1 /*- 2 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org> 3 * Copyright (c) 1988, 1993 4 * The Regents of the University of California. All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. All advertising materials mentioning features or use of this software 15 * must display the following acknowledgement: 16 * This product includes software developed by the University of 17 * California, Berkeley and its contributors. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/elf.h> 40 #include <sys/time.h> 41 #include <sys/resourcevar.h> 42 #define _WANT_UCRED 43 #include <sys/ucred.h> 44 #undef _WANT_UCRED 45 #include <sys/proc.h> 46 #include <sys/user.h> 47 #include <sys/stat.h> 48 #include <sys/vnode.h> 49 #include <sys/socket.h> 50 #include <sys/socketvar.h> 51 #include <sys/domain.h> 52 #include <sys/protosw.h> 53 #include <sys/un.h> 54 #include <sys/unpcb.h> 55 #include <sys/sysctl.h> 56 #include <sys/tty.h> 57 #include <sys/filedesc.h> 58 #include <sys/queue.h> 59 #define _WANT_FILE 60 #include <sys/file.h> 61 #include <sys/conf.h> 62 #include <sys/ksem.h> 63 #include <sys/mman.h> 64 #include <sys/capability.h> 65 #define _KERNEL 66 #include <sys/mount.h> 67 #include <sys/pipe.h> 68 #include <ufs/ufs/quota.h> 69 #include <ufs/ufs/inode.h> 70 #include <fs/devfs/devfs.h> 71 #include <fs/devfs/devfs_int.h> 72 #undef _KERNEL 73 #include <nfs/nfsproto.h> 74 #include <nfsclient/nfs.h> 75 #include <nfsclient/nfsnode.h> 76 77 #include <vm/vm.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_object.h> 80 81 #include <net/route.h> 82 #include <netinet/in.h> 83 #include <netinet/in_systm.h> 84 #include <netinet/ip.h> 85 #include <netinet/in_pcb.h> 86 87 #include <assert.h> 88 #include <ctype.h> 89 #include <err.h> 90 #include <fcntl.h> 91 #include <kvm.h> 92 #include <libutil.h> 93 #include <limits.h> 94 #include <paths.h> 95 #include <pwd.h> 96 #include <stdio.h> 97 #include <stdlib.h> 98 #include <stddef.h> 99 #include <string.h> 100 #include <unistd.h> 101 #include <netdb.h> 102 103 #include <libprocstat.h> 104 #include "libprocstat_internal.h" 105 #include "common_kvm.h" 106 #include "core.h" 107 108 int statfs(const char *, struct statfs *); /* XXX */ 109 110 #define PROCSTAT_KVM 1 111 #define PROCSTAT_SYSCTL 2 112 #define PROCSTAT_CORE 3 113 114 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, 115 size_t nchr, int env); 116 static char *getmnton(kvm_t *kd, struct mount *m); 117 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, 118 int *cntp); 119 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, 120 unsigned int *cntp); 121 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); 122 static struct filestat_list *procstat_getfiles_kvm( 123 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 124 static struct filestat_list *procstat_getfiles_sysctl( 125 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 126 static int procstat_get_pipe_info_sysctl(struct filestat *fst, 127 struct pipestat *pipe, char *errbuf); 128 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 129 struct pipestat *pipe, char *errbuf); 130 static int procstat_get_pts_info_sysctl(struct filestat *fst, 131 struct ptsstat *pts, char *errbuf); 132 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 133 struct ptsstat *pts, char *errbuf); 134 static int procstat_get_sem_info_sysctl(struct filestat *fst, 135 struct semstat *sem, char *errbuf); 136 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 137 struct semstat *sem, char *errbuf); 138 static int procstat_get_shm_info_sysctl(struct filestat *fst, 139 struct shmstat *shm, char *errbuf); 140 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 141 struct shmstat *shm, char *errbuf); 142 static int procstat_get_socket_info_sysctl(struct filestat *fst, 143 struct sockstat *sock, char *errbuf); 144 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 145 struct sockstat *sock, char *errbuf); 146 static int to_filestat_flags(int flags); 147 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 148 struct vnstat *vn, char *errbuf); 149 static int procstat_get_vnode_info_sysctl(struct filestat *fst, 150 struct vnstat *vn, char *errbuf); 151 static gid_t *procstat_getgroups_core(struct procstat_core *core, 152 unsigned int *count); 153 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, 154 unsigned int *count); 155 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); 156 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, 157 int *cntp); 158 static int procstat_getosrel_core(struct procstat_core *core, 159 int *osrelp); 160 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, 161 int *osrelp); 162 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); 163 static int procstat_getpathname_core(struct procstat_core *core, 164 char *pathname, size_t maxlen); 165 static int procstat_getpathname_sysctl(pid_t pid, char *pathname, 166 size_t maxlen); 167 static int procstat_getrlimit_core(struct procstat_core *core, int which, 168 struct rlimit* rlimit); 169 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, 170 int which, struct rlimit* rlimit); 171 static int procstat_getrlimit_sysctl(pid_t pid, int which, 172 struct rlimit* rlimit); 173 static int procstat_getumask_core(struct procstat_core *core, 174 unsigned short *maskp); 175 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, 176 unsigned short *maskp); 177 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); 178 static int vntype2psfsttype(int type); 179 180 void 181 procstat_close(struct procstat *procstat) 182 { 183 184 assert(procstat); 185 if (procstat->type == PROCSTAT_KVM) 186 kvm_close(procstat->kd); 187 else if (procstat->type == PROCSTAT_CORE) 188 procstat_core_close(procstat->core); 189 procstat_freeargv(procstat); 190 procstat_freeenvv(procstat); 191 free(procstat); 192 } 193 194 struct procstat * 195 procstat_open_sysctl(void) 196 { 197 struct procstat *procstat; 198 199 procstat = calloc(1, sizeof(*procstat)); 200 if (procstat == NULL) { 201 warn("malloc()"); 202 return (NULL); 203 } 204 procstat->type = PROCSTAT_SYSCTL; 205 return (procstat); 206 } 207 208 struct procstat * 209 procstat_open_kvm(const char *nlistf, const char *memf) 210 { 211 struct procstat *procstat; 212 kvm_t *kd; 213 char buf[_POSIX2_LINE_MAX]; 214 215 procstat = calloc(1, sizeof(*procstat)); 216 if (procstat == NULL) { 217 warn("malloc()"); 218 return (NULL); 219 } 220 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); 221 if (kd == NULL) { 222 warnx("kvm_openfiles(): %s", buf); 223 free(procstat); 224 return (NULL); 225 } 226 procstat->type = PROCSTAT_KVM; 227 procstat->kd = kd; 228 return (procstat); 229 } 230 231 struct procstat * 232 procstat_open_core(const char *filename) 233 { 234 struct procstat *procstat; 235 struct procstat_core *core; 236 237 procstat = calloc(1, sizeof(*procstat)); 238 if (procstat == NULL) { 239 warn("malloc()"); 240 return (NULL); 241 } 242 core = procstat_core_open(filename); 243 if (core == NULL) { 244 free(procstat); 245 return (NULL); 246 } 247 procstat->type = PROCSTAT_CORE; 248 procstat->core = core; 249 return (procstat); 250 } 251 252 struct kinfo_proc * 253 procstat_getprocs(struct procstat *procstat, int what, int arg, 254 unsigned int *count) 255 { 256 struct kinfo_proc *p0, *p; 257 size_t len, olen; 258 int name[4]; 259 int cnt; 260 int error; 261 262 assert(procstat); 263 assert(count); 264 p = NULL; 265 if (procstat->type == PROCSTAT_KVM) { 266 *count = 0; 267 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); 268 if (p0 == NULL || cnt <= 0) 269 return (NULL); 270 *count = cnt; 271 len = *count * sizeof(*p); 272 p = malloc(len); 273 if (p == NULL) { 274 warnx("malloc(%zu)", len); 275 goto fail; 276 } 277 bcopy(p0, p, len); 278 return (p); 279 } else if (procstat->type == PROCSTAT_SYSCTL) { 280 len = 0; 281 name[0] = CTL_KERN; 282 name[1] = KERN_PROC; 283 name[2] = what; 284 name[3] = arg; 285 error = sysctl(name, 4, NULL, &len, NULL, 0); 286 if (error < 0 && errno != EPERM) { 287 warn("sysctl(kern.proc)"); 288 goto fail; 289 } 290 if (len == 0) { 291 warnx("no processes?"); 292 goto fail; 293 } 294 do { 295 len += len / 10; 296 p = reallocf(p, len); 297 if (p == NULL) { 298 warnx("reallocf(%zu)", len); 299 goto fail; 300 } 301 olen = len; 302 error = sysctl(name, 4, p, &len, NULL, 0); 303 } while (error < 0 && errno == ENOMEM && olen == len); 304 if (error < 0 && errno != EPERM) { 305 warn("sysctl(kern.proc)"); 306 goto fail; 307 } 308 /* Perform simple consistency checks. */ 309 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 310 warnx("kinfo_proc structure size mismatch (len = %zu)", len); 311 goto fail; 312 } 313 *count = len / sizeof(*p); 314 return (p); 315 } else if (procstat->type == PROCSTAT_CORE) { 316 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, 317 &len); 318 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 319 warnx("kinfo_proc structure size mismatch"); 320 goto fail; 321 } 322 *count = len / sizeof(*p); 323 return (p); 324 } else { 325 warnx("unknown access method: %d", procstat->type); 326 return (NULL); 327 } 328 fail: 329 if (p) 330 free(p); 331 return (NULL); 332 } 333 334 void 335 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) 336 { 337 338 if (p != NULL) 339 free(p); 340 p = NULL; 341 } 342 343 struct filestat_list * 344 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 345 { 346 347 switch(procstat->type) { 348 case PROCSTAT_KVM: 349 return (procstat_getfiles_kvm(procstat, kp, mmapped)); 350 case PROCSTAT_SYSCTL: 351 case PROCSTAT_CORE: 352 return (procstat_getfiles_sysctl(procstat, kp, mmapped)); 353 default: 354 warnx("unknown access method: %d", procstat->type); 355 return (NULL); 356 } 357 } 358 359 void 360 procstat_freefiles(struct procstat *procstat, struct filestat_list *head) 361 { 362 struct filestat *fst, *tmp; 363 364 STAILQ_FOREACH_SAFE(fst, head, next, tmp) { 365 if (fst->fs_path != NULL) 366 free(fst->fs_path); 367 free(fst); 368 } 369 free(head); 370 if (procstat->vmentries != NULL) { 371 free(procstat->vmentries); 372 procstat->vmentries = NULL; 373 } 374 if (procstat->files != NULL) { 375 free(procstat->files); 376 procstat->files = NULL; 377 } 378 } 379 380 static struct filestat * 381 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, 382 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp) 383 { 384 struct filestat *entry; 385 386 entry = calloc(1, sizeof(*entry)); 387 if (entry == NULL) { 388 warn("malloc()"); 389 return (NULL); 390 } 391 entry->fs_typedep = typedep; 392 entry->fs_fflags = fflags; 393 entry->fs_uflags = uflags; 394 entry->fs_fd = fd; 395 entry->fs_type = type; 396 entry->fs_ref_count = refcount; 397 entry->fs_offset = offset; 398 entry->fs_path = path; 399 if (cap_rightsp != NULL) 400 entry->fs_cap_rights = *cap_rightsp; 401 else 402 cap_rights_init(&entry->fs_cap_rights); 403 return (entry); 404 } 405 406 static struct vnode * 407 getctty(kvm_t *kd, struct kinfo_proc *kp) 408 { 409 struct pgrp pgrp; 410 struct proc proc; 411 struct session sess; 412 int error; 413 414 assert(kp); 415 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 416 sizeof(proc)); 417 if (error == 0) { 418 warnx("can't read proc struct at %p for pid %d", 419 kp->ki_paddr, kp->ki_pid); 420 return (NULL); 421 } 422 if (proc.p_pgrp == NULL) 423 return (NULL); 424 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, 425 sizeof(pgrp)); 426 if (error == 0) { 427 warnx("can't read pgrp struct at %p for pid %d", 428 proc.p_pgrp, kp->ki_pid); 429 return (NULL); 430 } 431 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, 432 sizeof(sess)); 433 if (error == 0) { 434 warnx("can't read session struct at %p for pid %d", 435 pgrp.pg_session, kp->ki_pid); 436 return (NULL); 437 } 438 return (sess.s_ttyvp); 439 } 440 441 static struct filestat_list * 442 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 443 { 444 struct file file; 445 struct filedesc filed; 446 struct vm_map_entry vmentry; 447 struct vm_object object; 448 struct vmspace vmspace; 449 vm_map_entry_t entryp; 450 vm_map_t map; 451 vm_object_t objp; 452 struct vnode *vp; 453 struct file **ofiles; 454 struct filestat *entry; 455 struct filestat_list *head; 456 kvm_t *kd; 457 void *data; 458 int i, fflags; 459 int prot, type; 460 unsigned int nfiles; 461 462 assert(procstat); 463 kd = procstat->kd; 464 if (kd == NULL) 465 return (NULL); 466 if (kp->ki_fd == NULL) 467 return (NULL); 468 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, 469 sizeof(filed))) { 470 warnx("can't read filedesc at %p", (void *)kp->ki_fd); 471 return (NULL); 472 } 473 474 /* 475 * Allocate list head. 476 */ 477 head = malloc(sizeof(*head)); 478 if (head == NULL) 479 return (NULL); 480 STAILQ_INIT(head); 481 482 /* root directory vnode, if one. */ 483 if (filed.fd_rdir) { 484 entry = filestat_new_entry(filed.fd_rdir, PS_FST_TYPE_VNODE, -1, 485 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL); 486 if (entry != NULL) 487 STAILQ_INSERT_TAIL(head, entry, next); 488 } 489 /* current working directory vnode. */ 490 if (filed.fd_cdir) { 491 entry = filestat_new_entry(filed.fd_cdir, PS_FST_TYPE_VNODE, -1, 492 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL); 493 if (entry != NULL) 494 STAILQ_INSERT_TAIL(head, entry, next); 495 } 496 /* jail root, if any. */ 497 if (filed.fd_jdir) { 498 entry = filestat_new_entry(filed.fd_jdir, PS_FST_TYPE_VNODE, -1, 499 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL); 500 if (entry != NULL) 501 STAILQ_INSERT_TAIL(head, entry, next); 502 } 503 /* ktrace vnode, if one */ 504 if (kp->ki_tracep) { 505 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, 506 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 507 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL); 508 if (entry != NULL) 509 STAILQ_INSERT_TAIL(head, entry, next); 510 } 511 /* text vnode, if one */ 512 if (kp->ki_textvp) { 513 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, 514 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL); 515 if (entry != NULL) 516 STAILQ_INSERT_TAIL(head, entry, next); 517 } 518 /* Controlling terminal. */ 519 if ((vp = getctty(kd, kp)) != NULL) { 520 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, 521 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 522 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL); 523 if (entry != NULL) 524 STAILQ_INSERT_TAIL(head, entry, next); 525 } 526 527 nfiles = filed.fd_lastfile + 1; 528 ofiles = malloc(nfiles * sizeof(struct file *)); 529 if (ofiles == NULL) { 530 warn("malloc(%zu)", nfiles * sizeof(struct file *)); 531 goto do_mmapped; 532 } 533 if (!kvm_read_all(kd, (unsigned long)filed.fd_ofiles, ofiles, 534 nfiles * sizeof(struct file *))) { 535 warnx("cannot read file structures at %p", 536 (void *)filed.fd_ofiles); 537 free(ofiles); 538 goto do_mmapped; 539 } 540 for (i = 0; i <= filed.fd_lastfile; i++) { 541 if (ofiles[i] == NULL) 542 continue; 543 if (!kvm_read_all(kd, (unsigned long)ofiles[i], &file, 544 sizeof(struct file))) { 545 warnx("can't read file %d at %p", i, 546 (void *)ofiles[i]); 547 continue; 548 } 549 switch (file.f_type) { 550 case DTYPE_VNODE: 551 type = PS_FST_TYPE_VNODE; 552 data = file.f_vnode; 553 break; 554 case DTYPE_SOCKET: 555 type = PS_FST_TYPE_SOCKET; 556 data = file.f_data; 557 break; 558 case DTYPE_PIPE: 559 type = PS_FST_TYPE_PIPE; 560 data = file.f_data; 561 break; 562 case DTYPE_FIFO: 563 type = PS_FST_TYPE_FIFO; 564 data = file.f_vnode; 565 break; 566 #ifdef DTYPE_PTS 567 case DTYPE_PTS: 568 type = PS_FST_TYPE_PTS; 569 data = file.f_data; 570 break; 571 #endif 572 case DTYPE_SEM: 573 type = PS_FST_TYPE_SEM; 574 data = file.f_data; 575 break; 576 case DTYPE_SHM: 577 type = PS_FST_TYPE_SHM; 578 data = file.f_data; 579 break; 580 default: 581 continue; 582 } 583 /* XXXRW: No capability rights support for kvm yet. */ 584 entry = filestat_new_entry(data, type, i, 585 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL); 586 if (entry != NULL) 587 STAILQ_INSERT_TAIL(head, entry, next); 588 } 589 free(ofiles); 590 591 do_mmapped: 592 593 /* 594 * Process mmapped files if requested. 