1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org> 6 * Copyright (c) 1988, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/cdefs.h> 39 #include <sys/param.h> 40 #include <sys/elf.h> 41 #include <sys/time.h> 42 #include <sys/resourcevar.h> 43 #define _WANT_UCRED 44 #include <sys/ucred.h> 45 #undef _WANT_UCRED 46 #include <sys/proc.h> 47 #include <sys/user.h> 48 #include <sys/stat.h> 49 #include <sys/vnode.h> 50 #include <sys/socket.h> 51 #define _WANT_SOCKET 52 #include <sys/socketvar.h> 53 #include <sys/domain.h> 54 #include <sys/protosw.h> 55 #include <sys/un.h> 56 #define _WANT_UNPCB 57 #include <sys/unpcb.h> 58 #include <sys/sysctl.h> 59 #include <sys/tty.h> 60 #include <sys/filedesc.h> 61 #include <sys/queue.h> 62 #define _WANT_FILE 63 #include <sys/file.h> 64 #include <sys/conf.h> 65 #include <sys/ksem.h> 66 #include <sys/mman.h> 67 #include <sys/capsicum.h> 68 #include <sys/ptrace.h> 69 #define _WANT_MOUNT 70 #include <sys/mount.h> 71 #include <sys/filedesc.h> 72 #include <sys/pipe.h> 73 #include <fs/devfs/devfs.h> 74 #include <fs/devfs/devfs_int.h> 75 #include <nfs/nfsproto.h> 76 #include <nfsclient/nfs.h> 77 #include <nfsclient/nfsnode.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_object.h> 82 83 #include <net/route.h> 84 #include <netinet/in.h> 85 #include <netinet/in_systm.h> 86 #include <netinet/ip.h> 87 #define _WANT_INPCB 88 #include <netinet/in_pcb.h> 89 90 #include <assert.h> 91 #include <ctype.h> 92 #include <err.h> 93 #include <fcntl.h> 94 #include <kvm.h> 95 #include <libutil.h> 96 #include <limits.h> 97 #include <paths.h> 98 #include <pwd.h> 99 #include <stdio.h> 100 #include <stdlib.h> 101 #include <stddef.h> 102 #include <string.h> 103 #include <unistd.h> 104 #include <netdb.h> 105 106 #include <libprocstat.h> 107 #include "libprocstat_internal.h" 108 #include "common_kvm.h" 109 #include "core.h" 110 111 int statfs(const char *, struct statfs *); /* XXX */ 112 113 #define PROCSTAT_KVM 1 114 #define PROCSTAT_SYSCTL 2 115 #define PROCSTAT_CORE 3 116 117 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, 118 size_t nchr, int env); 119 static char *getmnton(kvm_t *kd, struct mount *m); 120 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, 121 int *cntp); 122 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, 123 unsigned int *cntp); 124 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); 125 static struct filestat_list *procstat_getfiles_kvm( 126 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 127 static struct filestat_list *procstat_getfiles_sysctl( 128 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 129 static int procstat_get_pipe_info_sysctl(struct filestat *fst, 130 struct pipestat *pipe, char *errbuf); 131 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 132 struct pipestat *pipe, char *errbuf); 133 static int procstat_get_pts_info_sysctl(struct filestat *fst, 134 struct ptsstat *pts, char *errbuf); 135 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 136 struct ptsstat *pts, char *errbuf); 137 static int procstat_get_sem_info_sysctl(struct filestat *fst, 138 struct semstat *sem, char *errbuf); 139 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 140 struct semstat *sem, char *errbuf); 141 static int procstat_get_shm_info_sysctl(struct filestat *fst, 142 struct shmstat *shm, char *errbuf); 143 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 144 struct shmstat *shm, char *errbuf); 145 static int procstat_get_socket_info_sysctl(struct filestat *fst, 146 struct sockstat *sock, char *errbuf); 147 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 148 struct sockstat *sock, char *errbuf); 149 static int to_filestat_flags(int flags); 150 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 151 struct vnstat *vn, char *errbuf); 152 static int procstat_get_vnode_info_sysctl(struct filestat *fst, 153 struct vnstat *vn, char *errbuf); 154 static gid_t *procstat_getgroups_core(struct procstat_core *core, 155 unsigned int *count); 156 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, 157 unsigned int *count); 158 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); 159 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, 160 int *cntp); 161 static int procstat_getosrel_core(struct procstat_core *core, 162 int *osrelp); 163 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, 164 int *osrelp); 165 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); 166 static int procstat_getpathname_core(struct procstat_core *core, 167 char *pathname, size_t maxlen); 168 static int procstat_getpathname_sysctl(pid_t pid, char *pathname, 169 size_t maxlen); 170 static int procstat_getrlimit_core(struct procstat_core *core, int which, 171 struct rlimit* rlimit); 172 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, 173 int which, struct rlimit* rlimit); 174 static int procstat_getrlimit_sysctl(pid_t pid, int which, 175 struct rlimit* rlimit); 176 static int procstat_getumask_core(struct procstat_core *core, 177 unsigned short *maskp); 178 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, 179 unsigned short *maskp); 180 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); 181 static int vntype2psfsttype(int type); 182 183 void 184 procstat_close(struct procstat *procstat) 185 { 186 187 assert(procstat); 188 if (procstat->type == PROCSTAT_KVM) 189 kvm_close(procstat->kd); 190 else if (procstat->type == PROCSTAT_CORE) 191 procstat_core_close(procstat->core); 192 procstat_freeargv(procstat); 193 procstat_freeenvv(procstat); 194 free(procstat); 195 } 196 197 struct procstat * 198 procstat_open_sysctl(void) 199 { 200 struct procstat *procstat; 201 202 procstat = calloc(1, sizeof(*procstat)); 203 if (procstat == NULL) { 204 warn("malloc()"); 205 return (NULL); 206 } 207 procstat->type = PROCSTAT_SYSCTL; 208 return (procstat); 209 } 210 211 struct procstat * 212 procstat_open_kvm(const char *nlistf, const char *memf) 213 { 214 struct procstat *procstat; 215 kvm_t *kd; 216 char buf[_POSIX2_LINE_MAX]; 217 218 procstat = calloc(1, sizeof(*procstat)); 219 if (procstat == NULL) { 220 warn("malloc()"); 221 return (NULL); 222 } 223 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); 224 if (kd == NULL) { 225 warnx("kvm_openfiles(): %s", buf); 226 free(procstat); 227 return (NULL); 228 } 229 procstat->type = PROCSTAT_KVM; 230 procstat->kd = kd; 231 return (procstat); 232 } 233 234 struct procstat * 235 procstat_open_core(const char *filename) 236 { 237 struct procstat *procstat; 238 struct procstat_core *core; 239 240 procstat = calloc(1, sizeof(*procstat)); 241 if (procstat == NULL) { 242 warn("malloc()"); 243 return (NULL); 244 } 245 core = procstat_core_open(filename); 246 if (core == NULL) { 247 free(procstat); 248 return (NULL); 249 } 250 procstat->type = PROCSTAT_CORE; 251 procstat->core = core; 252 return (procstat); 253 } 254 255 struct kinfo_proc * 256 procstat_getprocs(struct procstat *procstat, int what, int arg, 257 unsigned int *count) 258 { 259 struct kinfo_proc *p0, *p; 260 size_t len, olen; 261 int name[4]; 262 int cnt; 263 int error; 264 265 assert(procstat); 266 assert(count); 267 p = NULL; 268 if (procstat->type == PROCSTAT_KVM) { 269 *count = 0; 270 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); 271 if (p0 == NULL || cnt <= 0) 272 return (NULL); 273 *count = cnt; 274 len = *count * sizeof(*p); 275 p = malloc(len); 276 if (p == NULL) { 277 warnx("malloc(%zu)", len); 278 goto fail; 279 } 280 bcopy(p0, p, len); 281 return (p); 282 } else if (procstat->type == PROCSTAT_SYSCTL) { 283 len = 0; 284 name[0] = CTL_KERN; 285 name[1] = KERN_PROC; 286 name[2] = what; 287 name[3] = arg; 288 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 289 if (error < 0 && errno != EPERM) { 290 warn("sysctl(kern.proc)"); 291 goto fail; 292 } 293 if (len == 0) { 294 warnx("no processes?"); 295 goto fail; 296 } 297 do { 298 len += len / 10; 299 p = reallocf(p, len); 300 if (p == NULL) { 301 warnx("reallocf(%zu)", len); 302 goto fail; 303 } 304 olen = len; 305 error = sysctl(name, nitems(name), p, &len, NULL, 0); 306 } while (error < 0 && errno == ENOMEM && olen == len); 307 if (error < 0 && errno != EPERM) { 308 warn("sysctl(kern.proc)"); 309 goto fail; 310 } 311 /* Perform simple consistency checks. */ 312 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 313 warnx("kinfo_proc structure size mismatch (len = %zu)", len); 314 goto fail; 315 } 316 *count = len / sizeof(*p); 317 return (p); 318 } else if (procstat->type == PROCSTAT_CORE) { 319 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, 320 &len); 321 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 322 warnx("kinfo_proc structure size mismatch"); 323 goto fail; 324 } 325 *count = len / sizeof(*p); 326 return (p); 327 } else { 328 warnx("unknown access method: %d", procstat->type); 329 return (NULL); 330 } 331 fail: 332 if (p) 333 free(p); 334 return (NULL); 335 } 336 337 void 338 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) 339 { 340 341 if (p != NULL) 342 free(p); 343 p = NULL; 344 } 345 346 struct filestat_list * 347 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 348 { 349 350 switch(procstat->type) { 351 case PROCSTAT_KVM: 352 return (procstat_getfiles_kvm(procstat, kp, mmapped)); 353 case PROCSTAT_SYSCTL: 354 case PROCSTAT_CORE: 355 return (procstat_getfiles_sysctl(procstat, kp, mmapped)); 356 default: 357 warnx("unknown access method: %d", procstat->type); 358 return (NULL); 359 } 360 } 361 362 void 363 procstat_freefiles(struct procstat *procstat, struct filestat_list *head) 364 { 365 struct filestat *fst, *tmp; 366 367 STAILQ_FOREACH_SAFE(fst, head, next, tmp) { 368 if (fst->fs_path != NULL) 369 free(fst->fs_path); 370 free(fst); 371 } 372 free(head); 373 if (procstat->vmentries != NULL) { 374 free(procstat->vmentries); 375 procstat->vmentries = NULL; 376 } 377 if (procstat->files != NULL) { 378 free(procstat->files); 379 procstat->files = NULL; 380 } 381 } 382 383 static struct filestat * 384 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, 385 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp) 386 { 387 struct filestat *entry; 388 389 entry = calloc(1, sizeof(*entry)); 390 if (entry == NULL) { 391 warn("malloc()"); 392 return (NULL); 393 } 394 entry->fs_typedep = typedep; 395 entry->fs_fflags = fflags; 396 entry->fs_uflags = uflags; 397 entry->fs_fd = fd; 398 entry->fs_type = type; 399 entry->fs_ref_count = refcount; 400 entry->fs_offset = offset; 401 entry->fs_path = path; 402 if (cap_rightsp != NULL) 403 