, (unsigned long)ofiles[i], &file, 573 sizeof(struct file))) { 574 warnx("can't read file %d at %p", i, 575 (void *)ofiles[i]); 576 continue; 577 } 578 switch (file.f_type) { 579 case DTYPE_VNODE: 580 type = PS_FST_TYPE_VNODE; 581 data = file.f_vnode; 582 break; 583 case DTYPE_SOCKET: 584 type = PS_FST_TYPE_SOCKET; 585 data = file.f_data; 586 break; 587 case DTYPE_PIPE: 588 type = PS_FST_TYPE_PIPE; 589 data = file.f_data; 590 break; 591 case DTYPE_FIFO: 592 type = PS_FST_TYPE_FIFO; 593 data = file.f_vnode; 594 break; 595 #ifdef DTYPE_PTS 596 case DTYPE_PTS: 597 type = PS_FST_TYPE_PTS; 598 data = file.f_data; 599 break; 600 #endif 601 case DTYPE_SEM: 602 type = PS_FST_TYPE_SEM; 603 data = file.f_data; 604 break; 605 case DTYPE_SHM: 606 type = PS_FST_TYPE_SHM; 607 data = file.f_data; 608 break; 609 case DTYPE_PROCDESC: 610 type = PS_FST_TYPE_PROCDESC; 611 data = file.f_data; 612 break; 613 case DTYPE_DEV: 614 type = PS_FST_TYPE_DEV; 615 data = file.f_data; 616 break; 617 default: 618 continue; 619 } 620 /* XXXRW: No capability rights support for kvm yet. */ 621 entry = filestat_new_entry(data, type, i, 622 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL); 623 if (entry != NULL) 624 STAILQ_INSERT_TAIL(head, entry, next); 625 } 626 free(ofiles); 627 628 do_mmapped: 629 630 /* 631 * Process mmapped files if requested. 632 */ 633 if (mmapped) { 634 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, 635 sizeof(vmspace))) { 636 warnx("can't read vmspace at %p", 637 (void *)kp->ki_vmspace); 638 goto exit; 639 } 640 641 vmentry = vmspace.vm_map.header; 642 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader); 643 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header; 644 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) { 645 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) 646 continue; 647 if ((objp = vmentry.object.vm_object) == NULL) 648 continue; 649 for (; objp; objp = object.backing_object) { 650 if (!kvm_read_all(kd, (unsigned long)objp, 651 &object, sizeof(object))) { 652 warnx("can't read vm_object at %p", 653 (void *)objp); 654 break; 655 } 656 } 657 658 /* We want only vnode objects. */ 659 if (object.type != OBJT_VNODE) 660 continue; 661 662 prot = vmentry.protection; 663 fflags = 0; 664 if (prot & VM_PROT_READ) 665 fflags = PS_FST_FFLAG_READ; 666 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && 667 prot & VM_PROT_WRITE) 668 fflags |= PS_FST_FFLAG_WRITE; 669 670 /* 671 * Create filestat entry. 672 */ 673 entry = filestat_new_entry(object.handle, 674 PS_FST_TYPE_VNODE, -1, fflags, 675 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL); 676 if (entry != NULL) 677 STAILQ_INSERT_TAIL(head, entry, next); 678 } 679 if (entryp == NULL) 680 warnx("can't read vm_map_entry"); 681 } 682 exit: 683 return (head); 684 } 685 686 /* 687 * kinfo types to filestat translation. 688 */ 689 static int 690 kinfo_type2fst(int kftype) 691 { 692 static struct { 693 int kf_type; 694 int fst_type; 695 } kftypes2fst[] = { 696 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC }, 697 { KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO }, 698 { KF_TYPE_DEV, PS_FST_TYPE_DEV }, 699 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, 700 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, 701 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, 702 { KF_TYPE_NONE, PS_FST_TYPE_NONE }, 703 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, 704 { KF_TYPE_PTS, PS_FST_TYPE_PTS }, 705 { KF_TYPE_SEM, PS_FST_TYPE_SEM }, 706 { KF_TYPE_SHM, PS_FST_TYPE_SHM }, 707 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, 708 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, 709 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } 710 }; 711 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) 712 unsigned int i; 713 714 for (i = 0; i < NKFTYPES; i++) 715 if (kftypes2fst[i].kf_type == kftype) 716 break; 717 if (i == NKFTYPES) 718 return (PS_FST_TYPE_UNKNOWN); 719 return (kftypes2fst[i].fst_type); 720 } 721 722 /* 723 * kinfo flags to filestat translation. 724 */ 725 static int 726 kinfo_fflags2fst(int kfflags) 727 { 728 static struct { 729 int kf_flag; 730 int fst_flag; 731 } kfflags2fst[] = { 732 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, 733 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, 734 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, 735 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, 736 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, 737 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, 738 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, 739 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, 740 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, 741 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 742 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 743 { KF_FLAG_READ, PS_FST_FFLAG_READ }, 744 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, 745 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, 746 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } 747 }; 748 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) 749 unsigned int i; 750 int flags; 751 752 flags = 0; 753 for (i = 0; i < NKFFLAGS; i++) 754 if ((kfflags & kfflags2fst[i].kf_flag) != 0) 755 flags |= kfflags2fst[i].fst_flag; 756 return (flags); 757 } 758 759 static int 760 kinfo_uflags2fst(int fd) 761 { 762 763 switch (fd) { 764 case KF_FD_TYPE_CTTY: 765 return (PS_FST_UFLAG_CTTY); 766 case KF_FD_TYPE_CWD: 767 return (PS_FST_UFLAG_CDIR); 768 case KF_FD_TYPE_JAIL: 769 return (PS_FST_UFLAG_JAIL); 770 case KF_FD_TYPE_TEXT: 771 return (PS_FST_UFLAG_TEXT); 772 case KF_FD_TYPE_TRACE: 773 return (PS_FST_UFLAG_TRACE); 774 case KF_FD_TYPE_ROOT: 775 return (PS_FST_UFLAG_RDIR); 776 } 777 return (0); 778 } 779 780 static struct kinfo_file * 781 kinfo_getfile_core(struct procstat_core *core, int *cntp) 782 { 783 int cnt; 784 size_t len; 785 char *buf, *bp, *eb; 786 struct kinfo_file *kif, *kp, *kf; 787 788 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); 789 if (buf == NULL) 790 return (NULL); 791 /* 792 * XXXMG: The code below is just copy&past from libutil. 