1 /*- 2 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org> 3 * Copyright (c) 1988, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by the University of 17 * California, Berkeley and its contributors. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/elf.h> 40 #include <sys/time.h> 41 #include <sys/resourcevar.h> 42 #define _WANT_UCRED 43 #include <sys/ucred.h> 44 #undef _WANT_UCRED 45 #include <sys/proc.h> 46 #include <sys/user.h> 47 #include <sys/stat.h> 48 #include <sys/vnode.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/domain.h> 52 #include <sys/protosw.h> 53 #include <sys/un.h> 54 #include <sys/unpcb.h> 55 #include <sys/sysctl.h> 56 #include <sys/tty.h> 57 #include <sys/filedesc.h> 58 #include <sys/queue.h> 59 #define _WANT_FILE 60 #include <sys/file.h> 61 #include <sys/conf.h> 62 #include <sys/ksem.h> 63 #include <sys/mman.h> 64 #define _KERNEL 65 #include <sys/mount.h> 66 #include <sys/pipe.h> 67 #include <ufs/ufs/quota.h> 68 #include <ufs/ufs/inode.h> 69 #include <fs/devfs/devfs.h> 70 #include <fs/devfs/devfs_int.h> 71 #undef _KERNEL 72 #include <nfs/nfsproto.h> 73 #include <nfsclient/nfs.h> 74 #include <nfsclient/nfsnode.h> 75 76 #include <vm/vm.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 80 #include <net/route.h> 81 #include <netinet/in.h> 82 #include <netinet/in_systm.h> 83 #include <netinet/ip.h> 84 #include <netinet/in_pcb.h> 85 86 #include <assert.h> 87 #include <ctype.h> 88 #include <err.h> 89 #include <fcntl.h> 90 #include <kvm.h> 91 #include <libutil.h> 92 #include <limits.h> 93 #include <paths.h> 94 #include <pwd.h> 95 #include <stdio.h> 96 #include <stdlib.h> 97 #include <stddef.h> 98 #include <string.h> 99 #include <unistd.h> 100 #include <netdb.h> 101 102 #include <libprocstat.h> 103 #include "libprocstat_internal.h" 104 #include "common_kvm.h" 105 #include "core.h" 106 107 int statfs(const char *, struct statfs *); /* XXX */ 108 109 #define PROCSTAT_KVM 1 110 #define PROCSTAT_SYSCTL 2 111 #define PROCSTAT_CORE 3 112 113 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, 114 size_t nchr, int env); 115 static char *getmnton(kvm_t *kd, struct mount *m); 116 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, 117 int *cntp); 118 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, 119 unsigned int *cntp); 120 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); 121 static struct filestat_list *procstat_getfiles_kvm( 122 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 123 static struct filestat_list *procstat_getfiles_sysctl( 124 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 125 static int procstat_get_pipe_info_sysctl(struct filestat *fst, 126 struct pipestat *pipe, char *errbuf); 127 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 128 struct pipestat *pipe, char *errbuf); 129 static int procstat_get_pts_info_sysctl(struct filestat *fst, 130 struct ptsstat *pts, char *errbuf); 131 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 132 struct ptsstat *pts, char *errbuf); 133 static int procstat_get_sem_info_sysctl(struct filestat *fst, 134 struct semstat *sem, char *errbuf); 135 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 136 struct semstat *sem, char *errbuf); 137 static int procstat_get_shm_info_sysctl(struct filestat *fst, 138 struct shmstat *shm, char *errbuf); 139 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 140 struct shmstat *shm, char *errbuf); 141 static int procstat_get_socket_info_sysctl(struct filestat *fst, 142 struct sockstat *sock, char *errbuf); 143 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 144 struct sockstat *sock, char *errbuf); 145 static int to_filestat_flags(int flags); 146 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 147 struct vnstat *vn, char *errbuf); 148 static int procstat_get_vnode_info_sysctl(struct filestat *fst, 149 struct vnstat *vn, char *errbuf); 150 static gid_t *procstat_getgroups_core(struct procstat_core *core, 151 unsigned int *count); 152 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, 153 unsigned int *count); 154 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); 155 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, 156 int *cntp); 157 static int procstat_getosrel_core(struct procstat_core *core, 158 int *osrelp); 159 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, 160 int *osrelp); 161 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); 162 static int procstat_getpathname_core(struct procstat_core *core, 163 char *pathname, size_t maxlen); 164 static int procstat_getpathname_sysctl(pid_t pid, char *pathname, 165 size_t maxlen); 166 static int procstat_getrlimit_core(struct procstat_core *core, int which, 167 struct rlimit* rlimit); 168 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, 169 int which, struct rlimit* rlimit); 170 static int procstat_getrlimit_sysctl(pid_t pid, int which, 171 struct rlimit* rlimit); 172 static int procstat_getumask_core(struct procstat_core *core, 173 unsigned short *maskp); 174 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, 175 unsigned short *maskp); 176 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); 177 static int vntype2psfsttype(int type); 178 179 void 180 procstat_close(struct procstat *procstat) 181 { 182 183 assert(procstat); 184 if (procstat->type == PROCSTAT_KVM) 185 kvm_close(procstat->kd); 186 else if (procstat->type == PROCSTAT_CORE) 187 procstat_core_close(procstat->core); 188 procstat_freeargv(procstat); 189 procstat_freeenvv(procstat); 190 free(procstat); 191 } 192 193 struct procstat * 194 procstat_open_sysctl(void) 195 { 196 struct procstat *procstat; 197 198 procstat = calloc(1, sizeof(*procstat)); 199 if (procstat == NULL) { 200 warn("malloc()"); 201 return (NULL); 202 } 203 procstat->type = PROCSTAT_SYSCTL; 204 return (procstat); 205 } 206 207 struct procstat * 208 procstat_open_kvm(const char *nlistf, const char *memf) 209 { 210 struct procstat *procstat; 211 kvm_t *kd; 212 char buf[_POSIX2_LINE_MAX]; 213 214 procstat = calloc(1, sizeof(*procstat)); 215 if (procstat == NULL) { 216 warn("malloc()"); 217 return (NULL); 218 } 219 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); 220 if (kd == NULL) { 221 warnx("kvm_openfiles(): %s", buf); 222 free(procstat); 223 return (NULL); 224 } 225 procstat->type = PROCSTAT_KVM; 226 procstat->kd = kd; 227 return (procstat); 228 } 229 230 struct procstat * 231 procstat_open_core(const char *filename) 232 { 233 struct procstat *procstat; 234 struct procstat_core *core; 235 236 procstat = calloc(1, sizeof(*procstat)); 237 if (procstat == NULL) { 238 warn("malloc()"); 239 return (NULL); 240 } 241 core = procstat_core_open(filename); 242 if (core == NULL) { 243 free(procstat); 244 return (NULL); 245 } 246 procstat->type = PROCSTAT_CORE; 247 procstat->core = core; 248 return (procstat); 249 } 250 251 struct kinfo_proc * 252 procstat_getprocs(struct procstat *procstat, int what, int arg, 253 unsigned int *count) 254 { 255 struct kinfo_proc *p0, *p; 256 size_t len, olen; 257 int name[4]; 258 int cnt; 259 int error; 260 261 assert(procstat); 262 assert(count); 263 p = NULL; 264 if (procstat->type == PROCSTAT_KVM) { 265 *count = 0; 266 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); 267 if (p0 == NULL || cnt <= 0) 268 return (NULL); 269 *count = cnt; 270 len = *count * sizeof(*p); 271 p = malloc(len); 272 if (p == NULL) { 273 warnx("malloc(%zu)", len); 274 goto fail; 275 } 276 bcopy(p0, p, len); 277 return (p); 278 } else if (procstat->type == PROCSTAT_SYSCTL) { 279 len = 0; 280 name[0] = CTL_KERN; 281 name[1] = KERN_PROC; 282 name[2] = what; 283 name[3] = arg; 284 error = sysctl(name, 4, NULL, &len, NULL, 0); 285 if (error < 0 && errno != EPERM) { 286 warn("sysctl(kern.proc)"); 287 goto fail; 288 } 289 if (len == 0) { 290 warnx("no processes?"); 291 goto fail; 292 } 293 do { 294 len += len / 10; 295 p = reallocf(p, len); 296 if (p == NULL) { 297 warnx("reallocf(%zu)", len); 298 goto fail; 299 } 300 olen = len; 301 error = sysctl(name, 4, p, &len, NULL, 0); 302 } while (error < 0 && errno == ENOMEM && olen == len); 303 if (error < 0 && errno != EPERM) { 304 warn("sysctl(kern.proc)"); 305 goto fail; 306 } 307 /* Perform simple consistency checks. */ 308 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 309 warnx("kinfo_proc