entry->fs_cap_rights = *cap_rightsp; 404 else 405 cap_rights_init(&entry->fs_cap_rights); 406 return (entry); 407 } 408 409 static struct vnode * 410 getctty(kvm_t *kd, struct kinfo_proc *kp) 411 { 412 struct pgrp pgrp; 413 struct proc proc; 414 struct session sess; 415 int error; 416 417 assert(kp); 418 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 419 sizeof(proc)); 420 if (error == 0) { 421 warnx("can't read proc struct at %p for pid %d", 422 kp->ki_paddr, kp->ki_pid); 423 return (NULL); 424 } 425 if (proc.p_pgrp == NULL) 426 return (NULL); 427 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, 428 sizeof(pgrp)); 429 if (error == 0) { 430 warnx("can't read pgrp struct at %p for pid %d", 431 proc.p_pgrp, kp->ki_pid); 432 return (NULL); 433 } 434 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, 435 sizeof(sess)); 436 if (error == 0) { 437 warnx("can't read session struct at %p for pid %d", 438 pgrp.pg_session, kp->ki_pid); 439 return (NULL); 440 } 441 return (sess.s_ttyvp); 442 } 443 444 static int 445 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest) 446 { 447 kvm_t *kd; 448 449 kd = (kvm_t *)token; 450 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest))); 451 } 452 453 static struct filestat_list * 454 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 455 { 456 struct file file; 457 struct filedesc filed; 458 struct pwddesc pathsd; 459 struct fdescenttbl *fdt; 460 struct pwd pwd; 461 unsigned long pwd_addr; 462 struct vm_map_entry vmentry; 463 struct vm_object object; 464 struct vmspace vmspace; 465 vm_map_entry_t entryp; 466 vm_object_t objp; 467 struct vnode *vp; 468 struct filestat *entry; 469 struct filestat_list *head; 470 kvm_t *kd; 471 void *data; 472 int fflags; 473 unsigned int i; 474 int prot, type; 475 size_t fdt_size; 476 unsigned int nfiles; 477 bool haspwd; 478 479 assert(procstat); 480 kd = procstat->kd; 481 if (kd == NULL) 482 return (NULL); 483 if (kp->ki_fd == NULL || kp->ki_pd == NULL) 484 return (NULL); 485 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, 486 sizeof(filed))) { 487 warnx("can't read filedesc at %p", (void *)kp->ki_fd); 488 return (NULL); 489 } 490 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd, 491 sizeof(pathsd))) { 492 warnx("can't read pwddesc at %p", (void *)kp->ki_pd); 493 return (NULL); 494 } 495 haspwd = false; 496 pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd)); 497 if (pwd_addr != 0) { 498 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) { 499 warnx("can't read fd_pwd at %p", (void *)pwd_addr); 500 return (NULL); 501 } 502 haspwd = true; 503 } 504 505 /* 506 * Allocate list head. 507 */ 508 head = malloc(sizeof(*head)); 509 if (head == NULL) 510 return (NULL); 511 STAILQ_INIT(head); 512 513 /* root directory vnode, if one. */ 514 if (haspwd) { 515 if (pwd.pwd_rdir) { 516 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1, 517 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL); 518 if (entry != NULL) 519 STAILQ_INSERT_TAIL(head, entry, next); 520 } 521 /* current working directory vnode. */ 522 if (pwd.pwd_cdir) { 523 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1, 524 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL); 525 if (entry != NULL) 526 STAILQ_INSERT_TAIL(head, entry, next); 527 } 528 /* jail root, if any. */ 529 if (pwd.pwd_jdir) { 530 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1, 531 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL); 532 if (entry != NULL) 533 STAILQ_INSERT_TAIL(head, entry, next); 534 } 535 } 536 /* ktrace vnode, if one */ 537 if (kp->ki_tracep) { 538 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, 539 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 540 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL); 541 if (entry != NULL) 542 STAILQ_INSERT_TAIL(head, entry, next); 543 } 544 /* text vnode, if one */ 545 if (kp->ki_textvp) { 546 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, 547 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL); 548 if (entry != NULL) 549 STAILQ_INSERT_TAIL(head, entry, next); 550 } 551 /* Controlling terminal. */ 552 if ((vp = getctty(kd, kp)) != NULL) { 553 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, 554 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 555 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL); 556 if (entry != NULL) 557 STAILQ_INSERT_TAIL(head, entry, next); 558 } 559 560 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles, 561 sizeof(nfiles))) { 562 warnx("can't read fd_files at %p", (void *)filed.fd_files); 563 return (NULL); 564 } 565 566 fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent); 567 fdt = malloc(fdt_size); 568 if (fdt == NULL) { 569 warn("malloc(%zu)", fdt_size); 570 goto do_mmapped; 571 } 572 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) { 573 warnx("cannot read file structures at %p", (void *)filed.fd_files); 574 free(fdt); 575 goto do_mmapped; 576 } 577 for (i = 0; i < nfiles; i++) { 578 if (fdt->fdt_ofiles[i].fde_file == NULL) { 579 continue; 580 } 581 if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file, 582 sizeof(struct file))) { 583 warnx("can't read file %d at %p", i, 584 (void *)fdt->fdt_ofiles[i].fde_file); 585 continue; 586 } 587 switch (file.f_type) { 588 case DTYPE_VNODE: 589 type = PS_FST_TYPE_VNODE; 590 data = file.f_vnode; 591 break; 592 case DTYPE_SOCKET: 593 type = PS_FST_TYPE_SOCKET; 594 data = file.f_data; 595 break; 596 case DTYPE_PIPE: 597 type = PS_FST_TYPE_PIPE; 598 data = file.f_data; 599 break; 600 case DTYPE_FIFO: 601 type = PS_FST_TYPE_FIFO; 602 data = file.f_vnode; 603 break; 604 #ifdef DTYPE_PTS 605 case DTYPE_PTS: 606 type = PS_FST_TYPE_PTS; 607 data = file.f_data; 608 break; 609 #endif 610 case DTYPE_SEM: 611 type = PS_FST_TYPE_SEM; 612 data = file.f_data; 613 break; 614 case DTYPE_SHM: 615 type = PS_FST_TYPE_SHM; 616 data = file.f_data; 617 break; 618 case DTYPE_PROCDESC: 619 type = PS_FST_TYPE_PROCDESC; 620 data = file.f_data; 621 break; 622 case DTYPE_DEV: 623 type = PS_FST_TYPE_DEV; 624 data = file.f_data; 625 break; 626 case DTYPE_EVENTFD: 627 type = PS_FST_TYPE_EVENTFD; 628 data = file.f_data; 629 break; 630 default: 631 continue; 632 } 633 /* XXXRW: No capability rights support for kvm yet. */ 634 entry = filestat_new_entry(data, type, i, 635 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL); 636 if (entry != NULL) 637 STAILQ_INSERT_TAIL(head, entry, next); 638 } 639 free(fdt); 640 641 do_mmapped: 642 643 /* 644 * Process mmapped files if requested. 645 */ 646 if (mmapped) { 647 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, 648 sizeof(vmspace))) { 649 warnx("can't read vmspace at %p", 650 (void *)kp->ki_vmspace); 651 goto exit; 652 } 653 654 vmentry = vmspace.vm_map.header; 655 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader); 656 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header; 657 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) { 658 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) 659 continue; 660 if ((objp = vmentry.object.vm_object) == NULL) 661 continue; 662 for (; objp; objp = object.backing_object) { 663 if (!kvm_read_all(kd, (unsigned long)objp, 664 &object, sizeof(object))) { 665 warnx("can't read vm_object at %p", 666 (void *)objp); 667 break; 668 } 669 } 670 671 /* We want only vnode objects. */ 672 if (object.type != OBJT_VNODE) 673 continue; 674 675 prot = vmentry.protection; 676 fflags = 0; 677 if (prot & VM_PROT_READ) 678 fflags = PS_FST_FFLAG_READ; 679 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && 680 prot & VM_PROT_WRITE) 681 fflags |= PS_FST_FFLAG_WRITE; 682 683 /* 684 * Create filestat entry. 685 */ 686 entry = filestat_new_entry(object.handle, 687 PS_FST_TYPE_VNODE, -1, fflags, 688 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL); 689 if (entry != NULL) 690 STAILQ_INSERT_TAIL(head, entry, next); 691 } 692 if (entryp == NULL) 693 warnx("can't read vm_map_entry"); 694 } 695 exit: 696 return (head); 697 } 698 699 /* 700 * kinfo types to filestat translation. 701 */ 702 static int 703 kinfo_type2fst(int kftype) 704 { 705 static struct { 706 int kf_type; 707 int fst_type; 708 } kftypes2fst[] = { 709 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC }, 710 { KF_TYPE_DEV, PS_FST_TYPE_DEV }, 711 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, 712 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, 713 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, 714 { KF_TYPE_NONE, PS_FST_TYPE_NONE }, 715 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, 716 { KF_TYPE_PTS, PS_FST_TYPE_PTS }, 717 { KF_TYPE_SEM, PS_FST_TYPE_SEM }, 718 { KF_TYPE_SHM, PS_FST_TYPE_SHM }, 719 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, 720 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, 721 { KF_TYPE_EVENTFD, PS_FST_TYPE_EVENTFD }, 722 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } 723 }; 724 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) 725 unsigned int i; 726 727 for (i = 0; i < NKFTYPES; i++) 728 if (kftypes2fst[i].kf_type == kftype) 729 break; 730 if (i == NKFTYPES) 731 return (PS_FST_TYPE_UNKNOWN); 732 return (kftypes2fst[i].fst_type); 733 } 734 735 /* 736 * kinfo flags to filestat translation. 737 */ 738 static int 739 kinfo_fflags2fst(int kfflags) 740 { 741 static struct { 742 int kf_flag; 743 int fst_flag; 744 } kfflags2fst[] = { 745 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, 746 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, 747 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, 748 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, 749 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, 750 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, 751 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, 752 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, 753 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, 754 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 755 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 756 { KF_FLAG_READ, PS_FST_FFLAG_READ }, 757 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, 758 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, 759 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } 760 }; 761 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) 762 unsigned int i; 763 int flags; 764 765 flags = 0; 766 for (i = 0; i < NKFFLAGS; i++) 767 if ((kfflags & kfflags2fst[i].kf_flag) != 0) 768 flags |= kfflags2fst[i].fst_flag; 769 return (flags); 770 } 771 772 static