793 * The code duplication can be avoided if libutil 794 * is extended to provide something like: 795 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, 796 * size_t len, int *cntp); 797 */ 798 799 /* Pass 1: count items */ 800 cnt = 0; 801 bp = buf; 802 eb = buf + len; 803 while (bp < eb) { 804 kf = (struct kinfo_file *)(uintptr_t)bp; 805 if (kf->kf_structsize == 0) 806 break; 807 bp += kf->kf_structsize; 808 cnt++; 809 } 810 811 kif = calloc(cnt, sizeof(*kif)); 812 if (kif == NULL) { 813 free(buf); 814 return (NULL); 815 } 816 bp = buf; 817 eb = buf + len; 818 kp = kif; 819 /* Pass 2: unpack */ 820 while (bp < eb) { 821 kf = (struct kinfo_file *)(uintptr_t)bp; 822 if (kf->kf_structsize == 0) 823 break; 824 /* Copy/expand into pre-zeroed buffer */ 825 memcpy(kp, kf, kf->kf_structsize); 826 /* Advance to next packed record */ 827 bp += kf->kf_structsize; 828 /* Set field size to fixed length, advance */ 829 kp->kf_structsize = sizeof(*kp); 830 kp++; 831 } 832 free(buf); 833 *cntp = cnt; 834 return (kif); /* Caller must free() return value */ 835 } 836 837 static struct filestat_list * 838 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, 839 int mmapped) 840 { 841 struct kinfo_file *kif, *files; 842 struct kinfo_vmentry *kve, *vmentries; 843 struct filestat_list *head; 844 struct filestat *entry; 845 char *path; 846 off_t offset; 847 int cnt, fd, fflags; 848 int i, type, uflags; 849 int refcount; 850 cap_rights_t cap_rights; 851 852 assert(kp); 853 if (kp->ki_fd == NULL) 854 return (NULL); 855 switch(procstat->type) { 856 case PROCSTAT_SYSCTL: 857 files = kinfo_getfile(kp->ki_pid, &cnt); 858 break; 859 case PROCSTAT_CORE: 860 files = kinfo_getfile_core(procstat->core, &cnt); 861 break; 862 default: 863 assert(!"invalid type"); 864 } 865 if (files == NULL && errno != EPERM) { 866 warn("kinfo_getfile()"); 867 return (NULL); 868 } 869 procstat->files = files; 870 871 /* 872 * Allocate list head. 873 */ 874 head = malloc(sizeof(*head)); 875 if (head == NULL) 876 return (NULL); 877 STAILQ_INIT(head); 878 for (i = 0; i < cnt; i++) { 879 kif = &files[i]; 880 881 type = kinfo_type2fst(kif->kf_type); 882 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; 883 fflags = kinfo_fflags2fst(kif->kf_flags); 884 uflags = kinfo_uflags2fst(kif->kf_fd); 885 refcount = kif->kf_ref_count; 886 offset = kif->kf_offset; 887 if (*kif->kf_path != '\0') 888 path = strdup(kif->kf_path); 889 else 890 path = NULL; 891 cap_rights = kif->kf_cap_rights; 892 893 /* 894 * Create filestat entry. 895 */ 896 entry = filestat_new_entry(kif, type, fd, fflags, uflags, 897 refcount, offset, path, &cap_rights); 898 if (entry != NULL) 899 STAILQ_INSERT_TAIL(head, entry, next); 900 } 901 if (mmapped != 0) { 902 vmentries = procstat_getvmmap(procstat, kp, &cnt); 903 procstat->vmentries = vmentries; 904 if (vmentries == NULL || cnt == 0) 905 goto fail; 906 for (i = 0; i < cnt; i++) { 907 kve = &vmentries[i]; 908 if (kve->kve_type != KVME_TYPE_VNODE) 909 continue; 910 fflags = 0; 911 if (kve->kve_protection & KVME_PROT_READ) 912 fflags = PS_FST_FFLAG_READ; 913 if ((kve->kve_flags & KVME_FLAG_COW) == 0 && 914 kve->kve_protection & KVME_PROT_WRITE) 915 fflags |= PS_FST_FFLAG_WRITE; 916 offset = kve->kve_offset; 917 refcount = kve->kve_ref_count; 918 if (*kve->kve_path != '\0') 919 path = strdup(kve->kve_path); 920 else 921 path = NULL; 922 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, 923 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, 924 NULL); 925 if (entry != NULL) 926 STAILQ_INSERT_TAIL(head, entry, next); 927 } 928 } 929 fail: 930 return (head); 931 } 932 933 int 934 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, 935 struct pipestat *ps, char *errbuf) 936 { 937 938 assert(ps); 939 if (procstat->type == PROCSTAT_KVM) { 940 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, 941 errbuf)); 942 } else if (procstat->type == PROCSTAT_SYSCTL || 943 procstat->type == PROCSTAT_CORE) { 944 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); 945 } else { 946 warnx("unknown access method: %d", procstat->type); 947 if (errbuf != NULL) 948 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 949 return (1); 950 } 951 } 952 953 static int 954 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 955 struct pipestat *ps, char *errbuf) 956 { 957 struct pipe pi; 958 void *pipep; 959 960 assert(kd); 961 assert(ps); 962 assert(fst); 963 bzero(ps, sizeof(*ps)); 964 pipep = fst->fs_typedep; 965 if (pipep == NULL) 966 goto fail; 967 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { 968 warnx("can't read pipe at %p", (void *)pipep); 969 goto fail; 970 } 971 ps->addr = (uintptr_t)pipep; 972 ps->peer = (uintptr_t)pi.pipe_peer; 973 ps->buffer_cnt = pi.pipe_buffer.cnt; 974 return (0); 975 976 fail: 977 if (errbuf != NULL) 978 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 979 return (1); 980 } 981 982 static int 983 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, 984 char *errbuf __unused) 985 { 986 struct kinfo_file *kif; 987 988 assert(ps); 989 assert(fst); 990 bzero(ps, sizeof(*ps)); 991 kif = fst->fs_typedep; 992 if (kif == NULL) 993 return (1); 994 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; 995 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; 996 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; 997 return (0); 998 } 999 1000 int 1001 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, 1002 struct ptsstat *pts, char *errbuf) 1003 { 1004 1005 assert(pts); 1006 if (procstat->type == PROCSTAT_KVM) { 1007 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, 1008 errbuf)); 1009 } else if (procstat->type == PROCSTAT_SYSCTL || 1010 procstat->type == PROCSTAT_CORE) { 1011 return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); 1012 } else { 1013 warnx("unknown access method: %d", procstat->type); 1014 if (errbuf != NULL) 1015 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1016 return (1); 1017 } 1018 } 1019 1020 static int 1021 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 1022 struct ptsstat *pts, char *errbuf) 1023 { 1024 struct tty tty; 1025 void *ttyp; 1026 1027 assert(kd); 1028 assert(pts); 1029 assert(fst); 1030 bzero(pts, sizeof(*pts)); 1031 ttyp = fst->fs_typedep; 1032 if (ttyp == NULL) 1033 goto fail; 1034 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { 1035 warnx("can't read tty at %p", (void *)ttyp); 1036 goto fail; 1037 } 1038 pts->dev = dev2udev(kd, tty.t_dev); 1039 (void)kdevtoname(kd, tty.t_dev, pts->devname); 1040 return (0); 1041 1042 fail: 1043 if (errbuf != NULL) 1044 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1045 return (1); 1046 } 1047 1048 static int 1049 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, 1050 char *errbuf __unused) 1051 { 1052 struct kinfo_file *kif; 1053 1054 assert(pts); 1055 assert(fst); 1056 bzero(pts, sizeof(*pts)); 1057 kif = fst->fs_typedep; 1058 if (kif == NULL) 1059 return (0); 1060 pts->dev = kif->kf_un.kf_pts.kf_pts_dev; 1061 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); 1062 return (0); 1063 } 1064 1065 int 1066 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, 1067 struct semstat *sem, char *errbuf) 1068 { 1069 1070 assert(sem); 1071 if (procstat->type == PROCSTAT_KVM) { 1072 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, 1073 errbuf)); 1074 } else if (procstat->type == PROCSTAT_SYSCTL || 1075 procstat->type == PROCSTAT_CORE) { 1076 return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); 1077 } else { 1078 warnx("unknown access method: %d", procstat->type); 1079 if (errbuf != NULL) 1080 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1081 return (1); 1082 } 1083 } 1084 1085 static int 1086 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 1087 struct semstat *sem, char *errbuf) 1088 { 1089 struct ksem ksem; 1090 void *ksemp; 1091 char *path; 1092 int i; 1093 1094 assert(kd); 1095 assert(sem); 1096 assert(fst); 1097 bzero(sem, sizeof(*sem)); 1098 ksemp = fst->fs_typedep; 1099 if (ksemp == NULL) 1100 goto fail; 1101 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, 1102 sizeof(struct ksem))) { 1103 warnx("can't read ksem at %p", (void *)ksemp); 1104 goto fail; 1105 } 1106 sem->mode = S_IFREG | ksem.ks_mode; 1107 sem->value = ksem.ks_value; 1108 if (fst->fs_path == NULL && ksem.ks_path != NULL) { 1109 path = malloc(MAXPATHLEN); 1110 for (i = 0; i < MAXPATHLEN - 1; i++) { 1111 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, 1112 path + i, 1)) 1113 break; 1114 if (path[i] == '\0') 1115 break; 1116 } 1117 path[i] = '\0'; 1118 if (i == 0) 1119 free(path); 1120 else 1121 fst->fs_path = path; 1122 } 1123 return (0); 1124 1125 fail: 1126 if (errbuf != NULL) 1127 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1128 return (1); 1129 } 1130 1131 static int 1132 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, 1133 char *errbuf __unused) 1134 { 1135 struct kinfo_file *kif; 1136 1137 assert(sem); 1138 assert(fst); 1139 bzero(sem, sizeof(*sem)); 1140 kif = fst->fs_typedep; 1141 if (kif == NULL) 1142 return (0); 1143 sem->value = kif->kf_un.kf_sem.kf_sem_value; 1144 sem->mode = kif->kf_un.kf_sem.kf_sem_mode; 1145 return (0); 1146 } 1147 1148 int 1149 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, 1150 struct shmstat *shm, char *errbuf) 1151 { 1152 1153 assert(shm); 1154 if (procstat->type == PROCSTAT_KVM) { 1155 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, 1156 errbuf)); 1157 } else if (procstat->type == PROCSTAT_SYSCTL || 1158 procstat->type == PROCSTAT_CORE) { 1159 return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); 1160 } else { 1161 warnx("unknown access method: %d", procstat->type); 1162 if (errbuf != NULL) 1163 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1164 return (1); 1165 } 1166 } 1167 1168 static int 1169 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 1170 struct shmstat *shm, char *errbuf) 1171 { 1172 struct shmfd shmfd; 1173 void *shmfdp; 1174 char *path; 1175 int i; 1176 1177 assert(kd); 1178 assert(shm); 1179 assert(fst); 1180 bzero(shm, sizeof(*shm)); 1181 shmfdp = fst->fs_typedep; 1182 if (shmfdp == NULL) 1183 goto fail; 1184 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, 1185 sizeof(struct shmfd))) { 1186 warnx("can't read shmfd at %p", (void *)shmfdp); 1187 goto fail; 1188 } 1189 shm->mode = S_IFREG | shmfd.shm_mode; 1190 shm->size = shmfd.shm_size; 1191 if (fst->fs_path == NULL && shmfd.shm_path != NULL) { 1192 path = malloc(MAXPATHLEN); 1193 for (i = 0; i < MAXPATHLEN - 1; i++) { 1194 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, 1195 path + i, 1)) 1196 break; 1197 if (path[i] == '\0') 1198 break; 1199 } 1200 path[i] = '\0'; 1201 if (i == 0) 1202 free(path); 1203 else 1204 fst->fs_path = path; 1205 } 1206 return (0); 1207 1208 fail: 1209 if (errbuf != NULL) 1210 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1211 return (1); 1212 } 1213 1214 static int 1215 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, 1216 char *errbuf __unused) 1217 { 1218 struct kinfo_file *kif; 1219 1220 assert(shm); 1221 assert(fst); 1222 bzero(shm, sizeof(*shm)); 1223 kif = fst->fs_typedep; 1224 if (kif == NULL) 1225 return (0); 1226 shm->size = kif->kf_un.kf_file.kf_file_size; 1227 shm->mode = kif->kf_un.kf_file.kf_file_mode; 1228 return (0); 1229 } 1230 1231 int 1232 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, 1233 struct vnstat *vn, char *errbuf) 1234 { 1235 1236 assert(vn); 1237 if (procstat->type == PROCSTAT_KVM) { 1238 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, 1239 errbuf)); 1240 } else if (procstat->type == PROCSTAT_SYSCTL || 1241 procstat->type == PROCSTAT_CORE) { 1242 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); 1243 } else { 1244 warnx("unknown access method: %d", procstat->type); 1245 if (errbuf != NULL) 1246 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1247 return (1); 1248 } 1249 } 1250 1251 static int 1252 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 1253 struct vnstat *vn, char *errbuf) 1254 { 1255 /* Filesystem specific handlers. */ 1256 #define FSTYPE(fst) {#fst, fst##_filestat} 1257 struct { 1258 const char *tag; 1259 int (*handler)(kvm_t *kd, struct vnode *vp, 1260 struct vnstat *vn); 1261 } fstypes[] = { 1262 FSTYPE(devfs), 1263 FSTYPE(isofs), 1264 FSTYPE(msdosfs), 1265 FSTYPE(nfs), 1266 FSTYPE(smbfs), 1267 FSTYPE(udf), 1268 FSTYPE(ufs), 1269 #ifdef LIBPROCSTAT_ZFS 1270 FSTYPE(zfs), 1271 #endif 1272 }; 1273 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) 1274 struct vnode vnode; 1275 char tagstr[12]; 1276 void *vp; 1277 int error; 1278 unsigned int i; 1279 1280 assert(kd); 1281 assert(vn); 1282 assert(fst); 1283 vp = fst->fs_typedep; 1284 if (vp == NULL) 1285 goto fail; 1286 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); 1287 if (error == 0) { 1288 warnx("can't read vnode at %p", (void *)vp); 1289 goto fail; 1290 } 1291 bzero(vn, sizeof(*vn)); 1292 vn->vn_type = vntype2psfsttype(vnode.v_type); 1293 if (vnode.v_type == VNON || vnode.v_type == VBAD) 1294 return (0); 1295 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name, 1296 tagstr, sizeof(tagstr)); 1297 if (error == 0) { 1298 warnx("can't read lo_name at %p", (void *)vp); 1299 goto fail; 1300 } 1301 tagstr[sizeof(tagstr) - 1] = '\0'; 1302 1303 /* 1304 * Find appropriate handler. 1305 */ 1306 for (i = 0; i < NTYPES; i++) 1307 if (!strcmp(fstypes[i].tag, tagstr)) { 1308 if (fstypes[i].handler(kd, &vnode, vn) != 0) { 1309 goto fail; 1310 } 1311 break; 1312 } 1313 if (i == NTYPES) { 1314 if (errbuf != NULL) 1315 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); 1316 return (1); 1317 } 1318 vn->vn_mntdir = getmnton(kd, vnode.v_mount); 1319 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) && 1320 vnode.v_rdev != NULL){ 1321 vn->vn_dev = dev2udev(kd, vnode.v_rdev); 1322 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); 1323 } else { 1324 vn->vn_dev = -1; 1325 } 1326 return (0); 1327 1328 fail: 1329 if (errbuf != NULL) 1330 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1331 return (1); 1332 } 1333 1334 /* 1335 * kinfo vnode type to filestat translation. 