structure size mismatch (len = %zu)", len); 310 goto fail; 311 } 312 *count = len / sizeof(*p); 313 return (p); 314 } else if (procstat->type == PROCSTAT_CORE) { 315 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, 316 &len); 317 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 318 warnx("kinfo_proc structure size mismatch"); 319 goto fail; 320 } 321 *count = len / sizeof(*p); 322 return (p); 323 } else { 324 warnx("unknown access method: %d", procstat->type); 325 return (NULL); 326 } 327 fail: 328 if (p) 329 free(p); 330 return (NULL); 331 } 332 333 void 334 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) 335 { 336 337 if (p != NULL) 338 free(p); 339 p = NULL; 340 } 341 342 struct filestat_list * 343 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 344 { 345 346 switch(procstat->type) { 347 case PROCSTAT_KVM: 348 return (procstat_getfiles_kvm(procstat, kp, mmapped)); 349 case PROCSTAT_SYSCTL: 350 case PROCSTAT_CORE: 351 return (procstat_getfiles_sysctl(procstat, kp, mmapped)); 352 default: 353 warnx("unknown access method: %d", procstat->type); 354 return (NULL); 355 } 356 } 357 358 void 359 procstat_freefiles(struct procstat *procstat, struct filestat_list *head) 360 { 361 struct filestat *fst, *tmp; 362 363 STAILQ_FOREACH_SAFE(fst, head, next, tmp) { 364 if (fst->fs_path != NULL) 365 free(fst->fs_path); 366 free(fst); 367 } 368 free(head); 369 if (procstat->vmentries != NULL) { 370 free(procstat->vmentries); 371 procstat->vmentries = NULL; 372 } 373 if (procstat->files != NULL) { 374 free(procstat->files); 375 procstat->files = NULL; 376 } 377 } 378 379 static struct filestat * 380 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, 381 int refcount, off_t offset, char *path, cap_rights_t cap_rights) 382 { 383 struct filestat *entry; 384 385 entry = calloc(1, sizeof(*entry)); 386 if (entry == NULL) { 387 warn("malloc()"); 388 return (NULL); 389 } 390 entry->fs_typedep = typedep; 391 entry->fs_fflags = fflags; 392 entry->fs_uflags = uflags; 393 entry->fs_fd = fd; 394 entry->fs_type = type; 395 entry->fs_ref_count = refcount; 396 entry->fs_offset = offset; 397 entry->fs_path = path; 398 entry->fs_cap_rights = cap_rights; 399 return (entry); 400 } 401 402 static struct vnode * 403 getctty(kvm_t *kd, struct kinfo_proc *kp) 404 { 405 struct pgrp pgrp; 406 struct proc proc; 407 struct session sess; 408 int error; 409 410 assert(kp); 411 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 412 sizeof(proc)); 413 if (error == 0) { 414 warnx("can't read proc struct at %p for pid %d", 415 kp->ki_paddr, kp->ki_pid); 416 return (NULL); 417 } 418 if (proc.p_pgrp == NULL) 419 return (NULL); 420 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, 421 sizeof(pgrp)); 422 if (error == 0) { 423 warnx("can't read pgrp struct at %p for pid %d", 424 proc.p_pgrp, kp->ki_pid); 425 return (NULL); 426 } 427 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, 428 sizeof(sess)); 429 if (error == 0) { 430 warnx("can't read session struct at %p for pid %d", 431 pgrp.pg_session, kp->ki_pid); 432 return (NULL); 433 } 434 return (sess.s_ttyvp); 435 } 436 437 static struct filestat_list * 438 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 439 { 440 struct file file; 441 struct filedesc filed; 442 struct vm_map_entry vmentry; 443 struct vm_object object; 444 struct vmspace vmspace; 445 vm_map_entry_t entryp; 446 vm_map_t map; 447 vm_object_t objp; 448 struct vnode *vp; 449 struct file **ofiles; 450 struct filestat *entry; 451 struct filestat_list *head; 452 kvm_t *kd; 453 void *data; 454 int i, fflags; 455 int prot, type; 456 unsigned int nfiles; 457 458 assert(procstat); 459 kd = procstat->kd; 460 if (kd == NULL) 461 return (NULL); 462 if (kp->ki_fd == NULL) 463 return (NULL); 464 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, 465 sizeof(filed))) { 466 warnx("can't read filedesc at %p", (void *)kp->ki_fd); 467 return (NULL); 468 } 469 470 /* 471 * Allocate list head. 472 */ 473 head = malloc(sizeof(*head)); 474 if (head == NULL) 475 return (NULL); 476 STAILQ_INIT(head); 477 478 /* root directory vnode, if one. */ 479 if (filed.fd_rdir) { 480 entry = filestat_new_entry(filed.fd_rdir, PS_FST_TYPE_VNODE, -1, 481 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, 0); 482 if (entry != NULL) 483 STAILQ_INSERT_TAIL(head, entry, next); 484 } 485 /* current working directory vnode. */ 486 if (filed.fd_cdir) { 487 entry = filestat_new_entry(filed.fd_cdir, PS_FST_TYPE_VNODE, -1, 488 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, 0); 489 if (entry != NULL) 490 STAILQ_INSERT_TAIL(head, entry, next); 491 } 492 /* jail root, if any. */ 493 if (filed.fd_jdir) { 494 entry = filestat_new_entry(filed.fd_jdir, PS_FST_TYPE_VNODE, -1, 495 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, 0); 496 if (entry != NULL) 497 STAILQ_INSERT_TAIL(head, entry, next); 498 } 499 /* ktrace vnode, if one */ 500 if (kp->ki_tracep) { 501 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, 502 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 503 PS_FST_UFLAG_TRACE, 0, 0, NULL, 0); 504 if (entry != NULL) 505 STAILQ_INSERT_TAIL(head, entry, next); 506 } 507 /* text vnode, if one */ 508 if (kp->ki_textvp) { 509 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, 510 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, 0); 511 if (entry != NULL) 512 STAILQ_INSERT_TAIL(head, entry, next); 513 } 514 /* Controlling terminal. */ 515 if ((vp = getctty(kd, kp)) != NULL) { 516 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, 517 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 518 PS_FST_UFLAG_CTTY, 0, 0, NULL, 0); 519 if (entry != NULL) 520 STAILQ_INSERT_TAIL(head, entry, next); 521 } 522 523 nfiles = filed.fd_lastfile + 1; 524 ofiles = malloc(nfiles * sizeof(struct file *)); 525 if (ofiles == NULL) { 526 warn("malloc(%zu)", nfiles * sizeof(struct file *)); 527 goto do_mmapped; 528 } 529 if (!kvm_read_all(kd, (unsigned long)filed.fd_ofiles, ofiles, 530 nfiles * sizeof(struct file *))) { 531 warnx("cannot read file structures at %p", 532 (void *)filed.fd_ofiles); 533 free(ofiles); 534 goto do_mmapped; 535 } 536 for (i = 0; i <= filed.fd_lastfile; i++) { 537 if (ofiles[i] == NULL) 538 continue; 539 if (!kvm_read_all(kd, (unsigned long)ofiles[i], &file, 540 sizeof(struct file))) { 541 warnx("can't read file %d at %p", i, 542 (void *)ofiles[i]); 543 continue; 544 } 545 switch (file.f_type) { 546 case DTYPE_VNODE: 547 type = PS_FST_TYPE_VNODE; 548 data = file.f_vnode; 549 break; 550 case DTYPE_SOCKET: 551 type = PS_FST_TYPE_SOCKET; 552 data = file.f_data; 553 break; 554 case DTYPE_PIPE: 555 type = PS_FST_TYPE_PIPE; 556 data = file.f_data; 557 break; 558 case DTYPE_FIFO: 559 type = PS_FST_TYPE_FIFO; 560 data = file.f_vnode; 561 break; 562 #ifdef DTYPE_PTS 563 case DTYPE_PTS: 564 type = PS_FST_TYPE_PTS; 565 data = file.f_data; 566 break; 567 #endif 568 case DTYPE_SEM: 569 type = PS_FST_TYPE_SEM; 570 data = file.f_data; 571 break; 572 case DTYPE_SHM: 573 type = PS_FST_TYPE_SHM; 574 data = file.f_data; 575 break; 576 default: 577 continue; 578 } 579 /* XXXRW: No capability rights support for kvm yet. */ 580 entry = filestat_new_entry(data, type, i, 581 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, 0); 582 if (entry != NULL) 583 STAILQ_INSERT_TAIL(head, entry, next); 584 } 585 free(ofiles); 586 587 do_mmapped: 588 589 /* 590 * Process mmapped files if requested. 591 */ 592 if (mmapped) { 593 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, 594 sizeof(vmspace))) { 595 warnx("can't read vmspace at %p", 596 (void *)kp->ki_vmspace); 597 goto exit; 598 } 599 map = &vmspace.vm_map; 600 601 for (entryp = map->header.next; 602 entryp != &kp->ki_vmspace->vm_map.header; 603 entryp = vmentry.next) { 604 if (!kvm_read_all(kd, (unsigned long)entryp, &vmentry, 605 sizeof(vmentry))) { 606 warnx("can't read vm_map_entry at %p", 607 (void *)entryp); 608 continue; 609 } 610 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) 611 continue; 612 if ((objp = vmentry.object.vm_object) == NULL) 613 continue; 614 for (; objp; objp = object.backing_object) { 615 if (!kvm_read_all(kd, (unsigned long)objp, 616 &object, sizeof(object))) { 617 warnx("can't read vm_object at %p", 618 (void *)objp); 619 break; 620 } 621 } 622 623 /* We want only vnode objects. */ 624 if (object.type != OBJT_VNODE) 625 continue; 626 627 prot = vmentry.protection; 628 fflags = 0; 629 if (prot & VM_PROT_READ) 630 fflags = PS_FST_FFLAG_READ; 631 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && 632 prot & VM_PROT_WRITE) 633 fflags |= PS_FST_FFLAG_WRITE; 634 635 /* 636 * Create filestat entry. 