int 773 kinfo_uflags2fst(int fd) 774 { 775 776 switch (fd) { 777 case KF_FD_TYPE_CTTY: 778 return (PS_FST_UFLAG_CTTY); 779 case KF_FD_TYPE_CWD: 780 return (PS_FST_UFLAG_CDIR); 781 case KF_FD_TYPE_JAIL: 782 return (PS_FST_UFLAG_JAIL); 783 case KF_FD_TYPE_TEXT: 784 return (PS_FST_UFLAG_TEXT); 785 case KF_FD_TYPE_TRACE: 786 return (PS_FST_UFLAG_TRACE); 787 case KF_FD_TYPE_ROOT: 788 return (PS_FST_UFLAG_RDIR); 789 } 790 return (0); 791 } 792 793 static struct kinfo_file * 794 kinfo_getfile_core(struct procstat_core *core, int *cntp) 795 { 796 int cnt; 797 size_t len; 798 char *buf, *bp, *eb; 799 struct kinfo_file *kif, *kp, *kf; 800 801 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); 802 if (buf == NULL) 803 return (NULL); 804 /* 805 * XXXMG: The code below is just copy&past from libutil. 806 * The code duplication can be avoided if libutil 807 * is extended to provide something like: 808 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, 809 * size_t len, int *cntp); 810 */ 811 812 /* Pass 1: count items */ 813 cnt = 0; 814 bp = buf; 815 eb = buf + len; 816 while (bp < eb) { 817 kf = (struct kinfo_file *)(uintptr_t)bp; 818 if (kf->kf_structsize == 0) 819 break; 820 bp += kf->kf_structsize; 821 cnt++; 822 } 823 824 kif = calloc(cnt, sizeof(*kif)); 825 if (kif == NULL) { 826 free(buf); 827 return (NULL); 828 } 829 bp = buf; 830 eb = buf + len; 831 kp = kif; 832 /* Pass 2: unpack */ 833 while (bp < eb) { 834 kf = (struct kinfo_file *)(uintptr_t)bp; 835 if (kf->kf_structsize == 0) 836 break; 837 /* Copy/expand into pre-zeroed buffer */ 838 memcpy(kp, kf, kf->kf_structsize); 839 /* Advance to next packed record */ 840 bp += kf->kf_structsize; 841 /* Set field size to fixed length, advance */ 842 kp->kf_structsize = sizeof(*kp); 843 kp++; 844 } 845 free(buf); 846 *cntp = cnt; 847 return (kif); /* Caller must free() return value */ 848 } 849 850 static struct filestat_list * 851 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, 852 int mmapped) 853 { 854 struct kinfo_file *kif, *files; 855 struct kinfo_vmentry *kve, *vmentries; 856 struct filestat_list *head; 857 struct filestat *entry; 858 char *path; 859 off_t offset; 860 int cnt, fd, fflags; 861 int i, type, uflags; 862 int refcount; 863 cap_rights_t cap_rights; 864 865 assert(kp); 866 switch (procstat->type) { 867 case PROCSTAT_SYSCTL: 868 files = kinfo_getfile(kp->ki_pid, &cnt); 869 break; 870 case PROCSTAT_CORE: 871 files = kinfo_getfile_core(procstat->core, &cnt); 872 break; 873 default: 874 assert(!"invalid type"); 875 } 876 if (files == NULL && errno != EPERM) { 877 warn("kinfo_getfile()"); 878 return (NULL); 879 } 880 procstat->files = files; 881 882 /* 883 * Allocate list head. 884 */ 885 head = malloc(sizeof(*head)); 886 if (head == NULL) 887 return (NULL); 888 STAILQ_INIT(head); 889 for (i = 0; i < cnt; i++) { 890 kif = &files[i]; 891 892 type = kinfo_type2fst(kif->kf_type); 893 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; 894 fflags = kinfo_fflags2fst(kif->kf_flags); 895 uflags = kinfo_uflags2fst(kif->kf_fd); 896 refcount = kif->kf_ref_count; 897 offset = kif->kf_offset; 898 if (*kif->kf_path != '\0') 899 path = strdup(kif->kf_path); 900 else 901 path = NULL; 902 cap_rights = kif->kf_cap_rights; 903 904 /* 905 * Create filestat entry. 906 */ 907 entry = filestat_new_entry(kif, type, fd, fflags, uflags, 908 refcount, offset, path, &cap_rights); 909 if (entry != NULL) 910 STAILQ_INSERT_TAIL(head, entry, next); 911 } 912 if (mmapped != 0) { 913 vmentries = procstat_getvmmap(procstat, kp, &cnt); 914 procstat->vmentries = vmentries; 915 if (vmentries == NULL || cnt == 0) 916 goto fail; 917 for (i = 0; i < cnt; i++) { 918 kve = &vmentries[i]; 919 if (kve->kve_type != KVME_TYPE_VNODE) 920 continue; 921 fflags = 0; 922 if (kve->kve_protection & KVME_PROT_READ) 923 fflags = PS_FST_FFLAG_READ; 924 if ((kve->kve_flags & KVME_FLAG_COW) == 0 && 925 kve->kve_protection & KVME_PROT_WRITE) 926 fflags |= PS_FST_FFLAG_WRITE; 927 offset = kve->kve_offset; 928 refcount = kve->kve_ref_count; 929 if (*kve->kve_path != '\0') 930 path = strdup(kve->kve_path); 931 else 932 path = NULL; 933 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, 934 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, 935 NULL); 936 if (entry != NULL) 937 STAILQ_INSERT_TAIL(head, entry, next); 938 } 939 } 940 fail: 941 return (head); 942 } 943 944 int 945 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, 946 struct pipestat *ps, char *errbuf) 947 { 948 949 assert(ps); 950 if (procstat->type == PROCSTAT_KVM) { 951 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, 952 errbuf)); 953 } else if (procstat->type == PROCSTAT_SYSCTL || 954 procstat->type == PROCSTAT_CORE) { 955 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); 956 } else { 957 warnx("unknown access method: %d", procstat->type); 958 if (errbuf != NULL) 959 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 960 return (1); 961 } 962 } 963 964 static int 965 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 966 struct pipestat *ps, char *errbuf) 967 { 968 struct pipe pi; 969 void *pipep; 970 971 assert(kd); 972 assert(ps); 973 assert(fst); 974 bzero(ps, sizeof(*ps)); 975 pipep = fst->fs_typedep; 976 if (pipep == NULL) 977 goto fail; 978 