1336 */ 1337 static int 1338 kinfo_vtype2fst(int kfvtype) 1339 { 1340 static struct { 1341 int kf_vtype; 1342 int fst_vtype; 1343 } kfvtypes2fst[] = { 1344 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, 1345 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, 1346 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, 1347 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, 1348 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, 1349 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, 1350 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, 1351 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, 1352 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } 1353 }; 1354 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) 1355 unsigned int i; 1356 1357 for (i = 0; i < NKFVTYPES; i++) 1358 if (kfvtypes2fst[i].kf_vtype == kfvtype) 1359 break; 1360 if (i == NKFVTYPES) 1361 return (PS_FST_VTYPE_UNKNOWN); 1362 return (kfvtypes2fst[i].fst_vtype); 1363 } 1364 1365 static int 1366 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, 1367 char *errbuf) 1368 { 1369 struct statfs stbuf; 1370 struct kinfo_file *kif; 1371 struct kinfo_vmentry *kve; 1372 char *name, *path; 1373 uint64_t fileid; 1374 uint64_t size; 1375 uint64_t fsid; 1376 uint64_t rdev; 1377 uint16_t mode; 1378 int vntype; 1379 int status; 1380 1381 assert(fst); 1382 assert(vn); 1383 bzero(vn, sizeof(*vn)); 1384 if (fst->fs_typedep == NULL) 1385 return (1); 1386 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { 1387 kve = fst->fs_typedep; 1388 fileid = kve->kve_vn_fileid; 1389 fsid = kve->kve_vn_fsid; 1390 mode = kve->kve_vn_mode; 1391 path = kve->kve_path; 1392 rdev = kve->kve_vn_rdev; 1393 size = kve->kve_vn_size; 1394 vntype = kinfo_vtype2fst(kve->kve_vn_type); 1395 status = kve->kve_status; 1396 } else { 1397 kif = fst->fs_typedep; 1398 fileid = kif->kf_un.kf_file.kf_file_fileid; 1399 fsid = kif->kf_un.kf_file.kf_file_fsid; 1400 mode = kif->kf_un.kf_file.kf_file_mode; 1401 path = kif->kf_path; 1402 rdev = kif->kf_un.kf_file.kf_file_rdev; 1403 size = kif->kf_un.kf_file.kf_file_size; 1404 vntype = kinfo_vtype2fst(kif->kf_vnode_type); 1405 status = kif->kf_status; 1406 } 1407 vn->vn_type = vntype; 1408 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) 1409 return (0); 1410 if ((status & KF_ATTR_VALID) == 0) { 1411 if (errbuf != NULL) { 1412 snprintf(errbuf, _POSIX2_LINE_MAX, 1413 "? (no info available)"); 1414 } 1415 return (1); 1416 } 1417 if (path && *path) { 1418 statfs(path, &stbuf); 1419 vn->vn_mntdir = strdup(stbuf.f_mntonname); 1420 } else 1421 vn->vn_mntdir = strdup("-"); 1422 vn->vn_dev = rdev; 1423 if (vntype == PS_FST_VTYPE_VBLK) { 1424 name = devname(rdev, S_IFBLK); 1425 if (name != NULL) 1426 strlcpy(vn->vn_devname, name, 1427 sizeof(vn->vn_devname)); 1428 } else if (vntype == PS_FST_VTYPE_VCHR) { 1429 name = devname(vn->vn_dev, S_IFCHR); 1430 if (name != NULL) 1431 strlcpy(vn->vn_devname, name, 1432 sizeof(vn->vn_devname)); 1433 } 1434 vn->vn_fsid = fsid; 1435 vn->vn_fileid = fileid; 1436 vn->vn_size = size; 1437 vn->vn_mode = mode; 1438 return (0); 1439 } 1440 1441 int 1442 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, 1443 struct sockstat *sock, char *errbuf) 1444 { 1445 1446 assert(sock); 1447 if (procstat->type == PROCSTAT_KVM) { 1448 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, 1449 errbuf)); 1450 } else if (procstat->type == PROCSTAT_SYSCTL || 1451 procstat->type == PROCSTAT_CORE) { 1452 return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); 1453 } else { 1454 warnx("unknown access method: %d", procstat->type); 1455 if (errbuf != NULL) 1456 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1457 return (1); 1458 } 1459 } 1460 1461 static int 1462 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 1463 struct sockstat *sock, char *errbuf) 1464 { 1465 struct domain dom; 1466 struct inpcb inpcb; 1467 struct protosw proto; 1468 struct socket s; 1469 struct unpcb unpcb; 1470 ssize_t len; 1471 void *so; 1472 1473 assert(kd); 1474 assert(sock); 1475 assert(fst); 1476 bzero(sock, sizeof(*sock)); 1477 so = fst->fs_typedep; 1478 if (so == NULL) 1479 goto fail; 1480 sock->so_addr = (uintptr_t)so; 1481 /* fill in socket */ 1482 if (!kvm_read_all(kd, (unsigned long)so, &s, 1483 sizeof(struct socket))) { 1484 warnx("can't read sock at %p", (void *)so); 1485 goto fail; 1486 } 1487 /* fill in protosw entry */ 1488 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, 1489 sizeof(struct protosw))) { 1490 warnx("can't read protosw at %p", (void *)s.so_proto); 1491 goto fail; 1492 } 1493 /* fill in domain */ 1494 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, 1495 sizeof(struct domain))) { 1496 warnx("can't read domain at %p", 1497 (void *)proto.pr_domain); 1498 goto fail; 1499 } 1500 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, 1501 sizeof(sock->dname) - 1)) < 0) { 1502 warnx("can't read domain name at %p", (void *)dom.dom_name); 1503 sock->dname[0] = '\0'; 1504 } 1505 else 1506 sock->dname[len] = '\0'; 1507 1508 /* 1509 * Fill in known data. 1510 */ 1511 sock->type = s.so_type; 1512 sock->proto = proto.pr_protocol; 1513 sock->dom_family = dom.dom_family; 1514 sock->so_pcb = (uintptr_t)s.so_pcb; 1515 1516 /* 1517 * Protocol specific data. 1518 */ 1519 switch(dom.dom_family) { 1520 case AF_INET: 1521 case AF_INET6: 1522 if (proto.pr_protocol == IPPROTO_TCP) { 1523 if (s.so_pcb) { 1524 if (kvm_read(kd, (u_long)s.so_pcb, 1525 (char *)&inpcb, sizeof(struct inpcb)) 1526 != sizeof(struct inpcb)) { 1527 warnx("can't read inpcb at %p", 1528 (void *)s.so_pcb); 1529 } else 1530 sock->inp_ppcb = 1531 (uintptr_t)inpcb.inp_ppcb; 1532 sock->sendq = s.so_snd.sb_ccc; 1533 sock->recvq = s.so_rcv.sb_ccc; 1534 } 1535 } 1536 break; 1537 case AF_UNIX: 1538 if (s.so_pcb) { 1539 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, 1540 sizeof(struct unpcb)) != sizeof(struct unpcb)){ 1541 warnx("can't read unpcb at %p", 1542 (void *)s.so_pcb); 1543 } else if (unpcb.unp_conn) { 1544 sock->so_rcv_sb_state = s.so_rcv.sb_state; 1545 sock->so_snd_sb_state = s.so_snd.sb_state; 1546 sock->unp_conn = (uintptr_t)unpcb.unp_conn; 1547 sock->sendq = s.so_snd.sb_ccc; 1548 sock->recvq = s.so_rcv.sb_ccc; 1549 } 1550 } 1551 break; 1552 default: 1553 break; 1554 } 1555 return (0); 1556 1557 fail: 1558 if (errbuf != NULL) 1559 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1560 return (1); 1561 } 1562 1563 static int 1564 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, 1565 char *errbuf __unused) 1566 { 1567 struct kinfo_file *kif; 1568 1569 assert(sock); 1570 assert(fst); 1571 bzero(sock, sizeof(*sock)); 1572 kif = fst->fs_typedep; 1573 if (kif == NULL) 1574 return (0); 1575 1576 /* 1577 * Fill in known data. 