637 */ 638 entry = filestat_new_entry(object.handle, 639 PS_FST_TYPE_VNODE, -1, fflags, 640 PS_FST_UFLAG_MMAP, 0, 0, NULL, 0); 641 if (entry != NULL) 642 STAILQ_INSERT_TAIL(head, entry, next); 643 } 644 } 645 exit: 646 return (head); 647 } 648 649 /* 650 * kinfo types to filestat translation. 651 */ 652 static int 653 kinfo_type2fst(int kftype) 654 { 655 static struct { 656 int kf_type; 657 int fst_type; 658 } kftypes2fst[] = { 659 { KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO }, 660 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, 661 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, 662 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, 663 { KF_TYPE_NONE, PS_FST_TYPE_NONE }, 664 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, 665 { KF_TYPE_PTS, PS_FST_TYPE_PTS }, 666 { KF_TYPE_SEM, PS_FST_TYPE_SEM }, 667 { KF_TYPE_SHM, PS_FST_TYPE_SHM }, 668 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, 669 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, 670 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } 671 }; 672 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) 673 unsigned int i; 674 675 for (i = 0; i < NKFTYPES; i++) 676 if (kftypes2fst[i].kf_type == kftype) 677 break; 678 if (i == NKFTYPES) 679 return (PS_FST_TYPE_UNKNOWN); 680 return (kftypes2fst[i].fst_type); 681 } 682 683 /* 684 * kinfo flags to filestat translation. 685 */ 686 static int 687 kinfo_fflags2fst(int kfflags) 688 { 689 static struct { 690 int kf_flag; 691 int fst_flag; 692 } kfflags2fst[] = { 693 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, 694 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, 695 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, 696 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, 697 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, 698 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, 699 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, 700 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, 701 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, 702 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 703 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 704 { KF_FLAG_READ, PS_FST_FFLAG_READ }, 705 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, 706 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, 707 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } 708 }; 709 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) 710 unsigned int i; 711 int flags; 712 713 flags = 0; 714 for (i = 0; i < NKFFLAGS; i++) 715 if ((kfflags & kfflags2fst[i].kf_flag) != 0) 716 flags |= kfflags2fst[i].fst_flag; 717 return (flags); 718 } 719 720 static int 721 kinfo_uflags2fst(int fd) 722 { 723 724 switch (fd) { 725 case KF_FD_TYPE_CTTY: 726 return (PS_FST_UFLAG_CTTY); 727 case KF_FD_TYPE_CWD: 728 return (PS_FST_UFLAG_CDIR); 729 case KF_FD_TYPE_JAIL: 730 return (PS_FST_UFLAG_JAIL); 731 case KF_FD_TYPE_TEXT: 732 return (PS_FST_UFLAG_TEXT); 733 case KF_FD_TYPE_TRACE: 734 return (PS_FST_UFLAG_TRACE); 735 case KF_FD_TYPE_ROOT: 736 return (PS_FST_UFLAG_RDIR); 737 } 738 return (0); 739 } 740 741 static struct kinfo_file * 742 kinfo_getfile_core(struct procstat_core *core, int *cntp) 743 { 744 int cnt; 745 size_t len; 746 char *buf, *bp, *eb; 747 struct kinfo_file *kif, *kp, *kf; 748 749 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); 750 if (buf == NULL) 751 return (NULL); 752 /* 753 * XXXMG: The code below is just copy&past from libutil. 754 * The code duplication can be avoided if libutil 755 * is extended to provide something like: 756 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, 757 * size_t len, int *cntp); 758 */ 759 760 /* Pass 1: count items */ 761 cnt = 0; 762 bp = buf; 763 eb = buf + len; 764 while (bp < eb) { 765 kf = (struct kinfo_file *)(uintptr_t)bp; 766 bp += kf->kf_structsize; 767 cnt++; 768 } 769 770 kif = calloc(cnt, sizeof(*kif)); 771 if (kif == NULL) { 772 free(buf); 773 return (NULL); 774 } 775 bp = buf; 776 eb = buf + len; 777 kp = kif; 778 /* Pass 2: unpack */ 779 while (bp < eb) { 780 kf = (struct kinfo_file *)(uintptr_t)bp; 781 /* Copy/expand into pre-zeroed buffer */ 782 memcpy(kp, kf, kf->kf_structsize); 783 /* Advance to next packed record */ 784 bp += kf->kf_structsize; 785 /* Set field size to fixed length, advance */ 786 kp->kf_structsize = sizeof(*kp); 787 kp++; 788 } 789 free(buf); 790 *cntp = cnt; 791 return (kif); /* Caller must free() return value */ 792 } 793 794 static struct filestat_list * 795 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, 796 int mmapped) 797 { 798 struct kinfo_file *kif, *files; 799 struct kinfo_vmentry *kve, *vmentries; 800 struct filestat_list *head; 801 struct filestat *entry; 802 char *path; 803 off_t offset; 804 int cnt, fd, fflags; 805 int i, type, uflags; 806 int refcount; 807 cap_rights_t cap_rights; 808 809 assert(kp); 810 if (kp->ki_fd == NULL) 811 return (NULL); 812 switch(procstat->type) { 813 case PROCSTAT_SYSCTL: 814 files = kinfo_getfile(kp->ki_pid, &cnt); 815 break; 816 case PROCSTAT_CORE: 817 files = kinfo_getfile_core(procstat->core, &cnt); 818 break; 819 default: 820 assert(!"invalid type"); 821 } 822 if (files == NULL && errno != EPERM) { 823 warn("kinfo_getfile()"); 824 return (NULL); 825 } 826 procstat->files = files; 827 828 /* 829 * Allocate list head. 830 */ 831 head = malloc(sizeof(*head)); 832 if (head == NULL) 833 return (NULL); 834 STAILQ_INIT(head); 835 for (i = 0; i < cnt; i++) { 836 kif = &files[i]; 837 838 type = kinfo_type2fst(kif->kf_type); 839 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; 840 fflags = kinfo_fflags2fst(kif->kf_flags); 841 uflags = kinfo_uflags2fst(kif->kf_fd); 842 refcount = kif->kf_ref_count; 843 offset = kif->kf_offset; 844 if (*kif->kf_path != '\0') 845 path = strdup(kif->kf_path); 846 else 847 path = NULL; 848 cap_rights = kif->kf_cap_rights; 849 850 /* 851 * Create filestat entry. 852 */ 853 entry = filestat_new_entry(kif, type, fd, fflags, uflags, 854 refcount, offset, path, cap_rights); 855 if (entry != NULL) 856 STAILQ_INSERT_TAIL(head, entry, next); 857 } 858 if (mmapped != 0) { 859 vmentries = procstat_getvmmap(procstat, kp, &cnt); 860 procstat->vmentries = vmentries; 861 if (vmentries == NULL || cnt == 0) 862 goto fail; 863 for (i = 0; i < cnt; i++) { 864 kve = &vmentries[i]; 865 if (kve->kve_type != KVME_TYPE_VNODE) 866 continue; 867 fflags = 0; 868 if (kve->kve_protection & KVME_PROT_READ) 869 fflags = PS_FST_FFLAG_READ; 870 if ((kve->kve_flags & KVME_FLAG_COW) == 0 && 871 kve->kve_protection & KVME_PROT_WRITE) 872 fflags |= PS_FST_FFLAG_WRITE; 873 offset = kve->kve_offset; 874 refcount = kve->kve_ref_count; 875 if (*kve->kve_path != '\0') 876 path = strdup(kve->kve_path); 877 else 878 path = NULL; 879 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, 880 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, 881 0); 882 if (entry != NULL) 883 STAILQ_INSERT_TAIL(head, entry, next); 884 } 885 } 886 fail: 887 return (head); 888 } 889 890 int 891 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, 892 struct pipestat *ps, char *errbuf) 893 { 894 895 assert(ps); 896 if (procstat->type == PROCSTAT_KVM) { 897 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, 898 errbuf)); 899 } else if (procstat->type == PROCSTAT_SYSCTL || 900 procstat->type == PROCSTAT_CORE) { 901 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); 902 } else { 903 warnx("unknown access method: %d", procstat->type); 904 if (errbuf != NULL) 905 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 906 return (1); 907 } 908 } 909 910 static int 911 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 912 struct pipestat *ps, char *errbuf) 913 { 914 struct pipe pi; 915 void *pipep; 916 917 assert(kd); 918 assert(ps); 919 assert(fst); 920 bzero(ps, sizeof(*ps)); 921 pipep = fst->fs_typedep; 922 if (pipep == NULL) 923 goto fail; 924 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { 925 warnx("can't read pipe at %p", (void *)pipep); 926 goto fail; 927 } 928 ps->addr = (uintptr_t)pipep; 929 ps->peer = (uintptr_t)pi.pipe_peer; 930 ps->buffer_cnt = pi.pipe_buffer.cnt; 931 return (0); 932 933 fail: 934 if (errbuf != NULL) 935 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 936 return (1); 937 } 938 939 static int 940 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, 941 char *errbuf __unused) 942 { 943 struct kinfo_file *kif; 944 945 assert(ps); 946 assert(fst); 947 bzero(ps, sizeof(*ps)); 948 kif = fst->fs_typedep; 949 if (kif == NULL) 950 return (1); 951 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; 952 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; 953 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; 954 return (0); 955 } 956 957 int 958 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, 959 struct ptsstat *pts, char *errbuf) 960 { 961 962 assert(pts); 963 if (procstat->type == PROCSTAT_KVM) { 964 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, 965 errbuf)); 966 } else if (procstat->type == PROCSTAT_SYSCTL || 967 procstat->type == PROCSTAT_CORE) { 968 return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); 969 } else { 970 warnx("unknown access method: %d", procstat->type); 971 if (errbuf != NULL) 972 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 973 return (1); 974 } 975 } 976 977 static int 978 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 979 struct ptsstat *pts, char *errbuf) 980 { 981 struct tty tty; 982 void *ttyp; 983 984 assert(kd); 985 assert(pts); 986 assert(fst); 987 bzero(pts, sizeof(*pts)); 988 ttyp = fst->fs_typedep; 989 if (ttyp == NULL) 990 goto fail; 991 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { 992 warnx("can't read tty at %p", (void *)ttyp); 993 goto fail; 994 } 995 pts->dev = dev2udev(kd, tty.t_dev); 996 (void)kdevtoname(kd, tty.t_dev, pts->devname); 997 return (0); 998 999 fail: 1000 if (errbuf != NULL) 1001 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1002 return (1); 1003 } 1004 1005 static int 1006 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, 1007 char *errbuf __unused) 1008 { 1009 struct kinfo_file *kif; 1010 1011 assert(pts); 1012 assert(fst); 1013 bzero(pts, sizeof(*pts)); 1014 kif = fst->fs_typedep; 1015 if (kif == NULL) 1016 return (0); 1017 pts->dev = kif->kf_un.kf_pts.kf_pts_dev; 1018 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); 1019 return (0); 1020 } 1021 1022 int 1023 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, 1024 struct semstat *sem, char *errbuf) 1025 { 1026 1027 assert(sem); 1028 if (procstat->type == PROCSTAT_KVM) { 1029 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, 1030 errbuf)); 1031 } else if (procstat->type == PROCSTAT_SYSCTL || 1032 procstat->type == PROCSTAT_CORE) { 1033 return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); 1034 } else { 1035 warnx("unknown access method: %d", procstat->type); 1036 if (errbuf != NULL) 1037 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1038 return (1); 1039 } 1040 } 1041 1042 static int 1043 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 1044 struct semstat *sem, char *errbuf) 1045 { 1046 struct ksem ksem; 1047 void *ksemp; 1048 char *path; 1049 int i; 1050 1051 assert(kd); 1052 assert(sem); 1053 assert(fst); 1054 bzero(sem, sizeof(*sem)); 1055 ksemp = fst->fs_typedep; 1056 if (ksemp == NULL) 1057 goto fail; 1058 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, 1059 sizeof(struct ksem))) { 1060 warnx("can't read ksem at %p", (void *)ksemp); 1061 goto fail; 1062 } 1063 sem->mode = S_IFREG | ksem.ks_mode; 1064 sem->value = ksem.ks_value; 1065 if (fst->fs_path == NULL && ksem.ks_path != NULL) { 1066 path = malloc(MAXPATHLEN); 1067 for (i = 0; i < MAXPATHLEN - 1; i++) { 1068 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, 1069 path + i, 1)) 1070 break; 1071 if (path[i] == '\0') 1072 break; 1073 } 1074 path[i] = '\0'; 1075 if (i == 0) 1076 free(path); 1077 else 1078 fst->fs_path = path; 1079 } 1080 return (0); 1081 1082 fail: 1083 if (errbuf != NULL) 1084 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1085 return (1); 1086 } 1087 1088 static int 1089 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, 1090 char *errbuf __unused) 1091 { 1092 struct kinfo_file *kif; 1093 1094 assert(sem); 1095 assert(fst); 1096 bzero(sem, sizeof(*sem)); 1097 kif = fst->fs_typedep; 1098 if (kif == NULL) 1099 return (0); 1100 sem->value = kif->kf_un.kf_sem.kf_sem_value; 1101 sem->mode = kif->kf_un.kf_sem.kf_sem_mode; 1102 return (0); 1103 } 1104 1105 int 1106 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, 1107 struct shmstat *shm, char *errbuf) 1108 { 1109 1110 assert(shm); 1111 if (procstat->type == PROCSTAT_KVM) { 1112 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, 1113 errbuf)); 1114 } else if (procstat->type == PROCSTAT_SYSCTL || 1115 procstat->type == PROCSTAT_CORE) { 1116 return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); 1117 } else { 1118 warnx("unknown access method: %d", procstat->type); 1119 if (errbuf != NULL) 1120 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1121 return (1); 1122 } 1123 } 1124 1125 static int 1126 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 1127 struct shmstat *shm, char *errbuf) 1128 { 1129 struct shmfd shmfd; 1130 void *shmfdp; 1131 char *path; 1132 int i; 1133 1134 assert(kd); 1135 assert(shm); 1136 assert(fst); 1137 bzero(shm, sizeof(*shm)); 1138 shmfdp = fst->fs_typedep; 1139 if (shmfdp == NULL) 1140 goto fail; 1141 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, 1142 sizeof(struct shmfd))) { 1143 warnx("can't read shmfd at %p", (void *)shmfdp); 1144 goto fail; 1145 } 1146 shm->mode = S_IFREG | shmfd.shm_mode; 1147 shm->size = shmfd.shm_size; 1148 if (fst->fs_path == NULL && shmfd.shm_path != NULL) { 1149 path = malloc(MAXPATHLEN); 1150 for (i = 0; i < MAXPATHLEN - 1; i++) { 1151 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, 1152 path + i, 1)) 1153 break; 1154 if (path[i] == '\0') 1155 break; 1156 } 1157 path[i] = '\0'; 1158 if (i == 0) 1159 free(path); 1160 else 1161 fst->fs_path = path; 1162 } 1163 return (0); 1164 1165 fail: 1166 if (errbuf != NULL) 1167 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1168 return (1); 1169 } 1170 1171 static int 1172 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, 1173 char *errbuf __unused) 1174 { 1175 struct kinfo_file *kif; 1176 1177 assert(shm); 1178 assert(fst); 1179 bzero(shm, sizeof(*shm)); 1180 kif = fst->fs_typedep; 1181 if (kif == NULL) 1182 return (0); 1183 shm->size = kif->kf_un.kf_file.kf_file_size; 1184 shm->mode = kif->kf_un.kf_file.kf_file_mode; 1185 return (0); 1186 } 1187 1188 int 1189 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, 1190 struct vnstat *vn, char *errbuf) 1191 { 1192 1193 assert(vn); 1194 if (procstat->type == PROCSTAT_KVM) { 1195 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, 1196 errbuf)); 1197 } else if (procstat->type == PROCSTAT_SYSCTL || 1198 procstat->type == PROCSTAT_CORE) { 1199 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); 1200 } else { 1201 warnx("unknown access method: %d", procstat->type); 1202 if (errbuf != NULL) 1203 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1204 return (1); 1205 } 1206 } 1207 1208 static int 1209 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 1210 struct vnstat *vn, char *errbuf) 1211 { 1212 /* Filesystem specific handlers. */ 1213 #define FSTYPE(fst) {#fst, fst##_filestat} 1214 struct { 1215 const char *tag; 1216 int (*handler)(kvm_t *kd, struct vnode *vp, 1217 struct vnstat *vn); 1218 } fstypes[] = { 1219 FSTYPE(devfs), 1220 FSTYPE(isofs), 1221 FSTYPE(msdosfs), 1222 FSTYPE(nfs), 1223 FSTYPE(udf), 1224 FSTYPE(ufs), 1225 #ifdef LIBPROCSTAT_ZFS 1226 FSTYPE(zfs), 1227 #endif 1228 }; 1229 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) 1230 struct vnode vnode; 1231 char tagstr[12]; 1232 void *vp; 1233 int error, found; 1234 unsigned int i; 1235 1236 assert(kd); 1237 assert(vn); 1238 assert(fst); 1239 vp = fst->fs_typedep; 1240 if (vp == NULL) 1241 goto fail; 1242 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); 1243 if (error == 0) { 1244 warnx("can't read vnode at %p", (void *)vp); 1245 goto fail; 1246 } 1247 bzero(vn, sizeof(*vn)); 1248 vn->vn_type = vntype2psfsttype(vnode.v_type); 1249 if (vnode.v_type == VNON || vnode.v_type == VBAD) 1250 return (0); 1251 error = kvm_read_all(kd, (unsigned long)vnode.v_tag, tagstr, 1252 sizeof(tagstr)); 1253 if (error == 0) { 1254 warnx("can't read v_tag at %p", (void *)vp); 1255 goto fail; 1256 } 1257 tagstr[sizeof(tagstr) - 1] = '\0'; 1258 1259 /* 1260 * Find appropriate handler. 