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { 979 warnx("can't read pipe at %p", (void *)pipep); 980 goto fail; 981 } 982 ps->addr = (uintptr_t)pipep; 983 ps->peer = (uintptr_t)pi.pipe_peer; 984 ps->buffer_cnt = pi.pipe_buffer.cnt; 985 return (0); 986 987 fail: 988 if (errbuf != NULL) 989 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 990 return (1); 991 } 992 993 static int 994 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, 995 char *errbuf __unused) 996 { 997 struct kinfo_file *kif; 998 999 assert(ps); 1000 assert(fst); 1001 bzero(ps, sizeof(*ps)); 1002 kif = fst->fs_typedep; 1003 if (kif == NULL) 1004 return (1); 1005 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; 1006 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; 1007 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; 1008 return (0); 1009 } 1010 1011 int 1012 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, 1013 struct ptsstat *pts, char *errbuf) 1014 { 1015 1016 assert(pts); 1017 if (procstat->type == PROCSTAT_KVM) { 1018 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, 1019 errbuf)); 1020 } else if (procstat->type == PROCSTAT_SYSCTL || 1021 procstat->type == PROCSTAT_CORE) { 1022 return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); 1023 } else { 1024 warnx("unknown access method: %d", procstat->type); 1025 if (errbuf != NULL) 1026 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1027 return (1); 1028 } 1029 } 1030 1031 static int 1032 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 1033 struct ptsstat *pts, char *errbuf) 1034 { 1035 struct tty tty; 1036 void *ttyp; 1037 1038 assert(kd); 1039 assert(pts); 1040 assert(fst); 1041 bzero(pts, sizeof(*pts)); 1042 ttyp = fst->fs_typedep; 1043 if (ttyp == NULL) 1044 goto fail; 1045 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { 1046 warnx("can't read tty at %p", (void *)ttyp); 1047 goto fail; 1048 } 1049 pts->dev = dev2udev(kd, tty.t_dev); 1050 (void)kdevtoname(kd, tty.t_dev, pts->devname); 1051 return (0); 1052 1053 fail: 1054 if (errbuf != NULL) 1055 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1056 return (1); 1057 } 1058 1059 static int 1060 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, 1061 char *errbuf __unused) 1062 { 1063 struct kinfo_file *kif; 1064 1065 assert(pts); 1066 assert(fst); 1067 bzero(pts, sizeof(*pts)); 1068 kif = fst->fs_typedep; 1069 if (kif == NULL) 1070 return (0); 1071 pts->dev = kif->kf_un.kf_pts.kf_pts_dev; 1072 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); 1073 return (0); 1074 } 1075 1076 int 1077 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, 1078 struct semstat *sem, char *errbuf) 1079 { 1080 1081 assert(sem); 1082 if (procstat->type == PROCSTAT_KVM) { 1083 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, 1084 errbuf)); 1085 } else if (procstat->type == PROCSTAT_SYSCTL || 1086 procstat->type == PROCSTAT_CORE) { 1087 return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); 1088 } else { 1089 warnx("unknown access method: %d", procstat->type); 1090 if (errbuf != NULL) 1091 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1092 return (1); 1093 } 1094 } 1095 1096 static int 1097 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 1098 struct semstat *sem, char *errbuf) 1099 { 1100 struct ksem ksem; 1101 void *ksemp; 1102 char *path; 1103 int i; 1104 1105 assert(kd); 1106 assert(sem); 1107 assert(fst); 1108 bzero(sem, sizeof(*sem)); 1109 ksemp = fst->fs_typedep; 1110 if (ksemp == NULL) 1111 goto fail; 1112 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, 1113 sizeof(struct ksem))) { 1114 warnx("can't read ksem at %p", (void *)ksemp); 1115 goto fail; 1116 } 1117 sem->mode = S_IFREG | ksem.ks_mode; 1118 sem->value = ksem.ks_value; 1119 if (fst->fs_path == NULL && ksem.ks_path != NULL) { 1120 path = malloc(MAXPATHLEN); 1121 for (i = 0; i < MAXPATHLEN - 1; i++) { 1122 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, 1123 path + i, 1)) 1124 break; 1125 if (path[i] == '\0') 1126 break; 1127 } 1128 path[i] = '\0'; 1129 if (i == 0) 1130 free(path); 1131 else 1132 fst->fs_path = path; 1133 } 1134 return (0); 1135 1136 fail: 1137 if (errbuf != NULL) 1138 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1139 return (1); 1140 } 1141 1142 static int 1143 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, 1144 char *errbuf __unused) 1145 { 1146 struct kinfo_file *kif; 1147 1148 assert(sem); 1149 assert(fst); 1150 bzero(sem, sizeof(*sem)); 1151 kif = fst->fs_typedep; 1152 if (kif == NULL) 1153 return (0); 1154 sem->value = kif->kf_un.kf_sem.kf_sem_value; 1155 sem->mode = kif->kf_un.kf_sem.kf_sem_mode; 1156 return (0); 1157 } 1158 1159 int 1160 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, 1161 struct shmstat *shm, char *errbuf) 1162 { 1163 1164 assert(shm); 1165 if (procstat->type == PROCSTAT_KVM) { 1166 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, 1167 errbuf)); 1168 } else if (procstat->type == PROCSTAT_SYSCTL || 1169 procstat->type == PROCSTAT_CORE) { 1170 return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); 1171 } else { 1172 warnx("unknown access method: %d", procstat->type); 1173 if (errbuf != NULL) 1174 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1175 