595 */ 596 if (mmapped) { 597 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, 598 sizeof(vmspace))) { 599 warnx("can't read vmspace at %p", 600 (void *)kp->ki_vmspace); 601 goto exit; 602 } 603 map = &vmspace.vm_map; 604 605 for (entryp = map->header.next; 606 entryp != &kp->ki_vmspace->vm_map.header; 607 entryp = vmentry.next) { 608 if (!kvm_read_all(kd, (unsigned long)entryp, &vmentry, 609 sizeof(vmentry))) { 610 warnx("can't read vm_map_entry at %p", 611 (void *)entryp); 612 continue; 613 } 614 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) 615 continue; 616 if ((objp = vmentry.object.vm_object) == NULL) 617 continue; 618 for (; objp; objp = object.backing_object) { 619 if (!kvm_read_all(kd, (unsigned long)objp, 620 &object, sizeof(object))) { 621 warnx("can't read vm_object at %p", 622 (void *)objp); 623 break; 624 } 625 } 626 627 /* We want only vnode objects. */ 628 if (object.type != OBJT_VNODE) 629 continue; 630 631 prot = vmentry.protection; 632 fflags = 0; 633 if (prot & VM_PROT_READ) 634 fflags = PS_FST_FFLAG_READ; 635 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && 636 prot & VM_PROT_WRITE) 637 fflags |= PS_FST_FFLAG_WRITE; 638 639 /* 640 * Create filestat entry. 641 */ 642 entry = filestat_new_entry(object.handle, 643 PS_FST_TYPE_VNODE, -1, fflags, 644 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL); 645 if (entry != NULL) 646 STAILQ_INSERT_TAIL(head, entry, next); 647 } 648 } 649 exit: 650 return (head); 651 } 652 653 /* 654 * kinfo types to filestat translation. 655 */ 656 static int 657 kinfo_type2fst(int kftype) 658 { 659 static struct { 660 int kf_type; 661 int fst_type; 662 } kftypes2fst[] = { 663 { KF_TYPE_CRYPTO, PS_FST_TYPE_CRYPTO }, 664 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, 665 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, 666 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, 667 { KF_TYPE_NONE, PS_FST_TYPE_NONE }, 668 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, 669 { KF_TYPE_PTS, PS_FST_TYPE_PTS }, 670 { KF_TYPE_SEM, PS_FST_TYPE_SEM }, 671 { KF_TYPE_SHM, PS_FST_TYPE_SHM }, 672 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, 673 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, 674 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } 675 }; 676 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) 677 unsigned int i; 678 679 for (i = 0; i < NKFTYPES; i++) 680 if (kftypes2fst[i].kf_type == kftype) 681 break; 682 if (i == NKFTYPES) 683 return (PS_FST_TYPE_UNKNOWN); 684 return (kftypes2fst[i].fst_type); 685 } 686 687 /* 688 * kinfo flags to filestat translation. 689 */ 690 static int 691 kinfo_fflags2fst(int kfflags) 692 { 693 static struct { 694 int kf_flag; 695 int fst_flag; 696 } kfflags2fst[] = { 697 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, 698 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, 699 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, 700 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, 701 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, 702 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, 703 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, 704 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, 705 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, 706 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 707 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 708 { KF_FLAG_READ, PS_FST_FFLAG_READ }, 709 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, 710 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, 711 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } 712 }; 713 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) 714 unsigned int i; 715 int flags; 716 717 flags = 0; 718 for (i = 0; i < NKFFLAGS; i++) 719 if ((kfflags & kfflags2fst[i].kf_flag) != 0) 720 flags |= kfflags2fst[i].fst_flag; 721 return (flags); 722 } 723 724 static int 725 kinfo_uflags2fst(int fd) 726 { 727 728 switch (fd) { 729 case KF_FD_TYPE_CTTY: 730 return (PS_FST_UFLAG_CTTY); 731 case KF_FD_TYPE_CWD: 732 return (PS_FST_UFLAG_CDIR); 733 case KF_FD_TYPE_JAIL: 734 return (PS_FST_UFLAG_JAIL); 735 case KF_FD_TYPE_TEXT: 736 return (PS_FST_UFLAG_TEXT); 737 case KF_FD_TYPE_TRACE: 738 return (PS_FST_UFLAG_TRACE); 739 case KF_FD_TYPE_ROOT: 740 return (PS_FST_UFLAG_RDIR); 741 } 742 return (0); 743 } 744 745 static struct kinfo_file * 746 kinfo_getfile_core(struct procstat_core *core, int *cntp) 747 { 748 int cnt; 749 size_t len; 750 char *buf, *bp, *eb; 751 struct kinfo_file *kif, *kp, *kf; 752 753 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); 754 if (buf == NULL) 755 return (NULL); 756 /* 757 * XXXMG: The code below is just copy&past from libutil. 758 * The code duplication can be avoided if libutil 759 * is extended to provide something like: 760 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, 761 * size_t len, int *cntp); 762 */ 763 764 /* Pass 1: count items */ 765 cnt = 0; 766 bp = buf; 767 eb = buf + len; 768 while (bp < eb) { 769 kf = (struct kinfo_file *)(uintptr_t)bp; 770 bp += kf->kf_structsize; 771 cnt++; 772 } 773 774 kif = calloc(cnt, sizeof(*kif)); 775 if (kif == NULL) { 776 free(buf); 777 return (NULL); 778 } 779 bp = buf; 780 eb = buf + len; 781 kp = kif; 782 /* Pass 2: unpack */ 783 while (bp < eb) { 784 kf = (struct kinfo_file *)(uintptr_t)bp; 785 /* Copy/expand into pre-zeroed buffer */ 786 memcpy(kp, kf, kf->kf_structsize); 787 /* Advance to next packed record */ 788 bp += kf->kf_structsize; 789 /* Set field size to fixed length, advance */ 790 kp->kf_structsize = sizeof(*kp); 791 kp++; 792 } 793 free(buf); 794 *cntp = cnt; 795 return (kif); /* Caller must free() return value */ 796 } 797 798 static struct filestat_list * 799 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, 800 int mmapped) 801 { 802 struct kinfo_file *kif, *files; 803 struct kinfo_vmentry *kve, *vmentries; 804 struct filestat_list *head; 805 struct filestat *entry; 806 char *path; 807 off_t offset; 808 int cnt, fd, fflags; 809 int i, type, uflags; 810 int refcount; 811 cap_rights_t cap_rights; 812 813 assert(kp); 814 if (kp->ki_fd == NULL) 815 return (NULL); 816 switch(procstat->type) { 817 case PROCSTAT_SYSCTL: 818 files = kinfo_getfile(kp->ki_pid, &cnt); 819 break; 820 case PROCSTAT_CORE: 821 files = kinfo_getfile_core(procstat->core, &cnt); 822 break; 823 default: 824 assert(!"invalid type"); 825 } 826 if (files == NULL && errno != EPERM) { 827 warn("kinfo_getfile()"); 828 return (NULL); 829 } 830 procstat->files = files; 831 832 /* 833 * Allocate list head. 834 */ 835 head = malloc(sizeof(*head)); 836 if (head == NULL) 837 return (NULL); 838 STAILQ_INIT(head); 839 for (i = 0; i < cnt; i++) { 840 kif = &files[i]; 841 842 type = kinfo_type2fst(kif->kf_type); 843 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; 844 fflags = kinfo_fflags2fst(kif->kf_flags); 845 uflags = kinfo_uflags2fst(kif->kf_fd); 846 refcount = kif->kf_ref_count; 847 offset = kif->kf_offset; 848 if (*kif->kf_path != '\0') 849 path = strdup(kif->kf_path); 850 else 851 path = NULL; 852 cap_rights = kif->kf_cap_rights; 853 854 /* 855 * Create filestat entry. 856 */ 857 entry = filestat_new_entry(kif, type, fd, fflags, uflags, 858 refcount, offset, path, &cap_rights); 859 if (entry != NULL) 860 STAILQ_INSERT_TAIL(head, entry, next); 861 } 862 if (mmapped != 0) { 863 vmentries = procstat_getvmmap(procstat, kp, &cnt); 864 procstat->vmentries = vmentries; 865 if (vmentries == NULL || cnt == 0) 866 goto fail; 867 for (i = 0; i < cnt; i++) { 868 kve = &vmentries[i]; 869 if (kve->kve_type != KVME_TYPE_VNODE) 870 continue; 871 fflags = 0; 872 if (kve->kve_protection & KVME_PROT_READ) 873 fflags = PS_FST_FFLAG_READ; 874 if ((kve->kve_flags & KVME_FLAG_COW) == 0 && 875 kve->kve_protection & KVME_PROT_WRITE) 876 fflags |= PS_FST_FFLAG_WRITE; 877 offset = kve->kve_offset; 878 refcount = kve->kve_ref_count; 879 if (*kve->kve_path != '\0') 880 path = strdup(kve->kve_path); 881 else 882 path = NULL; 883 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, 884 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, 885 NULL); 886 if (entry != NULL) 887 STAILQ_INSERT_TAIL(head, entry, next); 888 } 889 } 890 fail: 891 return (head); 892 } 893 894 int 895 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, 896 struct pipestat *ps, char *errbuf) 897 { 898 899 assert(ps); 900 if (procstat->type == PROCSTAT_KVM) { 901 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, 902 errbuf)); 903 } else if (procstat->type == PROCSTAT_SYSCTL || 904 procstat->type == PROCSTAT_CORE) { 905 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); 906 } else { 907 warnx("unknown access method: %d", procstat->type); 908 if (errbuf != NULL) 909 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 910 return (1); 911 } 912 } 913 914 static int 915 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 916 struct pipestat *ps, char *errbuf) 917 { 918 struct pipe pi; 919 void *pipep; 920 921 assert(kd); 922 assert(ps); 923 assert(fst); 924 bzero(ps, sizeof(*ps)); 925 pipep = fst->fs_typedep; 926 if (pipep == NULL) 927 goto fail; 928 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { 929 warnx("can't read pipe at %p", (void *)pipep); 930 goto fail; 931 } 932 ps->addr = (uintptr_t)pipep; 933 ps->peer = (uintptr_t)pi.pipe_peer; 934 ps->buffer_cnt = pi.pipe_buffer.cnt; 935 return (0); 936 937 fail: 938 if (errbuf != NULL) 939 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 940 return (1); 941 } 942 943 static int 944 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, 945 char *errbuf __unused) 946 { 947 struct kinfo_file *kif; 948 949 assert(ps); 950 assert(fst); 951 bzero(ps, sizeof(*ps)); 952 kif = fst->fs_typedep; 953 if (kif == NULL) 954 return (1); 955 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; 956 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; 957 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; 958 return (0); 959 } 960 961 int 962 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, 963 struct ptsstat *pts, char *errbuf) 964 { 965 966 assert(pts); 967 if (procstat->type == PROCSTAT_KVM) { 968 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, 969 errbuf)); 970 } else if (procstat->type == PROCSTAT_SYSCTL || 971 procstat->type == PROCSTAT_CORE) { 972 return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); 973 } else { 974 warnx("unknown access method: %d", procstat->type); 975 if (errbuf != NULL) 976 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 977 return (1); 978 } 979 } 980 981 static int 982 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 983 struct ptsstat *pts, char *errbuf) 984 { 985 struct tty tty; 986 void *ttyp; 987 988 assert(kd); 989 assert(pts); 990 assert(fst); 991 bzero(pts, sizeof(*pts)); 992 ttyp = fst->fs_typedep; 993 if (ttyp == NULL) 994 goto fail; 995 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { 996 warnx("can't read tty at %p", (void *)ttyp); 997 goto fail; 998 } 999 pts->dev = dev2udev(kd, tty.t_dev); 1000 (void)kdevtoname(kd, tty.t_dev, pts->devname); 1001 return (0); 1002 1003 fail: 1004 if (errbuf != NULL) 1005 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1006 return (1); 1007 } 1008 1009 static int 1010 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, 1011 char *errbuf __unused) 1012 { 1013 struct kinfo_file *kif; 1014 1015 assert(pts); 1016 assert(fst); 1017 bzero(pts, sizeof(*pts)); 1018 kif = fst->fs_typedep; 1019 if (kif == NULL) 1020 return (0); 1021 pts->dev = kif->kf_un.kf_pts.kf_pts_dev; 1022 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); 1023 return (0); 1024 } 1025 1026 int 1027 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, 1028 struct semstat *sem, char *errbuf) 1029 { 1030 1031 assert(sem); 1032 if (procstat->type == PROCSTAT_KVM) { 1033 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, 1034 errbuf)); 1035 } else if (procstat->type == PROCSTAT_SYSCTL || 1036 procstat->type == PROCSTAT_CORE) { 1037 return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); 1038 } else { 1039 warnx("unknown access method: %d", procstat->type); 1040 if (errbuf != NULL) 1041 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1042 return (1); 1043 } 1044 } 1045 1046 static int 1047 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 1048 struct semstat *sem, char *errbuf) 1049 { 1050 struct ksem ksem; 1051 void *ksemp; 1052 char *path; 1053 int i; 1054 1055 assert(kd); 1056 assert(sem); 1057 assert(fst); 1058 bzero(sem, sizeof(*sem)); 1059 ksemp = fst->fs_typedep; 1060 if (ksemp == NULL) 1061 goto fail; 1062 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, 1063 sizeof(struct ksem))) { 1064 warnx("can't read ksem at %p", (void *)ksemp); 1065 goto fail; 1066 } 1067 sem->mode = S_IFREG | ksem.ks_mode; 1068 sem->value = ksem.ks_value; 1069 if (fst->fs_path == NULL && ksem.ks_path != NULL) { 1070 path = malloc(MAXPATHLEN); 1071 for (i = 0; i < MAXPATHLEN - 1; i++) { 1072 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, 1073 path + i, 1)) 1074 break; 1075 if (path[i] == '\0') 1076 break; 1077 } 1078 path[i] = '\0'; 1079 if (i == 0) 1080 free(path); 1081 else 1082 fst->fs_path = path; 1083 } 1084 return (0); 1085 1086 fail: 1087 if (errbuf != NULL) 1088 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1089 return (1); 1090 } 1091 1092 static int 1093 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, 1094 char *errbuf __unused) 1095 { 1096 struct kinfo_file *kif; 1097 1098 assert(sem); 1099 assert(fst); 1100 bzero(sem, sizeof(*sem)); 1101 kif = fst->fs_typedep; 1102 if (kif == NULL) 1103 return (0); 1104 sem->value = kif->kf_un.kf_sem.kf_sem_value; 1105 sem->mode = kif->kf_un.kf_sem.kf_sem_mode; 1106 return (0); 1107 } 1108 1109 int 1110 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, 1111 struct shmstat *shm, char *errbuf) 1112 { 1113 1114 assert(shm); 1115 if (procstat->type == PROCSTAT_KVM) { 1116 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, 1117 errbuf)); 1118 } else if (procstat->type == PROCSTAT_SYSCTL || 1119 procstat->type == PROCSTAT_CORE) { 1120 return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); 1121 } else { 1122 warnx("unknown access method: %d", procstat->type); 1123 if (errbuf != NULL) 1124 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1125 return (1); 1126 } 1127 } 1128 1129 static int 1130 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 1131 struct shmstat *shm, char *errbuf) 1132 { 1133 struct shmfd shmfd; 1134 void *shmfdp; 1135 char *path; 1136 int i; 1137 1138 assert(kd); 1139 assert(shm); 1140 assert(fst); 1141 bzero(shm, sizeof(*shm)); 1142 shmfdp = fst->fs_typedep; 1143 if (shmfdp == NULL) 1144 goto fail; 1145 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, 1146 sizeof(struct shmfd))) { 1147 warnx("can't read shmfd at %p", (void *)shmfdp); 1148 goto fail; 1149 } 1150 shm->mode = S_IFREG | shmfd.shm_mode; 1151 shm->size = shmfd.shm_size; 1152 if (fst->fs_path == NULL && shmfd.shm_path != NULL) { 1153 path = malloc(MAXPATHLEN); 1154 for (i = 0; i < MAXPATHLEN - 1; i++) { 1155 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, 1156 path + i, 1)) 1157 break; 1158 if (path[i] == '\0') 1159 break; 1160 } 1161 path[i] = '\0'; 1162 if (i == 0) 1163 free(path); 1164 else 1165 fst->fs_path = path; 1166 } 1167 return (0); 1168 1169 fail: 1170 if (errbuf != NULL) 1171 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1172 return (1); 1173 } 1174 1175 static int 1176 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, 1177 char *errbuf __unused) 1178 { 1179 struct kinfo_file *kif; 1180 1181 assert(shm); 1182 assert(fst); 1183 bzero(shm, sizeof(*shm)); 1184 kif = fst->fs_typedep; 1185 if (kif == NULL) 1186 return (0); 1187 shm->size = kif->kf_un.kf_file.kf_file_size; 1188 shm->mode = kif->kf_un.kf_file.kf_file_mode; 1189 return (0); 1190 } 1191 1192 int 1193 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, 1194 struct vnstat *vn, char *errbuf) 1195 { 1196 1197 assert(vn); 1198 if (procstat->type == PROCSTAT_KVM) { 1199 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, 1200 errbuf)); 1201 } else if (procstat->type == PROCSTAT_SYSCTL || 1202 procstat->type == PROCSTAT_CORE) { 1203 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); 1204 } else { 1205 warnx("unknown access method: %d", procstat->type); 1206 if (errbuf != NULL) 1207 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1208 return (1); 1209 } 1210 } 1211 1212 static int 1213 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 1214 struct vnstat *vn, char *errbuf) 1215 { 1216 /* Filesystem specific handlers. */ 1217 #define FSTYPE(fst) {#fst, fst##_filestat} 1218 struct { 1219 const char *tag; 1220 int (*handler)(kvm_t *kd, struct vnode *vp, 1221 struct vnstat *vn); 1222 } fstypes[] = { 1223 FSTYPE(devfs), 1224 FSTYPE(isofs), 1225 FSTYPE(msdosfs), 1226 FSTYPE(nfs), 1227 FSTYPE(smbfs), 1228 FSTYPE(udf), 1229 FSTYPE(ufs), 1230 #ifdef LIBPROCSTAT_ZFS 1231 FSTYPE(zfs), 1232 #endif 1233 }; 1234 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) 1235 struct vnode vnode; 1236 char tagstr[12]; 1237 void *vp; 1238 int error, found; 1239 unsigned int i; 1240 1241 assert(kd); 1242 assert(vn); 1243 assert(fst); 1244 vp = fst->fs_typedep; 1245 if (vp == NULL) 1246 goto fail; 1247 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); 1248 if (error == 0) { 1249 warnx("can't read vnode at %p", (void *)vp); 1250 goto fail; 1251 } 1252 bzero(vn, sizeof(*vn)); 1253 vn->vn_type = vntype2psfsttype(vnode.v_type); 1254 if (vnode.v_type == VNON || vnode.v_type == VBAD) 1255 return (0); 1256 error = kvm_read_all(kd, (unsigned long)vnode.v_tag, tagstr, 1257 sizeof(tagstr)); 1258 if (error == 0) { 1259 warnx("can't read v_tag at %p", (void *)vp); 1260 goto fail; 1261 } 1262 tagstr[sizeof(tagstr) - 1] = '\0'; 1263 1264 /* 1265 * Find appropriate handler. 