1578 */ 1579 sock->type = kif->kf_sock_type; 1580 sock->proto = kif->kf_sock_protocol; 1581 sock->dom_family = kif->kf_sock_domain; 1582 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; 1583 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); 1584 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local, 1585 kif->kf_un.kf_sock.kf_sa_local.ss_len); 1586 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer, 1587 kif->kf_un.kf_sock.kf_sa_peer.ss_len); 1588 1589 /* 1590 * Protocol specific data. 1591 */ 1592 switch(sock->dom_family) { 1593 case AF_INET: 1594 case AF_INET6: 1595 if (sock->proto == IPPROTO_TCP) { 1596 sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb; 1597 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1598 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1599 } 1600 break; 1601 case AF_UNIX: 1602 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { 1603 sock->so_rcv_sb_state = 1604 kif->kf_un.kf_sock.kf_sock_rcv_sb_state; 1605 sock->so_snd_sb_state = 1606 kif->kf_un.kf_sock.kf_sock_snd_sb_state; 1607 sock->unp_conn = 1608 kif->kf_un.kf_sock.kf_sock_unpconn; 1609 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1610 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1611 } 1612 break; 1613 default: 1614 break; 1615 } 1616 return (0); 1617 } 1618 1619 /* 1620 * Descriptor flags to filestat translation. 1621 */ 1622 static int 1623 to_filestat_flags(int flags) 1624 { 1625 static struct { 1626 int flag; 1627 int fst_flag; 1628 } fstflags[] = { 1629 { FREAD, PS_FST_FFLAG_READ }, 1630 { FWRITE, PS_FST_FFLAG_WRITE }, 1631 { O_APPEND, PS_FST_FFLAG_APPEND }, 1632 { O_ASYNC, PS_FST_FFLAG_ASYNC }, 1633 { O_CREAT, PS_FST_FFLAG_CREAT }, 1634 { O_DIRECT, PS_FST_FFLAG_DIRECT }, 1635 { O_EXCL, PS_FST_FFLAG_EXCL }, 1636 { O_EXEC, PS_FST_FFLAG_EXEC }, 1637 { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, 1638 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 1639 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 1640 { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, 1641 { O_SYNC, PS_FST_FFLAG_SYNC }, 1642 { O_TRUNC, PS_FST_FFLAG_TRUNC } 1643 }; 1644 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) 1645 int fst_flags; 1646 unsigned int i; 1647 1648 fst_flags = 0; 1649 for (i = 0; i < NFSTFLAGS; i++) 1650 if (flags & fstflags[i].flag) 1651 fst_flags |= fstflags[i].fst_flag; 1652 return (fst_flags); 1653 } 1654 1655 /* 1656 * Vnode type to filestate translation. 1657 */ 1658 static int 1659 vntype2psfsttype(int type) 1660 { 1661 static struct { 1662 int vtype; 1663 int fst_vtype; 1664 } vt2fst[] = { 1665 { VBAD, PS_FST_VTYPE_VBAD }, 1666 { VBLK, PS_FST_VTYPE_VBLK }, 1667 { VCHR, PS_FST_VTYPE_VCHR }, 1668 { VDIR, PS_FST_VTYPE_VDIR }, 1669 { VFIFO, PS_FST_VTYPE_VFIFO }, 1670 { VLNK, PS_FST_VTYPE_VLNK }, 1671 { VNON, PS_FST_VTYPE_VNON }, 1672 { VREG, PS_FST_VTYPE_VREG }, 1673 { VSOCK, PS_FST_VTYPE_VSOCK } 1674 }; 1675 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) 1676 unsigned int i, fst_type; 1677 1678 fst_type = PS_FST_VTYPE_UNKNOWN; 1679 for (i = 0; i < NVFTYPES; i++) { 1680 if (type == vt2fst[i].vtype) { 1681 fst_type = vt2fst[i].fst_vtype; 1682 break; 1683 } 1684 } 1685 return (fst_type); 1686 } 1687 1688 static char * 1689 getmnton(kvm_t *kd, struct mount *m) 1690 { 1691 struct mount mnt; 1692 static struct mtab { 1693 struct mtab *next; 1694 struct mount *m; 1695 char mntonname[MNAMELEN + 1]; 1696 } *mhead = NULL; 1697 struct mtab *mt; 1698 1699 for (mt = mhead; mt != NULL; mt = mt->next) 1700 if (m == mt->m) 1701 return (mt->mntonname); 1702 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { 1703 warnx("can't read mount table at %p", (void *)m); 1704 return (NULL); 1705 } 1706 if ((mt = malloc(sizeof (struct mtab))) == NULL) 1707 err(1, NULL); 1708 mt->m = m; 1709 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); 1710 mt->mntonname[MNAMELEN] = '\0'; 1711 mt->next = mhead; 1712 mhead = mt; 1713 return (mt->mntonname); 1714 } 1715 1716 /* 1717 * Auxiliary structures and functions to get process environment or 1718 * command line arguments. 1719 */ 1720 struct argvec { 1721 char *buf; 1722 size_t bufsize; 1723 char **argv; 1724 size_t argc; 1725 }; 1726 1727 static struct argvec * 1728 argvec_alloc(size_t bufsize) 1729 { 1730 struct argvec *av; 1731 1732 av = malloc(sizeof(*av)); 1733 if (av == NULL) 1734 return (NULL); 1735 av->bufsize = bufsize; 1736 av->buf = malloc(av->bufsize); 1737 if (av->buf == NULL) { 1738 free(av); 1739 return (NULL); 1740 } 1741 av->argc = 32; 1742 av->argv = malloc(sizeof(char *) * av->argc); 1743 if (av->argv == NULL) { 1744 free(av->buf); 1745 free(av); 1746 return (NULL); 1747 } 1748 return av; 1749 } 1750 1751 static void 1752 argvec_free(struct argvec * av) 1753 { 1754 1755 free(av->argv); 1756 free(av->buf); 1757 free(av); 1758 } 1759 1760 static char ** 1761 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) 1762 { 1763 int error, name[4], argc, i; 1764 struct argvec *av, **avp; 1765 enum psc_type type; 1766 size_t len; 1767 char *p, **argv; 1768 1769 assert(procstat); 1770 assert(kp); 1771 if (procstat->type == PROCSTAT_KVM) { 1772 warnx("can't use kvm access method"); 1773 return (NULL); 1774 } 1775 if (procstat->type != PROCSTAT_SYSCTL && 1776 procstat->type != PROCSTAT_CORE) { 1777 warnx("unknown access method: %d", procstat->type); 1778 return (NULL); 1779 } 1780 1781 if (nchr == 0 || nchr > ARG_MAX) 1782 nchr = ARG_MAX; 1783 1784 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); 1785 av = *avp; 1786 1787 if (av == NULL) 1788 { 1789 av = argvec_alloc(nchr); 1790 if (av == NULL) 1791 { 1792 warn("malloc(%zu)", nchr); 1793 return (NULL); 1794 } 1795 *avp = av; 1796 } else if (av->bufsize < nchr) { 1797 av->buf = reallocf(av->buf, nchr); 1798 if (av->buf == NULL) { 1799 warn("malloc(%zu)", nchr); 1800 return (NULL); 1801 } 1802 } 1803 if (procstat->type == PROCSTAT_SYSCTL) { 1804 name[0] = CTL_KERN; 1805 name[1] = KERN_PROC; 1806 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 1807 name[3] = kp->ki_pid; 1808 len = nchr; 1809 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0); 1810 if (error != 0 && errno != ESRCH && errno != EPERM) 1811 warn("sysctl(kern.proc.%s)", env ? "env" : "args"); 1812 if (error != 0 || len == 0) 1813 return (NULL); 1814 } else /* procstat->type == PROCSTAT_CORE */ { 1815 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; 1816 len = nchr; 1817 if (procstat_core_get(procstat->core, type, av->buf, &len) 1818 == NULL) { 1819 return (NULL); 1820 } 1821 } 1822 1823 argv = av->argv; 1824 argc = av->argc; 1825 i = 0; 1826 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { 1827 argv[i++] = p; 1828 if (i < argc) 1829 continue; 1830 /* Grow argv. */ 1831 argc += argc; 1832 argv = realloc(argv, sizeof(char *) * argc); 1833 if (argv == NULL) { 1834 warn("malloc(%zu)", sizeof(char *) * argc); 1835 return (NULL); 1836 } 1837 av->argv = argv; 1838 av->argc = argc; 1839 } 1840 argv[i] = NULL; 1841 1842 return (argv); 1843 } 1844 1845 /* 1846 * Return process command line arguments. 