1261 */ 1262 for (i = 0, found = 0; i < NTYPES; i++) 1263 if (!strcmp(fstypes[i].tag, tagstr)) { 1264 if (fstypes[i].handler(kd, &vnode, vn) != 0) { 1265 goto fail; 1266 } 1267 break; 1268 } 1269 if (i == NTYPES) { 1270 if (errbuf != NULL) 1271 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); 1272 return (1); 1273 } 1274 vn->vn_mntdir = getmnton(kd, vnode.v_mount); 1275 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) && 1276 vnode.v_rdev != NULL){ 1277 vn->vn_dev = dev2udev(kd, vnode.v_rdev); 1278 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); 1279 } else { 1280 vn->vn_dev = -1; 1281 } 1282 return (0); 1283 1284 fail: 1285 if (errbuf != NULL) 1286 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1287 return (1); 1288 } 1289 1290 /* 1291 * kinfo vnode type to filestat translation. 1292 */ 1293 static int 1294 kinfo_vtype2fst(int kfvtype) 1295 { 1296 static struct { 1297 int kf_vtype; 1298 int fst_vtype; 1299 } kfvtypes2fst[] = { 1300 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, 1301 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, 1302 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, 1303 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, 1304 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, 1305 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, 1306 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, 1307 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, 1308 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } 1309 }; 1310 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) 1311 unsigned int i; 1312 1313 for (i = 0; i < NKFVTYPES; i++) 1314 if (kfvtypes2fst[i].kf_vtype == kfvtype) 1315 break; 1316 if (i == NKFVTYPES) 1317 return (PS_FST_VTYPE_UNKNOWN); 1318 return (kfvtypes2fst[i].fst_vtype); 1319 } 1320 1321 static int 1322 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, 1323 char *errbuf) 1324 { 1325 struct statfs stbuf; 1326 struct kinfo_file *kif; 1327 struct kinfo_vmentry *kve; 1328 uint64_t fileid; 1329 uint64_t size; 1330 char *name, *path; 1331 uint32_t fsid; 1332 uint16_t mode; 1333 uint32_t rdev; 1334 int vntype; 1335 int status; 1336 1337 assert(fst); 1338 assert(vn); 1339 bzero(vn, sizeof(*vn)); 1340 if (fst->fs_typedep == NULL) 1341 return (1); 1342 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { 1343 kve = fst->fs_typedep; 1344 fileid = kve->kve_vn_fileid; 1345 fsid = kve->kve_vn_fsid; 1346 mode = kve->kve_vn_mode; 1347 path = kve->kve_path; 1348 rdev = kve->kve_vn_rdev; 1349 size = kve->kve_vn_size; 1350 vntype = kinfo_vtype2fst(kve->kve_vn_type); 1351 status = kve->kve_status; 1352 } else { 1353 kif = fst->fs_typedep; 1354 fileid = kif->kf_un.kf_file.kf_file_fileid; 1355 fsid = kif->kf_un.kf_file.kf_file_fsid; 1356 mode = kif->kf_un.kf_file.kf_file_mode; 1357 path = kif->kf_path; 1358 rdev = kif->kf_un.kf_file.kf_file_rdev; 1359 size = kif->kf_un.kf_file.kf_file_size; 1360 vntype = kinfo_vtype2fst(kif->kf_vnode_type); 1361 status = kif->kf_status; 1362 } 1363 vn->vn_type = vntype; 1364 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) 1365 return (0); 1366 if ((status & KF_ATTR_VALID) == 0) { 1367 if (errbuf != NULL) { 1368 snprintf(errbuf, _POSIX2_LINE_MAX, 1369 "? (no info available)"); 1370 } 1371 return (1); 1372 } 1373 if (path && *path) { 1374 statfs(path, &stbuf); 1375 vn->vn_mntdir = strdup(stbuf.f_mntonname); 1376 } else 1377 vn->vn_mntdir = strdup("-"); 1378 vn->vn_dev = rdev; 1379 if (vntype == PS_FST_VTYPE_VBLK) { 1380 name = devname(rdev, S_IFBLK); 1381 if (name != NULL) 1382 strlcpy(vn->vn_devname, name, 1383 sizeof(vn->vn_devname)); 1384 } else if (vntype == PS_FST_VTYPE_VCHR) { 1385 name = devname(vn->vn_dev, S_IFCHR); 1386 if (name != NULL) 1387 strlcpy(vn->vn_devname, name, 1388 sizeof(vn->vn_devname)); 1389 } 1390 vn->vn_fsid = fsid; 1391 vn->vn_fileid = fileid; 1392 vn->vn_size = size; 1393 vn->vn_mode = mode; 1394 return (0); 1395 } 1396 1397 int 1398 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, 1399 struct sockstat *sock, char *errbuf) 1400 { 1401 1402 assert(sock); 1403 if (procstat->type == PROCSTAT_KVM) { 1404 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, 1405 errbuf)); 1406 } else if (procstat->type == PROCSTAT_SYSCTL || 1407 procstat->type == PROCSTAT_CORE) { 1408 return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); 1409 } else { 1410 warnx("unknown access method: %d", procstat->type); 1411 if (errbuf != NULL) 1412 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1413 return (1); 1414 } 1415 } 1416 1417 static int 1418 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 1419 struct sockstat *sock, char *errbuf) 1420 { 1421 struct domain dom; 1422 struct inpcb inpcb; 1423 struct protosw proto; 1424 struct socket s; 1425 struct unpcb unpcb; 1426 ssize_t len; 1427 void *so; 1428 1429 assert(kd); 1430 assert(sock); 1431 assert(fst); 1432 bzero(sock, sizeof(*sock)); 1433 so = fst->fs_typedep; 1434 if (so == NULL) 1435 goto fail; 1436 sock->so_addr = (uintptr_t)so; 1437 /* fill in socket */ 1438 if (!kvm_read_all(kd, (unsigned long)so, &s, 1439 sizeof(struct socket))) { 1440 warnx("can't read sock at %p", (void *)so); 1441 goto fail; 1442 } 1443 /* fill in protosw entry */ 1444 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, 1445 sizeof(struct protosw))) { 1446 warnx("can't read protosw at %p", (void *)s.so_proto); 1447 goto fail; 1448 } 1449 /* fill in domain */ 1450 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, 1451 sizeof(struct domain))) { 1452 warnx("can't read domain at %p", 1453 (void *)proto.pr_domain); 1454 goto fail; 1455 } 1456 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, 1457 sizeof(sock->dname) - 1)) < 0) { 1458 warnx("can't read domain name at %p", (void *)dom.dom_name); 1459 sock->dname[0] = '\0'; 1460 } 1461 else 1462 sock->dname[len] = '\0'; 1463 1464 /* 1465 * Fill in known data. 1466 */ 1467 sock->type = s.so_type; 1468 sock->proto = proto.pr_protocol; 1469 sock->dom_family = dom.dom_family; 1470 sock->so_pcb = (uintptr_t)s.so_pcb; 1471 1472 /* 1473 * Protocol specific data. 1474 */ 1475 switch(dom.dom_family) { 1476 case AF_INET: 1477 case AF_INET6: 1478 if (proto.pr_protocol == IPPROTO_TCP) { 1479 if (s.so_pcb) { 1480 if (kvm_read(kd, (u_long)s.so_pcb, 1481 (char *)&inpcb, sizeof(struct inpcb)) 1482 != sizeof(struct inpcb)) { 1483 warnx("can't read inpcb at %p", 1484 (void *)s.so_pcb); 1485 } else 1486 sock->inp_ppcb = 1487 (uintptr_t)inpcb.inp_ppcb; 1488 } 1489 } 1490 break; 1491 case AF_UNIX: 1492 if (s.so_pcb) { 1493 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, 1494 sizeof(struct unpcb)) != sizeof(struct unpcb)){ 1495 warnx("can't read unpcb at %p", 1496 (void *)s.so_pcb); 1497 } else if (unpcb.unp_conn) { 1498 sock->so_rcv_sb_state = s.so_rcv.sb_state; 1499 sock->so_snd_sb_state = s.so_snd.sb_state; 1500 sock->unp_conn = (uintptr_t)unpcb.unp_conn; 1501 } 1502 } 1503 break; 1504 default: 1505 break; 1506 } 1507 return (0); 1508 1509 fail: 1510 if (errbuf != NULL) 1511 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1512 return (1); 1513 } 1514 1515 static int 1516 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, 1517 char *errbuf __unused) 1518 { 1519 struct kinfo_file *kif; 1520 1521 assert(sock); 1522 assert(fst); 1523 bzero(sock, sizeof(*sock)); 1524 kif = fst->fs_typedep; 1525 if (kif == NULL) 1526 return (0); 1527 1528 /* 1529 * Fill in known data. 1530 */ 1531 sock->type = kif->kf_sock_type; 1532 sock->proto = kif->kf_sock_protocol; 1533 sock->dom_family = kif->kf_sock_domain; 1534 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; 1535 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); 1536 bcopy(&kif->kf_sa_local, &sock->sa_local, kif->kf_sa_local.ss_len); 1537 bcopy(&kif->kf_sa_peer, &sock->sa_peer, kif->kf_sa_peer.ss_len); 1538 1539 /* 1540 * Protocol specific data. 1541 */ 1542 switch(sock->dom_family) { 1543 case AF_INET: 1544 case AF_INET6: 1545 if (sock->proto == IPPROTO_TCP) 1546 sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb; 1547 break; 1548 case AF_UNIX: 1549 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { 1550 sock->so_rcv_sb_state = 1551 kif->kf_un.kf_sock.kf_sock_rcv_sb_state; 1552 sock->so_snd_sb_state = 1553 kif->kf_un.kf_sock.kf_sock_snd_sb_state; 1554 sock->unp_conn = 1555 kif->kf_un.kf_sock.kf_sock_unpconn; 1556 } 1557 break; 1558 default: 1559 break; 1560 } 1561 return (0); 1562 } 1563 1564 /* 1565 * Descriptor flags to filestat translation. 