1266 */ 1267 for (i = 0, found = 0; i < NTYPES; i++) 1268 if (!strcmp(fstypes[i].tag, tagstr)) { 1269 if (fstypes[i].handler(kd, &vnode, vn) != 0) { 1270 goto fail; 1271 } 1272 break; 1273 } 1274 if (i == NTYPES) { 1275 if (errbuf != NULL) 1276 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); 1277 return (1); 1278 } 1279 vn->vn_mntdir = getmnton(kd, vnode.v_mount); 1280 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) && 1281 vnode.v_rdev != NULL){ 1282 vn->vn_dev = dev2udev(kd, vnode.v_rdev); 1283 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); 1284 } else { 1285 vn->vn_dev = -1; 1286 } 1287 return (0); 1288 1289 fail: 1290 if (errbuf != NULL) 1291 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1292 return (1); 1293 } 1294 1295 /* 1296 * kinfo vnode type to filestat translation. 1297 */ 1298 static int 1299 kinfo_vtype2fst(int kfvtype) 1300 { 1301 static struct { 1302 int kf_vtype; 1303 int fst_vtype; 1304 } kfvtypes2fst[] = { 1305 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, 1306 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, 1307 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, 1308 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, 1309 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, 1310 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, 1311 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, 1312 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, 1313 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } 1314 }; 1315 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) 1316 unsigned int i; 1317 1318 for (i = 0; i < NKFVTYPES; i++) 1319 if (kfvtypes2fst[i].kf_vtype == kfvtype) 1320 break; 1321 if (i == NKFVTYPES) 1322 return (PS_FST_VTYPE_UNKNOWN); 1323 return (kfvtypes2fst[i].fst_vtype); 1324 } 1325 1326 static int 1327 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, 1328 char *errbuf) 1329 { 1330 struct statfs stbuf; 1331 struct kinfo_file *kif; 1332 struct kinfo_vmentry *kve; 1333 uint64_t fileid; 1334 uint64_t size; 1335 char *name, *path; 1336 uint32_t fsid; 1337 uint16_t mode; 1338 uint32_t rdev; 1339 int vntype; 1340 int status; 1341 1342 assert(fst); 1343 assert(vn); 1344 bzero(vn, sizeof(*vn)); 1345 if (fst->fs_typedep == NULL) 1346 return (1); 1347 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { 1348 kve = fst->fs_typedep; 1349 fileid = kve->kve_vn_fileid; 1350 fsid = kve->kve_vn_fsid; 1351 mode = kve->kve_vn_mode; 1352 path = kve->kve_path; 1353 rdev = kve->kve_vn_rdev; 1354 size = kve->kve_vn_size; 1355 vntype = kinfo_vtype2fst(kve->kve_vn_type); 1356 status = kve->kve_status; 1357 } else { 1358 kif = fst->fs_typedep; 1359 fileid = kif->kf_un.kf_file.kf_file_fileid; 1360 fsid = kif->kf_un.kf_file.kf_file_fsid; 1361 mode = kif->kf_un.kf_file.kf_file_mode; 1362 path = kif->kf_path; 1363 rdev = kif->kf_un.kf_file.kf_file_rdev; 1364 size = kif->kf_un.kf_file.kf_file_size; 1365 vntype = kinfo_vtype2fst(kif->kf_vnode_type); 1366 status = kif->kf_status; 1367 } 1368 vn->vn_type = vntype; 1369 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) 1370 return (0); 1371 if ((status & KF_ATTR_VALID) == 0) { 1372 if (errbuf != NULL) { 1373 snprintf(errbuf, _POSIX2_LINE_MAX, 1374 "? (no info available)"); 1375 } 1376 return (1); 1377 } 1378 if (path && *path) { 1379 statfs(path, &stbuf); 1380 vn->vn_mntdir = strdup(stbuf.f_mntonname); 1381 } else 1382 vn->vn_mntdir = strdup("-"); 1383 vn->vn_dev = rdev; 1384 if (vntype == PS_FST_VTYPE_VBLK) { 1385 name = devname(rdev, S_IFBLK); 1386 if (name != NULL) 1387 strlcpy(vn->vn_devname, name, 1388 sizeof(vn->vn_devname)); 1389 } else if (vntype == PS_FST_VTYPE_VCHR) { 1390 name = devname(vn->vn_dev, S_IFCHR); 1391 if (name != NULL) 1392 strlcpy(vn->vn_devname, name, 1393 sizeof(vn->vn_devname)); 1394 } 1395 vn->vn_fsid = fsid; 1396 vn->vn_fileid = fileid; 1397 vn->vn_size = size; 1398 vn->vn_mode = mode; 1399 return (0); 1400 } 1401 1402 int 1403 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, 1404 struct sockstat *sock, char *errbuf) 1405 { 1406 1407 assert(sock); 1408 if (procstat->type == PROCSTAT_KVM) { 1409 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, 1410 errbuf)); 1411 } else if (procstat->type == PROCSTAT_SYSCTL || 1412 procstat->type == PROCSTAT_CORE) { 1413 return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); 1414 } else { 1415 warnx("unknown access method: %d", procstat->type); 1416 if (errbuf != NULL) 1417 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1418 return (1); 1419 } 1420 } 1421 1422 static int 1423 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 1424 struct sockstat *sock, char *errbuf) 1425 { 1426 struct domain dom; 1427 struct inpcb inpcb; 1428 struct protosw proto; 1429 struct socket s; 1430 struct unpcb unpcb; 1431 ssize_t len; 1432 void *so; 1433 1434 assert(kd); 1435 assert(sock); 1436 assert(fst); 1437 bzero(sock, sizeof(*sock)); 1438 so = fst->fs_typedep; 1439 if (so == NULL) 1440 goto fail; 1441 sock->so_addr = (uintptr_t)so; 1442 /* fill in socket */ 1443 if (!kvm_read_all(kd, (unsigned long)so, &s, 1444 sizeof(struct socket))) { 1445 warnx("can't read sock at %p", (void *)so); 1446 goto fail; 1447 } 1448 /* fill in protosw entry */ 1449 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, 1450 sizeof(struct protosw))) { 1451 warnx("can't read protosw at %p", (void *)s.so_proto); 1452 goto fail; 1453 } 1454 /* fill in domain */ 1455 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, 1456 sizeof(struct domain))) { 1457 warnx("can't read domain at %p", 1458 (void *)proto.pr_domain); 1459 goto fail; 1460 } 1461 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, 1462 sizeof(sock->dname) - 1)) < 0) { 1463 warnx("can't read domain name at %p", (void *)dom.dom_name); 1464 sock->dname[0] = '\0'; 1465 } 1466 else 1467 sock->dname[len] = '\0'; 1468 1469 /* 1470 * Fill in known data. 1471 */ 1472 sock->type = s.so_type; 1473 sock->proto = proto.pr_protocol; 1474 sock->dom_family = dom.dom_family; 1475 sock->so_pcb = (uintptr_t)s.so_pcb; 1476 1477 /* 1478 * Protocol specific data. 1479 */ 1480 switch(dom.dom_family) { 1481 case AF_INET: 1482 case AF_INET6: 1483 if (proto.pr_protocol == IPPROTO_TCP) { 1484 if (s.so_pcb) { 1485 if (kvm_read(kd, (u_long)s.so_pcb, 1486 (char *)&inpcb, sizeof(struct inpcb)) 1487 != sizeof(struct inpcb)) { 1488 warnx("can't read inpcb at %p", 1489 (void *)s.so_pcb); 1490 } else 1491 sock->inp_ppcb = 1492 (uintptr_t)inpcb.inp_ppcb; 1493 } 1494 } 1495 break; 1496 case AF_UNIX: 1497 if (s.so_pcb) { 1498 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, 1499 sizeof(struct unpcb)) != sizeof(struct unpcb)){ 1500 warnx("can't read unpcb at %p", 1501 (void *)s.so_pcb); 1502 } else if (unpcb.unp_conn) { 1503 sock->so_rcv_sb_state = s.so_rcv.sb_state; 1504 sock->so_snd_sb_state = s.so_snd.sb_state; 1505 sock->unp_conn = (uintptr_t)unpcb.unp_conn; 1506 } 1507 } 1508 break; 1509 default: 1510 break; 1511 } 1512 return (0); 1513 1514 fail: 1515 if (errbuf != NULL) 1516 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1517 return (1); 1518 } 1519 1520 static int 1521 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, 1522 char *errbuf __unused) 1523 { 1524 struct kinfo_file *kif; 1525 1526 assert(sock); 1527 assert(fst); 1528 bzero(sock, sizeof(*sock)); 1529 kif = fst->fs_typedep; 1530 if (kif == NULL) 1531 return (0); 1532 1533 /* 1534 * Fill in known data. 1535 */ 1536 sock->type = kif->kf_sock_type; 1537 sock->proto = kif->kf_sock_protocol; 1538 sock->dom_family = kif->kf_sock_domain; 1539 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; 1540 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); 1541 bcopy(&kif->kf_sa_local, &sock->sa_local, kif->kf_sa_local.ss_len); 1542 bcopy(&kif->kf_sa_peer, &sock->sa_peer, kif->kf_sa_peer.ss_len); 1543 1544 /* 1545 * Protocol specific data. 1546 */ 1547 switch(sock->dom_family) { 1548 case AF_INET: 1549 case AF_INET6: 1550 if (sock->proto == IPPROTO_TCP) 1551 sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb; 1552 break; 1553 case AF_UNIX: 1554 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { 1555 sock->so_rcv_sb_state = 1556 kif->kf_un.kf_sock.kf_sock_rcv_sb_state; 1557 sock->so_snd_sb_state = 1558 kif->kf_un.kf_sock.kf_sock_snd_sb_state; 1559 sock->unp_conn = 1560 kif->kf_un.kf_sock.kf_sock_unpconn; 1561 } 1562 break; 1563 default: 1564 break; 1565 } 1566 return (0); 1567 } 1568 1569 /* 1570 * Descriptor flags to filestat translation. 