1847 */ 1848 char ** 1849 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1850 { 1851 1852 return (getargv(procstat, p, nchr, 0)); 1853 } 1854 1855 /* 1856 * Free the buffer allocated by procstat_getargv(). 1857 */ 1858 void 1859 procstat_freeargv(struct procstat *procstat) 1860 { 1861 1862 if (procstat->argv != NULL) { 1863 argvec_free(procstat->argv); 1864 procstat->argv = NULL; 1865 } 1866 } 1867 1868 /* 1869 * Return process environment. 1870 */ 1871 char ** 1872 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1873 { 1874 1875 return (getargv(procstat, p, nchr, 1)); 1876 } 1877 1878 /* 1879 * Free the buffer allocated by procstat_getenvv(). 1880 */ 1881 void 1882 procstat_freeenvv(struct procstat *procstat) 1883 { 1884 if (procstat->envv != NULL) { 1885 argvec_free(procstat->envv); 1886 procstat->envv = NULL; 1887 } 1888 } 1889 1890 static struct kinfo_vmentry * 1891 kinfo_getvmmap_core(struct procstat_core *core, int *cntp) 1892 { 1893 int cnt; 1894 size_t len; 1895 char *buf, *bp, *eb; 1896 struct kinfo_vmentry *kiv, *kp, *kv; 1897 1898 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); 1899 if (buf == NULL) 1900 return (NULL); 1901 1902 /* 1903 * XXXMG: The code below is just copy&past from libutil. 1904 * The code duplication can be avoided if libutil 1905 * is extended to provide something like: 1906 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, 1907 * size_t len, int *cntp); 1908 */ 1909 1910 /* Pass 1: count items */ 1911 cnt = 0; 1912 bp = buf; 1913 eb = buf + len; 1914 while (bp < eb) { 1915 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1916 if (kv->kve_structsize == 0) 1917 break; 1918 bp += kv->kve_structsize; 1919 cnt++; 1920 } 1921 1922 kiv = calloc(cnt, sizeof(*kiv)); 1923 if (kiv == NULL) { 1924 free(buf); 1925 return (NULL); 1926 } 1927 bp = buf; 1928 eb = buf + len; 1929 kp = kiv; 1930 /* Pass 2: unpack */ 1931 while (bp < eb) { 1932 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1933 if (kv->kve_structsize == 0) 1934 break; 1935 /* Copy/expand into pre-zeroed buffer */ 1936 memcpy(kp, kv, kv->kve_structsize); 1937 /* Advance to next packed record */ 1938 bp += kv->kve_structsize; 1939 /* Set field size to fixed length, advance */ 1940 kp->kve_structsize = sizeof(*kp); 1941 kp++; 1942 } 1943 free(buf); 1944 *cntp = cnt; 1945 return (kiv); /* Caller must free() return value */ 1946 } 1947 1948 struct kinfo_vmentry * 1949 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, 1950 unsigned int *cntp) 1951 { 1952 1953 switch(procstat->type) { 1954 case PROCSTAT_KVM: 1955 warnx("kvm method is not supported"); 1956 return (NULL); 1957 case PROCSTAT_SYSCTL: 1958 return (kinfo_getvmmap(kp->ki_pid, cntp)); 1959 case PROCSTAT_CORE: 1960 return (kinfo_getvmmap_core(procstat->core, cntp)); 1961 default: 1962 warnx("unknown access method: %d", procstat->type); 1963 return (NULL); 1964 } 1965 } 1966 1967 void 1968 procstat_freevmmap(struct procstat *procstat __unused, 1969 struct kinfo_vmentry *vmmap) 1970 { 1971 1972 free(vmmap); 1973 } 1974 1975 static gid_t * 1976 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) 1977 { 1978 struct proc proc; 1979 struct ucred ucred; 1980 gid_t *groups; 1981 size_t len; 1982 1983 assert(kd != NULL); 1984 assert(kp != NULL); 1985 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 1986 sizeof(proc))) { 1987 warnx("can't read proc struct at %p for pid %d", 1988 kp->ki_paddr, kp->ki_pid); 1989 return (NULL); 1990 } 1991 if (proc.p_ucred == NOCRED) 1992 return (NULL); 1993 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, 1994 sizeof(ucred))) { 1995 warnx("can't read ucred struct at %p for pid %d", 1996 proc.p_ucred, kp->ki_pid); 1997 return (NULL); 1998 } 1999 len = ucred.cr_ngroups * sizeof(gid_t); 2000 groups = malloc(len); 2001 if (groups == NULL) { 2002 warn("malloc(%zu)", len); 2003 return (NULL); 2004 } 2005 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { 2006 warnx("can't read groups at %p for pid %d", 2007 ucred.cr_groups, kp->ki_pid); 2008 free(groups); 2009 return (NULL); 2010 } 2011 *cntp = ucred.cr_ngroups; 2012 return (groups); 2013 } 2014 2015 static gid_t * 2016 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) 2017 { 2018 int mib[4]; 2019 size_t len; 2020 gid_t *groups; 2021 2022 mib[0] = CTL_KERN; 2023 mib[1] = KERN_PROC; 2024 mib[2] = KERN_PROC_GROUPS; 2025 mib[3] = pid; 2026 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); 2027 groups = malloc(len); 2028 if (groups == NULL) { 2029 warn("malloc(%zu)", len); 2030 return (NULL); 2031 } 2032 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) { 2033 warn("sysctl: kern.proc.groups: %d", pid); 2034 free(groups); 2035 return (NULL); 2036 } 2037 *cntp = len / sizeof(gid_t); 2038 return (groups); 2039 } 2040 2041 static gid_t * 2042 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) 2043 { 2044 size_t len; 2045 gid_t *groups; 2046 2047 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); 2048 if (groups == NULL) 2049 return (NULL); 2050 *cntp = len / sizeof(gid_t); 2051 return (groups); 2052 } 2053 2054 gid_t * 2055 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, 2056 unsigned int *cntp) 2057 { 2058 switch(procstat->type) { 2059 case PROCSTAT_KVM: 2060 return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); 2061 case PROCSTAT_SYSCTL: 2062 return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); 2063 case PROCSTAT_CORE: 2064 return (procstat_getgroups_core(procstat->core, cntp)); 2065 default: 2066 warnx("unknown access method: %d", procstat->type); 2067 return (NULL); 2068 } 2069 } 2070 2071 void 2072 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) 2073 { 2074 2075 free(groups); 2076 } 2077 2078 static int 2079 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) 2080 { 2081 struct filedesc fd; 2082 2083 assert(kd != NULL); 2084 assert(kp != NULL); 2085 if (kp->ki_fd == NULL) 2086 return (-1); 2087 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) { 2088 warnx("can't read filedesc at %p for pid %d", kp->ki_fd, 2089 kp->ki_pid); 2090 return (-1); 2091 } 2092 *maskp = fd.fd_cmask; 2093 return (0); 2094 } 2095 2096 static int 2097 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) 2098 { 2099 int error; 2100 int mib[4]; 2101 size_t len; 2102 2103 mib[0] = CTL_KERN; 2104 mib[1] = KERN_PROC; 2105 mib[2] = KERN_PROC_UMASK; 2106 mib[3] = pid; 2107 len = sizeof(*maskp); 2108 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0); 