return (1); 1176 } 1177 } 1178 1179 static int 1180 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 1181 struct shmstat *shm, char *errbuf) 1182 { 1183 struct shmfd shmfd; 1184 void *shmfdp; 1185 char *path; 1186 int i; 1187 1188 assert(kd); 1189 assert(shm); 1190 assert(fst); 1191 bzero(shm, sizeof(*shm)); 1192 shmfdp = fst->fs_typedep; 1193 if (shmfdp == NULL) 1194 goto fail; 1195 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, 1196 sizeof(struct shmfd))) { 1197 warnx("can't read shmfd at %p", (void *)shmfdp); 1198 goto fail; 1199 } 1200 shm->mode = S_IFREG | shmfd.shm_mode; 1201 shm->size = shmfd.shm_size; 1202 if (fst->fs_path == NULL && shmfd.shm_path != NULL) { 1203 path = malloc(MAXPATHLEN); 1204 for (i = 0; i < MAXPATHLEN - 1; i++) { 1205 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, 1206 path + i, 1)) 1207 break; 1208 if (path[i] == '\0') 1209 break; 1210 } 1211 path[i] = '\0'; 1212 if (i == 0) 1213 free(path); 1214 else 1215 fst->fs_path = path; 1216 } 1217 return (0); 1218 1219 fail: 1220 if (errbuf != NULL) 1221 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1222 return (1); 1223 } 1224 1225 static int 1226 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, 1227 char *errbuf __unused) 1228 { 1229 struct kinfo_file *kif; 1230 1231 assert(shm); 1232 assert(fst); 1233 bzero(shm, sizeof(*shm)); 1234 kif = fst->fs_typedep; 1235 if (kif == NULL) 1236 return (0); 1237 shm->size = kif->kf_un.kf_file.kf_file_size; 1238 shm->mode = kif->kf_un.kf_file.kf_file_mode; 1239 return (0); 1240 } 1241 1242 int 1243 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, 1244 struct vnstat *vn, char *errbuf) 1245 { 1246 1247 assert(vn); 1248 if (procstat->type == PROCSTAT_KVM) { 1249 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, 1250 errbuf)); 1251 } else if (procstat->type == PROCSTAT_SYSCTL || 1252 procstat->type == PROCSTAT_CORE) { 1253 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); 1254 } else { 1255 warnx("unknown access method: %d", procstat->type); 1256 if (errbuf != NULL) 1257 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1258 return (1); 1259 } 1260 } 1261 1262 static int 1263 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 1264 struct vnstat *vn, char *errbuf) 1265 { 1266 /* Filesystem specific handlers. */ 1267 #define FSTYPE(fst) {#fst, fst##_filestat} 1268 struct { 1269 const char *tag; 1270 int (*handler)(kvm_t *kd, struct vnode *vp, 1271 struct vnstat *vn); 1272 } fstypes[] = { 1273 FSTYPE(devfs), 1274 FSTYPE(isofs), 1275 FSTYPE(msdosfs), 1276 FSTYPE(nfs), 1277 FSTYPE(smbfs), 1278 FSTYPE(udf), 1279 FSTYPE(ufs), 1280 #ifdef LIBPROCSTAT_ZFS 1281 FSTYPE(zfs), 1282 #endif 1283 }; 1284 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) 1285 struct vnode vnode; 1286 char tagstr[12]; 1287 void *vp; 1288 int error; 1289 unsigned int i; 1290 1291 assert(kd); 1292 assert(vn); 1293 assert(fst); 1294 vp = fst->fs_typedep; 1295 if (vp == NULL) 1296 goto fail; 1297 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); 1298 if (error == 0) { 1299 warnx("can't read vnode at %p", (void *)vp); 1300 goto fail; 1301 } 1302 bzero(vn, sizeof(*vn)); 1303 vn->vn_type = vntype2psfsttype(vnode.v_type); 1304 if (vnode.v_type == VNON || vnode.v_type == VBAD) 1305 return (0); 1306 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name, 1307 tagstr, sizeof(tagstr)); 1308 if (error == 0) { 1309 warnx("can't read lo_name at %p", (void *)vp); 1310 goto fail; 1311 } 1312 tagstr[sizeof(tagstr) - 1] = '\0'; 1313 1314 /* 1315 * Find appropriate handler. 1316 */ 1317 for (i = 0; i < NTYPES; i++) 1318 if (!strcmp(fstypes[i].tag, tagstr)) { 1319 if (fstypes[i].handler(kd, &vnode, vn) != 0) { 1320 goto fail; 1321 } 1322 break; 1323 } 1324 if (i == NTYPES) { 1325 if (errbuf != NULL) 1326 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); 1327 return (1); 1328 } 1329 vn->vn_mntdir = getmnton(kd, vnode.v_mount); 1330 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) && 1331 vnode.v_rdev != NULL){ 1332 vn->vn_dev = dev2udev(kd, vnode.v_rdev); 1333 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); 1334 } else { 1335 vn->vn_dev = -1; 1336 } 1337 return (0); 1338 1339 fail: 1340 if (errbuf != NULL) 1341 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1342 return (1); 1343 } 1344 1345 /* 1346 * kinfo vnode type to filestat translation. 1347 */ 1348 static int 1349 kinfo_vtype2fst(int kfvtype) 1350 { 1351 static struct { 1352 int kf_vtype; 1353 int fst_vtype; 1354 } kfvtypes2fst[] = { 1355 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, 1356 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, 1357 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, 1358 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, 1359 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, 1360 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, 1361 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, 1362 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, 1363 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } 1364 }; 1365 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) 1366 unsigned int i; 1367 1368 for (i = 0; i < NKFVTYPES; i++) 1369 if (kfvtypes2fst[i].kf_vtype == kfvtype) 1370 break; 1371 