1571 */ 1572 static int 1573 to_filestat_flags(int flags) 1574 { 1575 static struct { 1576 int flag; 1577 int fst_flag; 1578 } fstflags[] = { 1579 { FREAD, PS_FST_FFLAG_READ }, 1580 { FWRITE, PS_FST_FFLAG_WRITE }, 1581 { O_APPEND, PS_FST_FFLAG_APPEND }, 1582 { O_ASYNC, PS_FST_FFLAG_ASYNC }, 1583 { O_CREAT, PS_FST_FFLAG_CREAT }, 1584 { O_DIRECT, PS_FST_FFLAG_DIRECT }, 1585 { O_EXCL, PS_FST_FFLAG_EXCL }, 1586 { O_EXEC, PS_FST_FFLAG_EXEC }, 1587 { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, 1588 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 1589 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 1590 { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, 1591 { O_SYNC, PS_FST_FFLAG_SYNC }, 1592 { O_TRUNC, PS_FST_FFLAG_TRUNC } 1593 }; 1594 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) 1595 int fst_flags; 1596 unsigned int i; 1597 1598 fst_flags = 0; 1599 for (i = 0; i < NFSTFLAGS; i++) 1600 if (flags & fstflags[i].flag) 1601 fst_flags |= fstflags[i].fst_flag; 1602 return (fst_flags); 1603 } 1604 1605 /* 1606 * Vnode type to filestate translation. 1607 */ 1608 static int 1609 vntype2psfsttype(int type) 1610 { 1611 static struct { 1612 int vtype; 1613 int fst_vtype; 1614 } vt2fst[] = { 1615 { VBAD, PS_FST_VTYPE_VBAD }, 1616 { VBLK, PS_FST_VTYPE_VBLK }, 1617 { VCHR, PS_FST_VTYPE_VCHR }, 1618 { VDIR, PS_FST_VTYPE_VDIR }, 1619 { VFIFO, PS_FST_VTYPE_VFIFO }, 1620 { VLNK, PS_FST_VTYPE_VLNK }, 1621 { VNON, PS_FST_VTYPE_VNON }, 1622 { VREG, PS_FST_VTYPE_VREG }, 1623 { VSOCK, PS_FST_VTYPE_VSOCK } 1624 }; 1625 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) 1626 unsigned int i, fst_type; 1627 1628 fst_type = PS_FST_VTYPE_UNKNOWN; 1629 for (i = 0; i < NVFTYPES; i++) { 1630 if (type == vt2fst[i].vtype) { 1631 fst_type = vt2fst[i].fst_vtype; 1632 break; 1633 } 1634 } 1635 return (fst_type); 1636 } 1637 1638 static char * 1639 getmnton(kvm_t *kd, struct mount *m) 1640 { 1641 struct mount mnt; 1642 static struct mtab { 1643 struct mtab *next; 1644 struct mount *m; 1645 char mntonname[MNAMELEN + 1]; 1646 } *mhead = NULL; 1647 struct mtab *mt; 1648 1649 for (mt = mhead; mt != NULL; mt = mt->next) 1650 if (m == mt->m) 1651 return (mt->mntonname); 1652 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { 1653 warnx("can't read mount table at %p", (void *)m); 1654 return (NULL); 1655 } 1656 if ((mt = malloc(sizeof (struct mtab))) == NULL) 1657 err(1, NULL); 1658 mt->m = m; 1659 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); 1660 mt->mntonname[MNAMELEN] = '\0'; 1661 mt->next = mhead; 1662 mhead = mt; 1663 return (mt->mntonname); 1664 } 1665 1666 /* 1667 * Auxiliary structures and functions to get process environment or 1668 * command line arguments. 1669 */ 1670 struct argvec { 1671 char *buf; 1672 size_t bufsize; 1673 char **argv; 1674 size_t argc; 1675 }; 1676 1677 static struct argvec * 1678 argvec_alloc(size_t bufsize) 1679 { 1680 struct argvec *av; 1681 1682 av = malloc(sizeof(*av)); 1683 if (av == NULL) 1684 return (NULL); 1685 av->bufsize = bufsize; 1686 av->buf = malloc(av->bufsize); 1687 if (av->buf == NULL) { 1688 free(av); 1689 return (NULL); 1690 } 1691 av->argc = 32; 1692 av->argv = malloc(sizeof(char *) * av->argc); 1693 if (av->argv == NULL) { 1694 free(av->buf); 1695 free(av); 1696 return (NULL); 1697 } 1698 return av; 1699 } 1700 1701 static void 1702 argvec_free(struct argvec * av) 1703 { 1704 1705 free(av->argv); 1706 free(av->buf); 1707 free(av); 1708 } 1709 1710 static char ** 1711 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) 1712 { 1713 int error, name[4], argc, i; 1714 struct argvec *av, **avp; 1715 enum psc_type type; 1716 size_t len; 1717 char *p, **argv; 1718 1719 assert(procstat); 1720 assert(kp); 1721 if (procstat->type == PROCSTAT_KVM) { 1722 warnx("can't use kvm access method"); 1723 return (NULL); 1724 } 1725 if (procstat->type != PROCSTAT_SYSCTL && 1726 procstat->type != PROCSTAT_CORE) { 1727 warnx("unknown access method: %d", procstat->type); 1728 return (NULL); 1729 } 1730 1731 if (nchr == 0 || nchr > ARG_MAX) 1732 nchr = ARG_MAX; 1733 1734 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); 1735 av = *avp; 1736 1737 if (av == NULL) 1738 { 1739 av = argvec_alloc(nchr); 1740 if (av == NULL) 1741 { 1742 warn("malloc(%zu)", nchr); 1743 return (NULL); 1744 } 1745 *avp = av; 1746 } else if (av->bufsize < nchr) { 1747 av->buf = reallocf(av->buf, nchr); 1748 if (av->buf == NULL) { 1749 warn("malloc(%zu)", nchr); 1750 return (NULL); 1751 } 1752 } 1753 if (procstat->type == PROCSTAT_SYSCTL) { 1754 name[0] = CTL_KERN; 1755 name[1] = KERN_PROC; 1756 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 1757 name[3] = kp->ki_pid; 1758 len = nchr; 1759 error = sysctl(name, 4, av->buf, &len, NULL, 0); 1760 if (error != 0 && errno != ESRCH && errno != EPERM) 1761 warn("sysctl(kern.proc.%s)", env ? "env" : "args"); 1762 if (error != 0 || len == 0) 1763 return (NULL); 1764 } else /* procstat->type == PROCSTAT_CORE */ { 1765 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; 1766 len = nchr; 1767 if (procstat_core_get(procstat->core, type, av->buf, &len) 1768 == NULL) { 1769 return (NULL); 1770 } 1771 } 1772 1773 argv = av->argv; 1774 argc = av->argc; 1775 i = 0; 1776 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { 1777 argv[i++] = p; 1778 if (i < argc) 1779 continue; 1780 /* Grow argv. */ 1781 argc += argc; 1782 argv = realloc(argv, sizeof(char *) * argc); 1783 if (argv == NULL) { 1784 warn("malloc(%zu)", sizeof(char *) * argc); 1785 return (NULL); 1786 } 1787 av->argv = argv; 1788 av->argc = argc; 1789 } 1790 argv[i] = NULL; 1791 1792 return (argv); 1793 } 1794 1795 /* 1796 * Return process command line arguments. 1797 */ 1798 char ** 1799 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1800 { 1801 1802 return (getargv(procstat, p, nchr, 0)); 1803 } 1804 1805 /* 1806 * Free the buffer allocated by procstat_getargv(). 1807 */ 1808 void 1809 procstat_freeargv(struct procstat *procstat) 1810 { 1811 1812 if (procstat->argv != NULL) { 1813 argvec_free(procstat->argv); 1814 procstat->argv = NULL; 1815 } 1816 } 1817 1818 /* 1819 * Return process environment. 1820 */ 1821 char ** 1822 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1823 { 1824 1825 return (getargv(procstat, p, nchr, 1)); 1826 } 1827 1828 /* 1829 * Free the buffer allocated by procstat_getenvv(). 1830 */ 1831 void 1832 procstat_freeenvv(struct procstat *procstat) 1833 { 1834 if (procstat->envv != NULL) { 1835 argvec_free(procstat->envv); 1836 procstat->envv = NULL; 1837 } 1838 } 1839 1840 static struct kinfo_vmentry * 1841 kinfo_getvmmap_core(struct procstat_core *core, int *cntp) 1842 { 1843 int cnt; 1844 size_t len; 1845 char *buf, *bp, *eb; 1846 struct kinfo_vmentry *kiv, *kp, *kv; 1847 1848 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); 1849 if (buf == NULL) 1850 return (NULL); 1851 1852 /* 1853 * XXXMG: The code below is just copy&past from libutil. 