1566 */ 1567 static int 1568 to_filestat_flags(int flags) 1569 { 1570 static struct { 1571 int flag; 1572 int fst_flag; 1573 } fstflags[] = { 1574 { FREAD, PS_FST_FFLAG_READ }, 1575 { FWRITE, PS_FST_FFLAG_WRITE }, 1576 { O_APPEND, PS_FST_FFLAG_APPEND }, 1577 { O_ASYNC, PS_FST_FFLAG_ASYNC }, 1578 { O_CREAT, PS_FST_FFLAG_CREAT }, 1579 { O_DIRECT, PS_FST_FFLAG_DIRECT }, 1580 { O_EXCL, PS_FST_FFLAG_EXCL }, 1581 { O_EXEC, PS_FST_FFLAG_EXEC }, 1582 { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, 1583 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 1584 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 1585 { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, 1586 { O_SYNC, PS_FST_FFLAG_SYNC }, 1587 { O_TRUNC, PS_FST_FFLAG_TRUNC } 1588 }; 1589 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) 1590 int fst_flags; 1591 unsigned int i; 1592 1593 fst_flags = 0; 1594 for (i = 0; i < NFSTFLAGS; i++) 1595 if (flags & fstflags[i].flag) 1596 fst_flags |= fstflags[i].fst_flag; 1597 return (fst_flags); 1598 } 1599 1600 /* 1601 * Vnode type to filestate translation. 1602 */ 1603 static int 1604 vntype2psfsttype(int type) 1605 { 1606 static struct { 1607 int vtype; 1608 int fst_vtype; 1609 } vt2fst[] = { 1610 { VBAD, PS_FST_VTYPE_VBAD }, 1611 { VBLK, PS_FST_VTYPE_VBLK }, 1612 { VCHR, PS_FST_VTYPE_VCHR }, 1613 { VDIR, PS_FST_VTYPE_VDIR }, 1614 { VFIFO, PS_FST_VTYPE_VFIFO }, 1615 { VLNK, PS_FST_VTYPE_VLNK }, 1616 { VNON, PS_FST_VTYPE_VNON }, 1617 { VREG, PS_FST_VTYPE_VREG }, 1618 { VSOCK, PS_FST_VTYPE_VSOCK } 1619 }; 1620 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) 1621 unsigned int i, fst_type; 1622 1623 fst_type = PS_FST_VTYPE_UNKNOWN; 1624 for (i = 0; i < NVFTYPES; i++) { 1625 if (type == vt2fst[i].vtype) { 1626 fst_type = vt2fst[i].fst_vtype; 1627 break; 1628 } 1629 } 1630 return (fst_type); 1631 } 1632 1633 static char * 1634 getmnton(kvm_t *kd, struct mount *m) 1635 { 1636 struct mount mnt; 1637 static struct mtab { 1638 struct mtab *next; 1639 struct mount *m; 1640 char mntonname[MNAMELEN + 1]; 1641 } *mhead = NULL; 1642 struct mtab *mt; 1643 1644 for (mt = mhead; mt != NULL; mt = mt->next) 1645 if (m == mt->m) 1646 return (mt->mntonname); 1647 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { 1648 warnx("can't read mount table at %p", (void *)m); 1649 return (NULL); 1650 } 1651 if ((mt = malloc(sizeof (struct mtab))) == NULL) 1652 err(1, NULL); 1653 mt->m = m; 1654 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); 1655 mt->mntonname[MNAMELEN] = '\0'; 1656 mt->next = mhead; 1657 mhead = mt; 1658 return (mt->mntonname); 1659 } 1660 1661 /* 1662 * Auxiliary structures and functions to get process environment or 1663 * command line arguments. 1664 */ 1665 struct argvec { 1666 char *buf; 1667 size_t bufsize; 1668 char **argv; 1669 size_t argc; 1670 }; 1671 1672 static struct argvec * 1673 argvec_alloc(size_t bufsize) 1674 { 1675 struct argvec *av; 1676 1677 av = malloc(sizeof(*av)); 1678 if (av == NULL) 1679 return (NULL); 1680 av->bufsize = bufsize; 1681 av->buf = malloc(av->bufsize); 1682 if (av->buf == NULL) { 1683 free(av); 1684 return (NULL); 1685 } 1686 av->argc = 32; 1687 av->argv = malloc(sizeof(char *) * av->argc); 1688 if (av->argv == NULL) { 1689 free(av->buf); 1690 free(av); 1691 return (NULL); 1692 } 1693 return av; 1694 } 1695 1696 static void 1697 argvec_free(struct argvec * av) 1698 { 1699 1700 free(av->argv); 1701 free(av->buf); 1702 free(av); 1703 } 1704 1705 static char ** 1706 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) 1707 { 1708 int error, name[4], argc, i; 1709 struct argvec *av, **avp; 1710 enum psc_type type; 1711 size_t len; 1712 char *p, **argv; 1713 1714 assert(procstat); 1715 assert(kp); 1716 if (procstat->type == PROCSTAT_KVM) { 1717 warnx("can't use kvm access method"); 1718 return (NULL); 1719 } 1720 if (procstat->type != PROCSTAT_SYSCTL && 1721 procstat->type != PROCSTAT_CORE) { 1722 warnx("unknown access method: %d", procstat->type); 1723 return (NULL); 1724 } 1725 1726 if (nchr == 0 || nchr > ARG_MAX) 1727 nchr = ARG_MAX; 1728 1729 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); 1730 av = *avp; 1731 1732 if (av == NULL) 1733 { 1734 av = argvec_alloc(nchr); 1735 if (av == NULL) 1736 { 1737 warn("malloc(%zu)", nchr); 1738 return (NULL); 1739 } 1740 *avp = av; 1741 } else if (av->bufsize < nchr) { 1742 av->buf = reallocf(av->buf, nchr); 1743 if (av->buf == NULL) { 1744 warn("malloc(%zu)", nchr); 1745 return (NULL); 1746 } 1747 } 1748 if (procstat->type == PROCSTAT_SYSCTL) { 1749 name[0] = CTL_KERN; 1750 name[1] = KERN_PROC; 1751 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 1752 name[3] = kp->ki_pid; 1753 len = nchr; 1754 error = sysctl(name, 4, av->buf, &len, NULL, 0); 1755 if (error != 0 && errno != ESRCH && errno != EPERM) 1756 warn("sysctl(kern.proc.%s)", env ? "env" : "args"); 1757 if (error != 0 || len == 0) 1758 return (NULL); 1759 } else /* procstat->type == PROCSTAT_CORE */ { 1760 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; 1761 len = nchr; 1762 if (procstat_core_get(procstat->core, type, av->buf, &len) 1763 == NULL) { 1764 return (NULL); 1765 } 1766 } 1767 1768 argv = av->argv; 1769 argc = av->argc; 1770 i = 0; 1771 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { 1772 argv[i++] = p; 1773 if (i < argc) 1774 continue; 1775 /* Grow argv. */ 1776 argc += argc; 1777 argv = realloc(argv, sizeof(char *) * argc); 1778 if (argv == NULL) { 1779 warn("malloc(%zu)", sizeof(char *) * argc); 1780 return (NULL); 1781 } 1782 av->argv = argv; 1783 av->argc = argc; 1784 } 1785 argv[i] = NULL; 1786 1787 return (argv); 1788 } 1789 1790 /* 1791 * Return process command line arguments. 1792 */ 1793 char ** 1794 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1795 { 1796 1797 return (getargv(procstat, p, nchr, 0)); 1798 } 1799 1800 /* 1801 * Free the buffer allocated by procstat_getargv(). 1802 */ 1803 void 1804 procstat_freeargv(struct procstat *procstat) 1805 { 1806 1807 if (procstat->argv != NULL) { 1808 argvec_free(procstat->argv); 1809 procstat->argv = NULL; 1810 } 1811 } 1812 1813 /* 1814 * Return process environment. 1815 */ 1816 char ** 1817 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1818 { 1819 1820 return (getargv(procstat, p, nchr, 1)); 1821 } 1822 1823 /* 1824 * Free the buffer allocated by procstat_getenvv(). 1825 */ 1826 void 1827 procstat_freeenvv(struct procstat *procstat) 1828 { 1829 if (procstat->envv != NULL) { 1830 argvec_free(procstat->envv); 1831 procstat->envv = NULL; 1832 } 1833 } 1834 1835 static struct kinfo_vmentry * 1836 kinfo_getvmmap_core(struct procstat_core *core, int *cntp) 1837 { 1838 int cnt; 1839 size_t len; 1840 char *buf, *bp, *eb; 1841 struct kinfo_vmentry *kiv, *kp, *kv; 1842 1843 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); 1844 if (buf == NULL) 1845 return (NULL); 1846 1847 /* 1848 * XXXMG: The code below is just copy&past from libutil. 