2109 if (error != 0 && errno != ESRCH && errno != EPERM) 2110 warn("sysctl: kern.proc.umask: %d", pid); 2111 return (error); 2112 } 2113 2114 static int 2115 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) 2116 { 2117 size_t len; 2118 unsigned short *buf; 2119 2120 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); 2121 if (buf == NULL) 2122 return (-1); 2123 if (len < sizeof(*maskp)) { 2124 free(buf); 2125 return (-1); 2126 } 2127 *maskp = *buf; 2128 free(buf); 2129 return (0); 2130 } 2131 2132 int 2133 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, 2134 unsigned short *maskp) 2135 { 2136 switch(procstat->type) { 2137 case PROCSTAT_KVM: 2138 return (procstat_getumask_kvm(procstat->kd, kp, maskp)); 2139 case PROCSTAT_SYSCTL: 2140 return (procstat_getumask_sysctl(kp->ki_pid, maskp)); 2141 case PROCSTAT_CORE: 2142 return (procstat_getumask_core(procstat->core, maskp)); 2143 default: 2144 warnx("unknown access method: %d", procstat->type); 2145 return (-1); 2146 } 2147 } 2148 2149 static int 2150 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, 2151 struct rlimit* rlimit) 2152 { 2153 struct proc proc; 2154 unsigned long offset; 2155 2156 assert(kd != NULL); 2157 assert(kp != NULL); 2158 assert(which >= 0 && which < RLIM_NLIMITS); 2159 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2160 sizeof(proc))) { 2161 warnx("can't read proc struct at %p for pid %d", 2162 kp->ki_paddr, kp->ki_pid); 2163 return (-1); 2164 } 2165 if (proc.p_limit == NULL) 2166 return (-1); 2167 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; 2168 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { 2169 warnx("can't read rlimit struct at %p for pid %d", 2170 (void *)offset, kp->ki_pid); 2171 return (-1); 2172 } 2173 return (0); 2174 } 2175 2176 static int 2177 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) 2178 { 2179 int error, name[5]; 2180 size_t len; 2181 2182 name[0] = CTL_KERN; 2183 name[1] = KERN_PROC; 2184 name[2] = KERN_PROC_RLIMIT; 2185 name[3] = pid; 2186 name[4] = which; 2187 len = sizeof(struct rlimit); 2188 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0); 2189 if (error < 0 && errno != ESRCH) { 2190 warn("sysctl: kern.proc.rlimit: %d", pid); 2191 return (-1); 2192 } 2193 if (error < 0 || len != sizeof(struct rlimit)) 2194 return (-1); 2195 return (0); 2196 } 2197 2198 static int 2199 procstat_getrlimit_core(struct procstat_core *core, int which, 2200 struct rlimit* rlimit) 2201 { 2202 size_t len; 2203 struct rlimit* rlimits; 2204 2205 if (which < 0 || which >= RLIM_NLIMITS) { 2206 errno = EINVAL; 2207 warn("getrlimit: which"); 2208 return (-1); 2209 } 2210 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); 2211 if (rlimits == NULL) 2212 return (-1); 2213 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { 2214 free(rlimits); 2215 return (-1); 2216 } 2217 *rlimit = rlimits[which]; 2218 free(rlimits); 2219 return (0); 2220 } 2221 2222 int 2223 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, 2224 struct rlimit* rlimit) 2225 { 2226 switch(procstat->type) { 2227 case PROCSTAT_KVM: 2228 return (procstat_getrlimit_kvm(procstat->kd, kp, which, 2229 rlimit)); 2230 case PROCSTAT_SYSCTL: 2231 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); 2232 case PROCSTAT_CORE: 2233 return (procstat_getrlimit_core(procstat->core, which, rlimit)); 2234 default: 2235 warnx("unknown access method: %d", procstat->type); 2236 return (-1); 2237 } 2238 } 2239 2240 static int 2241 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) 2242 { 2243 int error, name[4]; 2244 size_t len; 2245 2246 name[0] = CTL_KERN; 2247 name[1] = KERN_PROC; 2248 name[2] = KERN_PROC_PATHNAME; 2249 name[3] = pid; 2250 len = maxlen; 2251 error = sysctl(name, nitems(name), pathname, &len, NULL, 0); 2252 if (error != 0 && errno != ESRCH) 2253 warn("sysctl: kern.proc.pathname: %d", pid); 2254 if (len == 0) 2255 pathname[0] = '\0'; 2256 return (error); 2257 } 2258 2259 static int 2260 procstat_getpathname_core(struct procstat_core *core, char *pathname, 2261 size_t maxlen) 2262 { 2263 struct kinfo_file *files; 2264 int cnt, i, result; 2265 2266 files = kinfo_getfile_core(core, &cnt); 2267 if (files == NULL) 2268 return (-1); 2269 result = -1; 2270 for (i = 0; i < cnt; i++) { 2271 if (files[i].kf_fd != KF_FD_TYPE_TEXT) 2272 continue; 2273 strncpy(pathname, files[i].kf_path, maxlen); 2274 result = 0; 2275 break; 2276 } 2277 free(files); 2278 return (result); 2279 } 2280 2281 int 2282 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, 2283 char *pathname, size_t maxlen) 2284 { 2285 switch(procstat->type) { 2286 case PROCSTAT_KVM: 2287 /* XXX: Return empty string. */ 2288 if (maxlen > 0) 2289 pathname[0] = '\0'; 2290 return (0); 2291 case PROCSTAT_SYSCTL: 2292 return (procstat_getpathname_sysctl(kp->ki_pid, pathname, 2293 maxlen)); 2294 case PROCSTAT_CORE: 2295 return (procstat_getpathname_core(procstat->core, pathname, 2296 maxlen)); 2297 default: 2298 warnx("unknown access method: %d", procstat->type); 2299 return (-1); 2300 } 2301 } 2302 2303 static int 2304 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) 2305 { 2306 struct proc proc; 2307 2308 assert(kd != NULL); 2309 assert(kp != NULL); 2310 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2311 sizeof(proc))) { 2312 warnx("can't read proc struct at %p for pid %d", 2313 kp->ki_paddr, kp->ki_pid); 2314 return (-1); 2315 } 2316 *osrelp = proc.p_osrel; 2317 return (0); 2318 } 2319 2320 static int 2321 procstat_getosrel_sysctl(pid_t pid, int *osrelp) 2322 { 2323 int error, name[4]; 2324 size_t len; 2325 2326 name[0] = CTL_KERN; 2327 name[1] = KERN_PROC; 2328 name[2] = KERN_PROC_OSREL; 2329 name[3] = pid; 2330 len = sizeof(*osrelp); 2331 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0); 2332 if (error != 0 && errno != ESRCH) 2333 warn("sysctl: kern.proc.osrel: %d", pid); 2334 return (error); 2335 } 2336 2337 static int 2338 procstat_getosrel_core(struct procstat_core *core, int *osrelp) 2339 { 2340 size_t len; 2341 int *buf; 2342 2343 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); 2344 if (buf == NULL) 2345 return (-1); 2346 if (len < sizeof(*osrelp)) { 2347 free(buf); 2348 return (-1); 2349 } 2350 *osrelp = *buf; 2351 free(buf); 2352 return (0); 2353 } 2354 2355 int 2356 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) 2357 { 2358 switch(procstat->type) { 2359 case PROCSTAT_KVM: 2360 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); 2361 case PROCSTAT_SYSCTL: 2362 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); 2363 case PROCSTAT_CORE: 2364 return (procstat_getosrel_core(procstat->core, osrelp)); 2365 default: 2366 warnx("unknown access method: %d", procstat->type); 2367 return (-1); 2368 } 2369 } 2370 2371 #define