1854 * The code duplication can be avoided if libutil 1855 * is extended to provide something like: 1856 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, 1857 * size_t len, int *cntp); 1858 */ 1859 1860 /* Pass 1: count items */ 1861 cnt = 0; 1862 bp = buf; 1863 eb = buf + len; 1864 while (bp < eb) { 1865 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1866 bp += kv->kve_structsize; 1867 cnt++; 1868 } 1869 1870 kiv = calloc(cnt, sizeof(*kiv)); 1871 if (kiv == NULL) { 1872 free(buf); 1873 return (NULL); 1874 } 1875 bp = buf; 1876 eb = buf + len; 1877 kp = kiv; 1878 /* Pass 2: unpack */ 1879 while (bp < eb) { 1880 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1881 /* Copy/expand into pre-zeroed buffer */ 1882 memcpy(kp, kv, kv->kve_structsize); 1883 /* Advance to next packed record */ 1884 bp += kv->kve_structsize; 1885 /* Set field size to fixed length, advance */ 1886 kp->kve_structsize = sizeof(*kp); 1887 kp++; 1888 } 1889 free(buf); 1890 *cntp = cnt; 1891 return (kiv); /* Caller must free() return value */ 1892 } 1893 1894 struct kinfo_vmentry * 1895 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, 1896 unsigned int *cntp) 1897 { 1898 1899 switch(procstat->type) { 1900 case PROCSTAT_KVM: 1901 warnx("kvm method is not supported"); 1902 return (NULL); 1903 case PROCSTAT_SYSCTL: 1904 return (kinfo_getvmmap(kp->ki_pid, cntp)); 1905 case PROCSTAT_CORE: 1906 return (kinfo_getvmmap_core(procstat->core, cntp)); 1907 default: 1908 warnx("unknown access method: %d", procstat->type); 1909 return (NULL); 1910 } 1911 } 1912 1913 void 1914 procstat_freevmmap(struct procstat *procstat __unused, 1915 struct kinfo_vmentry *vmmap) 1916 { 1917 1918 free(vmmap); 1919 } 1920 1921 static gid_t * 1922 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) 1923 { 1924 struct proc proc; 1925 struct ucred ucred; 1926 gid_t *groups; 1927 size_t len; 1928 1929 assert(kd != NULL); 1930 assert(kp != NULL); 1931 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 1932 sizeof(proc))) { 1933 warnx("can't read proc struct at %p for pid %d", 1934 kp->ki_paddr, kp->ki_pid); 1935 return (NULL); 1936 } 1937 if (proc.p_ucred == NOCRED) 1938 return (NULL); 1939 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, 1940 sizeof(ucred))) { 1941 warnx("can't read ucred struct at %p for pid %d", 1942 proc.p_ucred, kp->ki_pid); 1943 return (NULL); 1944 } 1945 len = ucred.cr_ngroups * sizeof(gid_t); 1946 groups = malloc(len); 1947 if (groups == NULL) { 1948 warn("malloc(%zu)", len); 1949 return (NULL); 1950 } 1951 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { 1952 warnx("can't read groups at %p for pid %d", 1953 ucred.cr_groups, kp->ki_pid); 1954 free(groups); 1955 return (NULL); 1956 } 1957 *cntp = ucred.cr_ngroups; 1958 return (groups); 1959 } 1960 1961 static gid_t * 1962 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) 1963 { 1964 int mib[4]; 1965 size_t len; 1966 gid_t *groups; 1967 1968 mib[0] = CTL_KERN; 1969 mib[1] = KERN_PROC; 1970 mib[2] = KERN_PROC_GROUPS; 1971 mib[3] = pid; 1972 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); 1973 groups = malloc(len); 1974 if (groups == NULL) { 1975 warn("malloc(%zu)", len); 1976 return (NULL); 1977 } 1978 if (sysctl(mib, 4, groups, &len, NULL, 0) == -1) { 1979 warn("sysctl: kern.proc.groups: %d", pid); 1980 free(groups); 1981 return (NULL); 1982 } 1983 *cntp = len / sizeof(gid_t); 1984 return (groups); 1985 } 1986 1987 static gid_t * 1988 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) 1989 { 1990 size_t len; 1991 gid_t *groups; 1992 1993 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); 1994 if (groups == NULL) 1995 return (NULL); 1996 *cntp = len / sizeof(gid_t); 1997 return (groups); 1998 } 1999 2000 gid_t * 2001 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, 2002 unsigned int *cntp) 2003 { 2004 switch(procstat->type) { 2005 case PROCSTAT_KVM: 2006 return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); 2007 case PROCSTAT_SYSCTL: 2008 return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); 2009 case PROCSTAT_CORE: 2010 return (procstat_getgroups_core(procstat->core, cntp)); 2011 default: 2012 warnx("unknown access method: %d", procstat->type); 2013 return (NULL); 2014 } 2015 } 2016 2017 void 2018 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) 2019 { 2020 2021 free(groups); 2022 } 2023 2024 static int 2025 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) 2026 { 2027 struct filedesc fd; 2028 2029 assert(kd != NULL); 2030 assert(kp != NULL); 2031 if (kp->ki_fd == NULL) 2032 return (-1); 2033 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &fd, sizeof(fd))) { 2034 warnx("can't read filedesc at %p for pid %d", kp->ki_fd, 2035 kp->ki_pid); 2036 return (-1); 2037 } 2038 *maskp = fd.fd_cmask; 2039 return (0); 2040 } 2041 2042 static int 2043 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) 2044 { 2045 int error; 2046 int mib[4]; 2047 size_t len; 2048 2049 mib[0] = CTL_KERN; 2050 mib[1] = KERN_PROC; 2051 mib[2] = KERN_PROC_UMASK; 2052 mib[3] = pid; 2053 len = sizeof(*maskp); 2054 error = sysctl(mib, 4, maskp, &len, NULL, 0); 2055 if (error != 0 && errno != ESRCH && errno != EPERM) 2056 warn("sysctl: kern.proc.umask: %d", pid); 2057 return (error); 2058 } 2059 2060 static int 2061 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) 2062 { 2063 size_t len; 2064 unsigned short *buf; 2065 2066 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); 2067 if (buf == NULL) 2068 return (-1); 2069 if (len < sizeof(*maskp)) { 2070 free(buf); 2071 return (-1); 2072 } 2073 *maskp = *buf; 2074 free(buf); 2075 return (0); 2076 } 2077 2078 int 2079 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, 2080 unsigned short *maskp) 2081 { 2082 switch(procstat->type) { 2083 case PROCSTAT_KVM: 2084 return (procstat_getumask_kvm(procstat->kd, kp, maskp)); 2085 case PROCSTAT_SYSCTL: 2086 return (procstat_getumask_sysctl(kp->ki_pid, maskp)); 2087 case PROCSTAT_CORE: 2088 return (procstat_getumask_core(procstat->core, maskp)); 2089 default: 2090 warnx("unknown access method: %d", procstat->type); 2091 return (-1); 2092 } 2093 } 2094 2095 static int 2096 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, 2097 struct rlimit* rlimit) 2098 { 2099 struct proc proc; 2100 unsigned long offset; 2101 2102 assert(kd != NULL); 2103 assert(kp != NULL); 2104 assert(which >= 0 && which < RLIM_NLIMITS); 2105 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2106 sizeof(proc))) { 2107 warnx("can't read proc struct at %p for pid %d", 2108 kp->ki_paddr, kp->ki_pid); 2109 return (-1); 2110 } 2111 if (proc.p_limit == NULL) 2112 return (-1); 2113 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; 2114 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { 2115 warnx("can't read rlimit struct at %p for pid %d", 2116 (void *)offset, kp->ki_pid); 2117 return (-1); 2118 } 2119 return (0); 2120 } 2121 2122 static int 2123 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) 2124 { 2125 int error, name[5]; 2126 size_t len; 2127 2128 name[0] = CTL_KERN; 2129 name[1] = KERN_PROC; 2130 name[2] = KERN_PROC_RLIMIT; 2131 name[3] = pid; 2132 name[4] = which; 2133 len = sizeof(struct rlimit); 2134 error = sysctl(name, 5, rlimit, &len, NULL, 0); 2135 if (error < 0 && errno != ESRCH) { 2136 warn("sysctl: kern.proc.rlimit: %d", pid); 2137 return (-1); 2138 } 2139 if (error < 0 || len != sizeof(struct rlimit)) 2140 return (-1); 2141 return (0); 2142 } 2143 2144 static int 2145 procstat_getrlimit_core(struct procstat_core *core, int which, 2146 struct rlimit* rlimit) 2147 { 2148 size_t len; 2149 struct rlimit* rlimits; 2150 2151 if (which < 0 || which >= RLIM_NLIMITS) { 2152 errno = EINVAL; 2153 warn("getrlimit: which"); 2154 return (-1); 2155 } 2156 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); 2157 if (rlimits == NULL) 2158 return (-1); 2159 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { 2160 free(rlimits); 2161 return (-1); 2162 } 2163 *rlimit = rlimits[which]; 2164 return (0); 2165 } 2166 2167 int 2168 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, 2169 struct rlimit* rlimit) 2170 { 2171 switch(procstat->type) { 2172 case PROCSTAT_KVM: 2173 return (procstat_getrlimit_kvm(procstat->kd, kp, which, 2174 rlimit)); 2175 case PROCSTAT_SYSCTL: 2176 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); 2177 case PROCSTAT_CORE: 2178 return (procstat_getrlimit_core(procstat->core, which, rlimit)); 2179 default: 2180 warnx("unknown access method: %d", procstat->type); 2181 return (-1); 2182 } 2183 } 2184 2185 static int 2186 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) 2187 { 2188 int error, name[4]; 2189 size_t len; 2190 2191 name[0] = CTL_KERN; 2192 name[1] = KERN_PROC; 2193 name[2] = KERN_PROC_PATHNAME; 2194 name[3] = pid; 2195 len = maxlen; 2196 error = sysctl(name, 4, pathname, &len, NULL, 0); 2197 if (error != 0 && errno != ESRCH) 2198 warn("sysctl: kern.proc.pathname: %d", pid); 2199 if (len == 0) 2200 pathname[0] = '\0'; 2201 