1849 * The code duplication can be avoided if libutil 1850 * is extended to provide something like: 1851 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, 1852 * size_t len, int *cntp); 1853 */ 1854 1855 /* Pass 1: count items */ 1856 cnt = 0; 1857 bp = buf; 1858 eb = buf + len; 1859 while (bp < eb) { 1860 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1861 bp += kv->kve_structsize; 1862 cnt++; 1863 } 1864 1865 kiv = calloc(cnt, sizeof(*kiv)); 1866 if (kiv == NULL) { 1867 free(buf); 1868 return (NULL); 1869 } 1870 bp = buf; 1871 eb = buf + len; 1872 kp = kiv; 1873 /* Pass 2: unpack */ 1874 while (bp < eb) { 1875 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1876 /* Copy/expand into pre-zeroed buffer */ 1877 memcpy(kp, kv, kv->kve_structsize); 1878 /* Advance to next packed record */ 1879 bp += kv->kve_structsize; 1880 /* Set field size to fixed length, advance */ 1881 kp->kve_structsize = sizeof(*kp); 1882 kp++; 1883 } 1884 free(buf); 1885 *cntp = cnt; 1886 return (kiv); /* Caller must free() return value */ 1887 } 1888 1889 struct kinfo_vmentry * 1890 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, 1891 unsigned int *cntp) 1892 { 1893 1894 switch(procstat->type) { 1895 case PROCSTAT_KVM: 1896 warnx("kvm method is not supported"); 1897 return (NULL); 1898 case PROCSTAT_SYSCTL: 1899 return (kinfo_getvmmap(kp->ki_pid, cntp)); 1900 case PROCSTAT_CORE: 1901 return (kinfo_getvmmap_core(procstat->core, cntp)); 1902 default: 1903 warnx("unknown access method: %d", procstat->type); 1904 return (NULL); 1905 } 1906 } 1907 1908 void 1909 procstat_freevmmap(struct procstat *procstat __unused, 1910 struct kinfo_vmentry *vmmap) 1911 { 1912 1913 free(vmmap); 1914 } 1915 1916 static gid_t * 1917 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) 1918 { 1919 struct proc proc; 1920 struct ucred ucred; 1921 gid_t *groups; 1922 size_t len; 1923 1924 assert(kd != NULL); 1925 assert(kp != NULL); 1926 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 1927 sizeof(proc))) { 1928 warnx("can't read proc struct at %p for pid %d", 1929 kp->ki_paddr, kp->ki_pid); 1930 return (NULL); 1931 } 1932 if (proc.p_ucred == NOCRED) 1933 return (NULL); 1934 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, 1935 sizeof(ucred))) { 1936 warnx("can't read ucred struct at %p for pid %d", 1937 proc.p_ucred, kp->ki_pid); 1938 return (NULL); 1939 } 1940 len = ucred.cr_ngroups * sizeof(gid_t); 1941 groups = malloc(len); 1942 if (groups == NULL) { 1943 warn("malloc(%zu)", len); 1944 return (NULL); 1945 } 1946 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { 1947 warnx("can't read groups at %p for pid %d", 1948 ucred.cr_groups, kp->ki_pid); 1949 free(groups); 1950 return (NULL); 1951 } 1952 *cntp = ucred.cr_ngroups; 1953 return (groups); 1954 } 1955 1956 static gid_t * 1957 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) 1958 { 1959 int mib[4]; 1960 size_t len; 1961 gid_t *groups; 1962 1963 mib[0] = CTL_KERN; 1964 mib[1] = KERN_PROC; 1965 mib[2] = KERN_PROC_GROUPS; 1966 mib[3] = pid; 1967 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); 1968 groups = malloc(len); 1969 if (groups == NULL) { 1970 warn("malloc(%zu)", len); 1971 return (NULL); 1972 } 1973 if (sysctl(mib, 4, groups, &len, NULL, 0) == -1) { 1974 warn("sysctl: kern.proc.groups: %d", pid); 1975 free(groups); 1976 return (NULL); 1977 } 1978 *cntp = len / sizeof(gid_t); 1979 return (groups); 1980 } 1981 1982 static gid_t * 1983 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) 1984 { 1985 size_t len; 1986 gid_t *groups; 1987 1988 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); 1989 if (groups == NULL) 1990 return (NULL); 1991 *cntp = len / sizeof(gid_t); 1992 return (groups); 1993 } 1994 1995 gid_t * 1996 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, 1997 unsigned int *cntp) 1998 { 1999 switch(procstat->type) { 2000 case PROCSTAT_KVM: 2001 return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); 2002 case PROCSTAT_SYSCTL: 2003 return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); 2004 case PROCSTAT_CORE: 2005 return (procstat_getgroups_core(procstat->core, cntp)); 2006 default: 2007 warnx("unknown access method: %d", procstat->type); 2008 return (NULL); 2009 } 2010 } 2011 2012 void 2013 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) 2014 { 2015 2016 free(groups); 2017 } 2018 2019 static int 2020 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) 2021 { 2022 struct filedesc fd; 2023 2024 assert(kd != NULL); 2025 assert(kp != NULL); 2026 if (kp->ki_fd == NULL) 2027 return (-1); 2028 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) { 2029 warnx("can't read filedesc at %p for pid %d", kp->ki_fd, 2030 kp->ki_pid); 2031 return (-1); 2032 } 2033 *maskp = fd.fd_cmask; 2034 return (0); 2035 } 2036 2037 static int 2038 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) 2039 { 2040 int error; 2041 int mib[4]; 2042 size_t len; 2043 2044 mib[0] = CTL_KERN; 2045 mib[1] = KERN_PROC; 2046 mib[2] = KERN_PROC_UMASK; 2047 mib[3] = pid; 2048 len = sizeof(*maskp); 2049 error = sysctl(mib, 4, maskp, &len, NULL, 0); 2050 if (error != 0 && errno != ESRCH) 2051 warn("sysctl: kern.proc.umask: %d", pid); 2052 return (error); 2053 } 2054 2055 static int 2056 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) 2057 { 2058 size_t len; 2059 unsigned short *buf; 2060 2061 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); 2062 if (buf == NULL) 2063 return (-1); 2064 if (len < sizeof(*maskp)) { 2065 free(buf); 2066 return (-1); 2067 } 2068 *maskp = *buf; 2069 free(buf); 2070 return (0); 2071 } 2072 2073 int 2074 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, 2075 unsigned short *maskp) 2076 { 2077 switch(procstat->type) { 2078 case PROCSTAT_KVM: 2079 return (procstat_getumask_kvm(procstat->kd, kp, maskp)); 2080 case PROCSTAT_SYSCTL: 2081 return (procstat_getumask_sysctl(kp->ki_pid, maskp)); 2082 case PROCSTAT_CORE: 2083 return (procstat_getumask_core(procstat->core, maskp)); 2084 default: 2085 warnx("unknown access method: %d", procstat->type); 2086 return (-1); 2087 } 2088 } 2089 2090 static int 2091 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, 2092 struct rlimit* rlimit) 2093 { 2094 struct proc proc; 2095 unsigned long offset; 2096 2097 assert(kd != NULL); 2098 assert(kp != NULL); 2099 assert(which >= 0 && which < RLIM_NLIMITS); 2100 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2101 sizeof(proc))) { 2102 warnx("can't read proc struct at %p for pid %d", 2103 kp->ki_paddr, kp->ki_pid); 2104 return (-1); 2105 } 2106 if (proc.p_limit == NULL) 2107 return (-1); 2108 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; 2109 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { 2110 warnx("can't read rlimit struct at %p for pid %d", 2111 (void *)offset, kp->ki_pid); 2112 return (-1); 2113 } 2114 return (0); 2115 } 2116 2117 static int 2118 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) 2119 { 2120 int error, name[5]; 2121 size_t len; 2122 2123 name[0] = CTL_KERN; 2124 name[1] = KERN_PROC; 2125 name[2] = KERN_PROC_RLIMIT; 2126 name[3] = pid; 2127 name[4] = which; 2128 len = sizeof(struct rlimit); 2129 error = sysctl(name, 5, rlimit, &len, NULL, 0); 2130 if (error < 0 && errno != ESRCH) { 2131 warn("sysctl: kern.proc.rlimit: %d", pid); 2132 return (-1); 2133 } 2134 if (error < 0 || len != sizeof(struct rlimit)) 2135 return (-1); 2136 return (0); 2137 } 2138 2139 static int 2140 procstat_getrlimit_core(struct procstat_core *core, int which, 2141 struct rlimit* rlimit) 2142 { 2143 size_t len; 2144 struct rlimit* rlimits; 2145 2146 if (which < 0 || which >= RLIM_NLIMITS) { 2147 errno = EINVAL; 2148 warn("getrlimit: which"); 2149 return (-1); 2150 } 2151 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); 2152 if (rlimits == NULL) 2153 return (-1); 2154 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { 2155 free(rlimits); 2156 return (-1); 2157 } 2158 *rlimit = rlimits[which]; 2159 return (0); 2160 } 2161 2162 int 2163 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, 2164 struct rlimit* rlimit) 2165 { 2166 switch(procstat->type) { 2167 case PROCSTAT_KVM: 2168 return (procstat_getrlimit_kvm(procstat->kd, kp, which, 2169 rlimit)); 2170 case PROCSTAT_SYSCTL: 2171 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); 2172 case PROCSTAT_CORE: 2173 return (procstat_getrlimit_core(procstat->core, which, rlimit)); 2174 default: 2175 warnx("unknown access method: %d", procstat->type); 2176 return (-1); 2177 } 2178 } 2179 2180 static int 2181 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) 2182 { 2183 int error, name[4]; 2184 size_t len; 2185 2186 name[0] = CTL_KERN; 2187 name[1] = KERN_PROC; 2188 name[2] = KERN_PROC_PATHNAME; 2189 name[3] = pid; 2190 len = maxlen; 2191 error = sysctl(name, 4, pathname, &len, NULL, 0); 2192 if (error != 0 && errno != ESRCH) 2193 warn("sysctl: kern.proc.pathname: %d", pid); 2194 if (len == 0) 2195 pathname[0] = '\0'; 2196 return (error); 2197 } 2198 2199 static int 2200 