PROC_AUXV_MAX 256 2372 2373 #if __ELF_WORD_SIZE == 64 2374 static const char *elf32_sv_names[] = { 2375 "Linux ELF32", 2376 "FreeBSD ELF32", 2377 }; 2378 2379 static int 2380 is_elf32_sysctl(pid_t pid) 2381 { 2382 int error, name[4]; 2383 size_t len, i; 2384 static char sv_name[256]; 2385 2386 name[0] = CTL_KERN; 2387 name[1] = KERN_PROC; 2388 name[2] = KERN_PROC_SV_NAME; 2389 name[3] = pid; 2390 len = sizeof(sv_name); 2391 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0); 2392 if (error != 0 || len == 0) 2393 return (0); 2394 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { 2395 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) 2396 return (1); 2397 } 2398 return (0); 2399 } 2400 2401 static Elf_Auxinfo * 2402 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) 2403 { 2404 Elf_Auxinfo *auxv; 2405 Elf32_Auxinfo *auxv32; 2406 void *ptr; 2407 size_t len; 2408 unsigned int i, count; 2409 int name[4]; 2410 2411 name[0] = CTL_KERN; 2412 name[1] = KERN_PROC; 2413 name[2] = KERN_PROC_AUXV; 2414 name[3] = pid; 2415 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); 2416 auxv = NULL; 2417 auxv32 = malloc(len); 2418 if (auxv32 == NULL) { 2419 warn("malloc(%zu)", len); 2420 goto out; 2421 } 2422 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) { 2423 if (errno != ESRCH && errno != EPERM) 2424 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2425 goto out; 2426 } 2427 count = len / sizeof(Elf_Auxinfo); 2428 auxv = malloc(count * sizeof(Elf_Auxinfo)); 2429 if (auxv == NULL) { 2430 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); 2431 goto out; 2432 } 2433 for (i = 0; i < count; i++) { 2434 /* 2435 * XXX: We expect that values for a_type on a 32-bit platform 2436 * are directly mapped to values on 64-bit one, which is not 2437 * necessarily true. 2438 */ 2439 auxv[i].a_type = auxv32[i].a_type; 2440 ptr = &auxv32[i].a_un; 2441 auxv[i].a_un.a_val = *((uint32_t *)ptr); 2442 } 2443 *cntp = count; 2444 out: 2445 free(auxv32); 2446 return (auxv); 2447 } 2448 #endif /* __ELF_WORD_SIZE == 64 */ 2449 2450 static Elf_Auxinfo * 2451 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) 2452 { 2453 Elf_Auxinfo *auxv; 2454 int name[4]; 2455 size_t len; 2456 2457 #if __ELF_WORD_SIZE == 64 2458 if (is_elf32_sysctl(pid)) 2459 return (procstat_getauxv32_sysctl(pid, cntp)); 2460 #endif 2461 name[0] = CTL_KERN; 2462 name[1] = KERN_PROC; 2463 name[2] = KERN_PROC_AUXV; 2464 name[3] = pid; 2465 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); 2466 auxv = malloc(len); 2467 if (auxv == NULL) { 2468 warn("malloc(%zu)", len); 2469 return (NULL); 2470 } 2471 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) { 2472 if (errno != ESRCH && errno != EPERM) 2473 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2474 free(auxv); 2475 return (NULL); 2476 } 2477 *cntp = len / sizeof(Elf_Auxinfo); 2478 return (auxv); 2479 } 2480 2481 static Elf_Auxinfo * 2482 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) 2483 { 2484 Elf_Auxinfo *auxv; 2485 size_t len; 2486 2487 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); 2488 if (auxv == NULL) 2489 return (NULL); 2490 *cntp = len / sizeof(Elf_Auxinfo); 2491 return (auxv); 2492 } 2493 2494 Elf_Auxinfo * 2495 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, 2496 unsigned int *cntp) 2497 { 2498 switch(procstat->type) { 2499 case PROCSTAT_KVM: 2500 warnx("kvm method is not supported"); 2501 return (NULL); 2502 case PROCSTAT_SYSCTL: 2503 return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); 2504 case PROCSTAT_CORE: 2505 return (procstat_getauxv_core(procstat->core, cntp)); 2506 default: 2507 warnx("unknown access method: %d", procstat->type); 2508 return (NULL); 2509 } 2510 } 2511 2512 void 2513 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) 2514 { 2515 2516 free(auxv); 2517 } 2518 2519 static struct ptrace_lwpinfo * 2520 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp) 2521 { 2522 void *buf; 2523 struct ptrace_lwpinfo *pl; 2524 unsigned int cnt; 2525 size_t len; 2526 2527 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO); 2528 if (cnt == 0) 2529 return (NULL); 2530 2531 len = cnt * sizeof(*pl); 2532 buf = calloc(1, len); 2533 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len); 2534 if (pl == NULL) { 2535 free(buf); 2536 return (NULL); 2537 } 2538 *cntp = len / sizeof(*pl); 2539 return (pl); 2540 } 2541 2542 struct ptrace_lwpinfo * 2543 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp) 2544 { 2545 switch (procstat->type) { 2546 case PROCSTAT_KVM: 2547 warnx("kvm method is not supported"); 2548 return (NULL); 2549 case PROCSTAT_SYSCTL: 2550 warnx("sysctl method is not supported"); 2551 return (NULL); 2552 case PROCSTAT_CORE: 2553 return (procstat_getptlwpinfo_core(procstat->core, cntp)); 2554 default: 2555 warnx("unknown access method: %d", procstat->type); 2556 return (NULL); 2557 } 2558 } 2559 2560 void 2561 procstat_freeptlwpinfo(struct procstat *procstat __unused, 2562 struct ptrace_lwpinfo *pl) 2563 { 2564 free(pl); 2565 } 2566 2567 static struct kinfo_kstack * 2568 procstat_getkstack_sysctl(pid_t pid, int *cntp) 2569 { 2570 struct kinfo_kstack *kkstp; 2571 int error, name[4]; 2572 size_t len; 2573 2574 name[0] = CTL_KERN; 2575 name[1] = KERN_PROC; 2576 name[2] = KERN_PROC_KSTACK; 2577 name[3] = pid; 2578 2579 len = 0; 2580 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 2581 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { 2582 warn("sysctl: kern.proc.kstack: %d", pid); 2583 return (NULL); 2584 } 2585 if (error == -1 && errno == ENOENT) { 2586 warnx("sysctl: kern.proc.kstack unavailable" 2587 " (options DDB or options STACK required in kernel)"); 2588 return (NULL); 2589 } 2590 if (error == -1) 2591 return (NULL); 2592 kkstp = malloc(len); 2593 if (kkstp == NULL) { 2594 warn("malloc(%zu)", len); 2595 return (NULL); 2596 } 2597 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1) { 2598 warn("sysctl: kern.proc.pid: %d", pid); 2599 free(kkstp); 2600 return (NULL); 2601 } 2602 *cntp = len / sizeof(*kkstp); 2603 2604 return (kkstp); 2605 } 2606 2607 struct kinfo_kstack * 2608 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, 2609 unsigned int *cntp) 2610 { 2611 switch(procstat->type) { 2612 case PROCSTAT_KVM: 2613 warnx("kvm method is not supported"); 2614 return (NULL); 2615 case PROCSTAT_SYSCTL: 2616 return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); 2617 case PROCSTAT_CORE: 2618 warnx("core method is not supported"); 2619 return (NULL); 2620 default: 2621 warnx("unknown access method: %d", procstat->type); 2622 return (NULL); 2623 } 2624 } 2625 2626 void 2627 procstat_freekstack(struct procstat *procstat __unused, 2628 struct kinfo_kstack *kkstp) 2629 { 2630 2631 free(kkstp); 2632 } 2633