return (error); 2202 } 2203 2204 static int 2205 procstat_getpathname_core(struct procstat_core *core, char *pathname, 2206 size_t maxlen) 2207 { 2208 struct kinfo_file *files; 2209 int cnt, i, result; 2210 2211 files = kinfo_getfile_core(core, &cnt); 2212 if (files == NULL) 2213 return (-1); 2214 result = -1; 2215 for (i = 0; i < cnt; i++) { 2216 if (files[i].kf_fd != KF_FD_TYPE_TEXT) 2217 continue; 2218 strncpy(pathname, files[i].kf_path, maxlen); 2219 result = 0; 2220 break; 2221 } 2222 free(files); 2223 return (result); 2224 } 2225 2226 int 2227 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, 2228 char *pathname, size_t maxlen) 2229 { 2230 switch(procstat->type) { 2231 case PROCSTAT_KVM: 2232 /* XXX: Return empty string. */ 2233 if (maxlen > 0) 2234 pathname[0] = '\0'; 2235 return (0); 2236 case PROCSTAT_SYSCTL: 2237 return (procstat_getpathname_sysctl(kp->ki_pid, pathname, 2238 maxlen)); 2239 case PROCSTAT_CORE: 2240 return (procstat_getpathname_core(procstat->core, pathname, 2241 maxlen)); 2242 default: 2243 warnx("unknown access method: %d", procstat->type); 2244 return (-1); 2245 } 2246 } 2247 2248 static int 2249 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) 2250 { 2251 struct proc proc; 2252 2253 assert(kd != NULL); 2254 assert(kp != NULL); 2255 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2256 sizeof(proc))) { 2257 warnx("can't read proc struct at %p for pid %d", 2258 kp->ki_paddr, kp->ki_pid); 2259 return (-1); 2260 } 2261 *osrelp = proc.p_osrel; 2262 return (0); 2263 } 2264 2265 static int 2266 procstat_getosrel_sysctl(pid_t pid, int *osrelp) 2267 { 2268 int error, name[4]; 2269 size_t len; 2270 2271 name[0] = CTL_KERN; 2272 name[1] = KERN_PROC; 2273 name[2] = KERN_PROC_OSREL; 2274 name[3] = pid; 2275 len = sizeof(*osrelp); 2276 error = sysctl(name, 4, osrelp, &len, NULL, 0); 2277 if (error != 0 && errno != ESRCH) 2278 warn("sysctl: kern.proc.osrel: %d", pid); 2279 return (error); 2280 } 2281 2282 static int 2283 procstat_getosrel_core(struct procstat_core *core, int *osrelp) 2284 { 2285 size_t len; 2286 int *buf; 2287 2288 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); 2289 if (buf == NULL) 2290 return (-1); 2291 if (len < sizeof(*osrelp)) { 2292 free(buf); 2293 return (-1); 2294 } 2295 *osrelp = *buf; 2296 free(buf); 2297 return (0); 2298 } 2299 2300 int 2301 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) 2302 { 2303 switch(procstat->type) { 2304 case PROCSTAT_KVM: 2305 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); 2306 case PROCSTAT_SYSCTL: 2307 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); 2308 case PROCSTAT_CORE: 2309 return (procstat_getosrel_core(procstat->core, osrelp)); 2310 default: 2311 warnx("unknown access method: %d", procstat->type); 2312 return (-1); 2313 } 2314 } 2315 2316 #define PROC_AUXV_MAX 256 2317 2318 #if __ELF_WORD_SIZE == 64 2319 static const char *elf32_sv_names[] = { 2320 "Linux ELF32", 2321 "FreeBSD ELF32", 2322 }; 2323 2324 static int 2325 is_elf32_sysctl(pid_t pid) 2326 { 2327 int error, name[4]; 2328 size_t len, i; 2329 static char sv_name[256]; 2330 2331 name[0] = CTL_KERN; 2332 name[1] = KERN_PROC; 2333 name[2] = KERN_PROC_SV_NAME; 2334 name[3] = pid; 2335 len = sizeof(sv_name); 2336 error = sysctl(name, 4, sv_name, &len, NULL, 0); 2337 if (error != 0 || len == 0) 2338 return (0); 2339 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { 2340 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) 2341 return (1); 2342 } 2343 return (0); 2344 } 2345 2346 static Elf_Auxinfo * 2347 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) 2348 { 2349 Elf_Auxinfo *auxv; 2350 Elf32_Auxinfo *auxv32; 2351 void *ptr; 2352 size_t len; 2353 unsigned int i, count; 2354 int name[4]; 2355 2356 name[0] = CTL_KERN; 2357 name[1] = KERN_PROC; 2358 name[2] = KERN_PROC_AUXV; 2359 name[3] = pid; 2360 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); 2361 auxv = NULL; 2362 auxv32 = malloc(len); 2363 if (auxv32 == NULL) { 2364 warn("malloc(%zu)", len); 2365 goto out; 2366 } 2367 if (sysctl(name, 4, auxv32, &len, NULL, 0) == -1) { 2368 if (errno != ESRCH && errno != EPERM) 2369 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2370 goto out; 2371 } 2372 count = len / sizeof(Elf_Auxinfo); 2373 auxv = malloc(count * sizeof(Elf_Auxinfo)); 2374 if (auxv == NULL) { 2375 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); 2376 goto out; 2377 } 2378 for (i = 0; i < count; i++) { 2379 /* 2380 * XXX: We expect that values for a_type on a 32-bit platform 2381 * are directly mapped to values on 64-bit one, which is not 2382 * necessarily true. 2383 */ 2384 auxv[i].a_type = auxv32[i].a_type; 2385 ptr = &auxv32[i].a_un; 2386 auxv[i].a_un.a_val = *((uint32_t *)ptr); 2387 } 2388 *cntp = count; 2389 out: 2390 free(auxv32); 2391 return (auxv); 2392 } 2393 #endif /* __ELF_WORD_SIZE == 64 */ 2394 2395 static Elf_Auxinfo * 2396 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) 2397 { 2398 Elf_Auxinfo *auxv; 2399 int name[4]; 2400 size_t len; 2401 2402 #if __ELF_WORD_SIZE == 64 2403 if (is_elf32_sysctl(pid)) 2404 return (procstat_getauxv32_sysctl(pid, cntp)); 2405 #endif 2406 name[0] = CTL_KERN; 2407 name[1] = KERN_PROC; 2408 name[2] = KERN_PROC_AUXV; 2409 name[3] = pid; 2410 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); 2411 auxv = malloc(len); 2412 if (auxv == NULL) { 2413 warn("malloc(%zu)", len); 2414 return (NULL); 2415 } 2416 if (sysctl(name, 4, auxv, &len, NULL, 0) == -1) { 2417 if (errno != ESRCH && errno != EPERM) 2418 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2419 free(auxv); 2420 return (NULL); 2421 } 2422 *cntp = len / sizeof(Elf_Auxinfo); 2423 return (auxv); 2424 } 2425 2426 static Elf_Auxinfo * 2427 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) 2428 { 2429 Elf_Auxinfo *auxv; 2430 size_t len; 2431 2432 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); 2433 if (auxv == NULL) 2434 return (NULL); 2435 *cntp = len / sizeof(Elf_Auxinfo); 2436 return (auxv); 2437 } 2438 2439 Elf_Auxinfo * 2440 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, 2441 unsigned int *cntp) 2442 { 2443 switch(procstat->type) { 2444 case PROCSTAT_KVM: 2445 warnx("kvm method is not supported"); 2446 return (NULL); 2447 case PROCSTAT_SYSCTL: 2448 return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); 2449 case PROCSTAT_CORE: 2450 return (procstat_getauxv_core(procstat->core, cntp)); 2451 default: 2452 warnx("unknown access method: %d", procstat->type); 2453 return (NULL); 2454 } 2455 } 2456 2457 void 2458 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) 2459 { 2460 2461 free(auxv); 2462 } 2463 2464 static struct kinfo_kstack * 2465 procstat_getkstack_sysctl(pid_t pid, int *cntp) 2466 { 2467 struct kinfo_kstack *kkstp; 2468 int error, name[4]; 2469 size_t len; 2470 2471 name[0] = CTL_KERN; 2472 name[1] = KERN_PROC; 2473 name[2] = KERN_PROC_KSTACK; 2474 name[3] = pid; 2475 2476 len = 0; 2477 error = sysctl(name, 4, NULL, &len, NULL, 0); 2478 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { 2479 warn("sysctl: kern.proc.kstack: %d", pid); 2480 return (NULL); 2481 } 2482 if (error == -1 && errno == ENOENT) { 2483 warnx("sysctl: kern.proc.kstack unavailable" 2484 " (options DDB or options STACK required in kernel)"); 2485 return (NULL); 2486 } 2487 if (error == -1) 2488 return (NULL); 2489 kkstp = malloc(len); 2490 if (kkstp == NULL) { 2491 warn("malloc(%zu)", len); 2492 return (NULL); 2493 } 2494 if (sysctl(name, 4, kkstp, &len, NULL, 0) == -1) { 2495 warn("sysctl: kern.proc.pid: %d", pid); 2496 free(kkstp); 2497 return (NULL); 2498 } 2499 *cntp = len / sizeof(*kkstp); 2500 2501 return (kkstp); 2502 } 2503 2504 struct kinfo_kstack * 2505 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, 2506 unsigned int *cntp) 2507 { 2508 switch(procstat->type) { 2509 case PROCSTAT_KVM: 2510 warnx("kvm method is not supported"); 2511 return (NULL); 2512 case PROCSTAT_SYSCTL: 2513 return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); 2514 case PROCSTAT_CORE: 2515 warnx("core method is not supported"); 2516 return (NULL); 2517 default: 2518 warnx("unknown access method: %d", procstat->type); 2519 return (NULL); 2520 } 2521 } 2522 2523 void 2524 procstat_freekstack(struct procstat *procstat __unused, 2525 struct kinfo_kstack *kkstp) 2526 { 2527 2528 free(kkstp); 2529 } 2530