procstat_getpathname_core(struct procstat_core *core, char *pathname, 2201 size_t maxlen) 2202 { 2203 struct kinfo_file *files; 2204 int cnt, i, result; 2205 2206 files = kinfo_getfile_core(core, &cnt); 2207 if (files == NULL) 2208 return (-1); 2209 result = -1; 2210 for (i = 0; i < cnt; i++) { 2211 if (files[i].kf_fd != KF_FD_TYPE_TEXT) 2212 continue; 2213 strncpy(pathname, files[i].kf_path, maxlen); 2214 result = 0; 2215 break; 2216 } 2217 free(files); 2218 return (result); 2219 } 2220 2221 int 2222 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, 2223 char *pathname, size_t maxlen) 2224 { 2225 switch(procstat->type) { 2226 case PROCSTAT_KVM: 2227 /* XXX: Return empty string. */ 2228 if (maxlen > 0) 2229 pathname[0] = '\0'; 2230 return (0); 2231 case PROCSTAT_SYSCTL: 2232 return (procstat_getpathname_sysctl(kp->ki_pid, pathname, 2233 maxlen)); 2234 case PROCSTAT_CORE: 2235 return (procstat_getpathname_core(procstat->core, pathname, 2236 maxlen)); 2237 default: 2238 warnx("unknown access method: %d", procstat->type); 2239 return (-1); 2240 } 2241 } 2242 2243 static int 2244 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) 2245 { 2246 struct proc proc; 2247 2248 assert(kd != NULL); 2249 assert(kp != NULL); 2250 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2251 sizeof(proc))) { 2252 warnx("can't read proc struct at %p for pid %d", 2253 kp->ki_paddr, kp->ki_pid); 2254 return (-1); 2255 } 2256 *osrelp = proc.p_osrel; 2257 return (0); 2258 } 2259 2260 static int 2261 procstat_getosrel_sysctl(pid_t pid, int *osrelp) 2262 { 2263 int error, name[4]; 2264 size_t len; 2265 2266 name[0] = CTL_KERN; 2267 name[1] = KERN_PROC; 2268 name[2] = KERN_PROC_OSREL; 2269 name[3] = pid; 2270 len = sizeof(*osrelp); 2271 error = sysctl(name, 4, osrelp, &len, NULL, 0); 2272 if (error != 0 && errno != ESRCH) 2273 warn("sysctl: kern.proc.osrel: %d", pid); 2274 return (error); 2275 } 2276 2277 static int 2278 procstat_getosrel_core(struct procstat_core *core, int *osrelp) 2279 { 2280 size_t len; 2281 int *buf; 2282 2283 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); 2284 if (buf == NULL) 2285 return (-1); 2286 if (len < sizeof(*osrelp)) { 2287 free(buf); 2288 return (-1); 2289 } 2290 *osrelp = *buf; 2291 free(buf); 2292 return (0); 2293 } 2294 2295 int 2296 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) 2297 { 2298 switch(procstat->type) { 2299 case PROCSTAT_KVM: 2300 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); 2301 case PROCSTAT_SYSCTL: 2302 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); 2303 case PROCSTAT_CORE: 2304 return (procstat_getosrel_core(procstat->core, osrelp)); 2305 default: 2306 warnx("unknown access method: %d", procstat->type); 2307 return (-1); 2308 } 2309 } 2310 2311 #define PROC_AUXV_MAX 256 2312 2313 #if __ELF_WORD_SIZE == 64 2314 static const char *elf32_sv_names[] = { 2315 "Linux ELF32", 2316 "FreeBSD ELF32", 2317 }; 2318 2319 static int 2320 is_elf32_sysctl(pid_t pid) 2321 { 2322 int error, name[4]; 2323 size_t len, i; 2324 static char sv_name[256]; 2325 2326 name[0] = CTL_KERN; 2327 name[1] = KERN_PROC; 2328 name[2] = KERN_PROC_SV_NAME; 2329 name[3] = pid; 2330 len = sizeof(sv_name); 2331 error = sysctl(name, 4, sv_name, &len, NULL, 0); 2332 if (error != 0 || len == 0) 2333 return (0); 2334 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { 2335 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) 2336 return (1); 2337 } 2338 return (0); 2339 } 2340 2341 static Elf_Auxinfo * 2342 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) 2343 { 2344 Elf_Auxinfo *auxv; 2345 Elf32_Auxinfo *auxv32; 2346 void *ptr; 2347 size_t len; 2348 unsigned int i, count; 2349 int name[4]; 2350 2351 name[0] = CTL_KERN; 2352 name[1] = KERN_PROC; 2353 name[2] = KERN_PROC_AUXV; 2354 name[3] = pid; 2355 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); 2356 auxv = NULL; 2357 auxv32 = malloc(len); 2358 if (auxv32 == NULL) { 2359 warn("malloc(%zu)", len); 2360 goto out; 2361 } 2362 if (sysctl(name, 4, auxv32, &len, NULL, 0) == -1) { 2363 if (errno != ESRCH && errno != EPERM) 2364 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2365 goto out; 2366 } 2367 count = len / sizeof(Elf_Auxinfo); 2368 auxv = malloc(count * sizeof(Elf_Auxinfo)); 2369 if (auxv == NULL) { 2370 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); 2371 goto out; 2372 } 2373 for (i = 0; i < count; i++) { 2374 /* 2375 * XXX: We expect that values for a_type on a 32-bit platform 2376 * are directly mapped to values on 64-bit one, which is not 2377 * necessarily true. 2378 */ 2379 auxv[i].a_type = auxv32[i].a_type; 2380 ptr = &auxv32[i].a_un; 2381 auxv[i].a_un.a_val = *((uint32_t *)ptr); 2382 } 2383 *cntp = count; 2384 out: 2385 free(auxv32); 2386 return (auxv); 2387 } 2388 #endif /* __ELF_WORD_SIZE == 64 */ 2389 2390 static Elf_Auxinfo * 2391 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) 2392 { 2393 Elf_Auxinfo *auxv; 2394 int name[4]; 2395 size_t len; 2396 2397 #if __ELF_WORD_SIZE == 64 2398 if (is_elf32_sysctl(pid)) 2399 return (procstat_getauxv32_sysctl(pid, cntp)); 2400 #endif 2401 name[0] = CTL_KERN; 2402 name[1] = KERN_PROC; 2403 name[2] = KERN_PROC_AUXV; 2404 name[3] = pid; 2405 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); 2406 auxv = malloc(len); 2407 if (auxv == NULL) { 2408 warn("malloc(%zu)", len); 2409 return (NULL); 2410 } 2411 if (sysctl(name, 4, auxv, &len, NULL, 0) == -1) { 2412 if (errno != ESRCH && errno != EPERM) 2413 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2414 free(auxv); 2415 return (NULL); 2416 } 2417 *cntp = len / sizeof(Elf_Auxinfo); 2418 return (auxv); 2419 } 2420 2421 static Elf_Auxinfo * 2422 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) 2423 { 2424 Elf_Auxinfo *auxv; 2425 size_t len; 2426 2427 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); 2428 if (auxv == NULL) 2429 return (NULL); 2430 *cntp = len / sizeof(Elf_Auxinfo); 2431 return (auxv); 2432 } 2433 2434 Elf_Auxinfo * 2435 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, 2436 unsigned int *cntp) 2437 { 2438 switch(procstat->type) { 2439 case PROCSTAT_KVM: 2440 warnx("kvm method is not supported"); 2441 return (NULL); 2442 case PROCSTAT_SYSCTL: 2443 return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); 2444 case PROCSTAT_CORE: 2445 return (procstat_getauxv_core(procstat->core, cntp)); 2446 default: 2447 warnx("unknown access method: %d", procstat->type); 2448 return (NULL); 2449 } 2450 } 2451 2452 void 2453 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) 2454 { 2455 2456 free(auxv); 2457 } 2458 2459 static struct kinfo_kstack * 2460 procstat_getkstack_sysctl(pid_t pid, int *cntp) 2461 { 2462 struct kinfo_kstack *kkstp; 2463 int error, name[4]; 2464 size_t len; 2465 2466 name[0] = CTL_KERN; 2467 name[1] = KERN_PROC; 2468 name[2] = KERN_PROC_KSTACK; 2469 name[3] = pid; 2470 2471 len = 0; 2472 error = sysctl(name, 4, NULL, &len, NULL, 0); 2473 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { 2474 warn("sysctl: kern.proc.kstack: %d", pid); 2475 return (NULL); 2476 } 2477 if (error == -1 && errno == ENOENT) { 2478 warnx("sysctl: kern.proc.kstack unavailable" 2479 " (options DDB or options STACK required in kernel)"); 2480 return (NULL); 2481 } 2482 if (error == -1) 2483 return (NULL); 2484 kkstp = malloc(len); 2485 if (kkstp == NULL) { 2486 warn("malloc(%zu)", len); 2487 return (NULL); 2488 } 2489 if (sysctl(name, 4, kkstp, &len, NULL, 0) == -1) { 2490 warn("sysctl: kern.proc.pid: %d", pid); 2491 free(kkstp); 2492 return (NULL); 2493 } 2494 *cntp = len / sizeof(*kkstp); 2495 2496 return (kkstp); 2497 } 2498 2499 struct kinfo_kstack * 2500 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, 2501 unsigned int *cntp) 2502 { 2503 switch(procstat->type) { 2504 case PROCSTAT_KVM: 2505 warnx("kvm method is not supported"); 2506 return (NULL); 2507 case PROCSTAT_SYSCTL: 2508 return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); 2509 case PROCSTAT_CORE: 2510 warnx("core method is not supported"); 2511 return (NULL); 2512 default: 2513 warnx("unknown access method: %d", procstat->type); 2514 return (NULL); 2515 } 2516 } 2517 2518 void 2519 procstat_freekstack(struct procstat *procstat __unused, 2520 struct kinfo_kstack *kkstp) 2521 { 2522 2523 free(kkstp); 2524 } 2525