if (i == NKFVTYPES) 1372 return (PS_FST_VTYPE_UNKNOWN); 1373 return (kfvtypes2fst[i].fst_vtype); 1374 } 1375 1376 static int 1377 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, 1378 char *errbuf) 1379 { 1380 struct statfs stbuf; 1381 struct kinfo_file *kif; 1382 struct kinfo_vmentry *kve; 1383 char *name, *path; 1384 uint64_t fileid; 1385 uint64_t size; 1386 uint64_t fsid; 1387 uint64_t rdev; 1388 uint16_t mode; 1389 int vntype; 1390 int status; 1391 1392 assert(fst); 1393 assert(vn); 1394 bzero(vn, sizeof(*vn)); 1395 if (fst->fs_typedep == NULL) 1396 return (1); 1397 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { 1398 kve = fst->fs_typedep; 1399 fileid = kve->kve_vn_fileid; 1400 fsid = kve->kve_vn_fsid; 1401 mode = kve->kve_vn_mode; 1402 path = kve->kve_path; 1403 rdev = kve->kve_vn_rdev; 1404 size = kve->kve_vn_size; 1405 vntype = kinfo_vtype2fst(kve->kve_vn_type); 1406 status = kve->kve_status; 1407 } else { 1408 kif = fst->fs_typedep; 1409 fileid = kif->kf_un.kf_file.kf_file_fileid; 1410 fsid = kif->kf_un.kf_file.kf_file_fsid; 1411 mode = kif->kf_un.kf_file.kf_file_mode; 1412 path = kif->kf_path; 1413 rdev = kif->kf_un.kf_file.kf_file_rdev; 1414 size = kif->kf_un.kf_file.kf_file_size; 1415 vntype = kinfo_vtype2fst(kif->kf_vnode_type); 1416 status = kif->kf_status; 1417 } 1418 vn->vn_type = vntype; 1419 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) 1420 return (0); 1421 if ((status & KF_ATTR_VALID) == 0) { 1422 if (errbuf != NULL) { 1423 snprintf(errbuf, _POSIX2_LINE_MAX, 1424 "? (no info available)"); 1425 } 1426 return (1); 1427 } 1428 if (path && *path) { 1429 statfs(path, &stbuf); 1430 vn->vn_mntdir = strdup(stbuf.f_mntonname); 1431 } else 1432 vn->vn_mntdir = strdup("-"); 1433 vn->vn_dev = rdev; 1434 if (vntype == PS_FST_VTYPE_VBLK) { 1435 name = devname(rdev, S_IFBLK); 1436 if (name != NULL) 1437 strlcpy(vn->vn_devname, name, 1438 sizeof(vn->vn_devname)); 1439 } else if (vntype == PS_FST_VTYPE_VCHR) { 1440 name = devname(vn->vn_dev, S_IFCHR); 1441 if (name != NULL) 1442 strlcpy(vn->vn_devname, name, 1443 sizeof(vn->vn_devname)); 1444 } 1445 vn->vn_fsid = fsid; 1446 vn->vn_fileid = fileid; 1447 vn->vn_size = size; 1448 vn->vn_mode = mode; 1449 return (0); 1450 } 1451 1452 int 1453 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, 1454 struct sockstat *sock, char *errbuf) 1455 { 1456 1457 assert(sock); 1458 if (procstat->type == PROCSTAT_KVM) { 1459 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, 1460 errbuf)); 1461 } else if (procstat->type == PROCSTAT_SYSCTL || 1462 procstat->type == PROCSTAT_CORE) { 1463 return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); 1464 } else { 1465 warnx("unknown access method: %d", procstat->type); 1466 if (errbuf != NULL) 1467 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1468 return (1); 1469 } 1470 } 1471 1472 static int 1473 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 1474 struct sockstat *sock, char *errbuf) 1475 { 1476 struct domain dom; 1477 struct inpcb inpcb; 1478 struct protosw proto; 1479 struct socket s; 1480 struct unpcb unpcb; 1481 ssize_t len; 1482 void *so; 1483 1484 assert(kd); 1485 assert(sock); 1486 assert(fst); 1487 bzero(sock, sizeof(*sock)); 1488 so = fst->fs_typedep; 1489 if (so == NULL) 1490 goto fail; 1491 sock->so_addr = (uintptr_t)so; 1492 /* fill in socket */ 1493 if (!kvm_read_all(kd, (unsigned long)so, &s, 1494 sizeof(struct socket))) { 1495 warnx("can't read sock at %p", (void *)so); 1496 goto fail; 1497 } 1498 /* fill in protosw entry */ 1499 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, 1500 sizeof(struct protosw))) { 1501 warnx("can't read protosw at %p", (void *)s.so_proto); 1502 goto fail; 1503 } 1504 /* fill in domain */ 1505 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, 1506 sizeof(struct domain))) { 1507 warnx("can't read domain at %p", 1508 (void *)proto.pr_domain); 1509 goto fail; 1510 } 1511 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, 1512 sizeof(sock->dname) - 1)) < 0) { 1513 warnx("can't read domain name at %p", (void *)dom.dom_name); 1514 sock->dname[0] = '\0'; 1515 } 1516 else 1517 sock->dname[len] = '\0'; 1518 1519 /* 1520 * Fill in known data. 1521 */ 1522 sock->type = s.so_type; 1523 sock->proto = proto.pr_protocol; 1524 sock->dom_family = dom.dom_family; 1525 sock->so_pcb = (uintptr_t)s.so_pcb; 1526 1527 /* 1528 * Protocol specific data. 1529 */ 1530 switch(dom.dom_family) { 1531 case AF_INET: 1532 case AF_INET6: 1533 if (proto.pr_protocol == IPPROTO_TCP) { 1534 if (s.so_pcb) { 1535 if (kvm_read(kd, (u_long)s.so_pcb, 1536 (char *)&inpcb, sizeof(struct inpcb)) 1537 != sizeof(struct inpcb)) { 1538 warnx("can't read inpcb at %p", 1539 (void *)s.so_pcb); 1540 } else 1541 sock->inp_ppcb = 1542 (uintptr_t)inpcb.inp_ppcb; 1543 sock->sendq = s.so_snd.sb_ccc; 1544 sock->recvq = s.so_rcv.sb_ccc; 1545 } 1546 } 1547 break; 1548 case AF_UNIX: 1549 if (s.so_pcb) { 1550 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, 1551 sizeof(struct unpcb)) != sizeof(struct unpcb)){ 1552 warnx("can't read unpcb at %p", 1553 (void *)s.so_pcb); 1554 } else if (unpcb.unp_conn) { 1555 sock->so_rcv_sb_state = s.so_rcv.sb_state; 1556 sock->so_snd_sb_state = s.so_snd.sb_state; 1557 sock->unp_conn = (uintptr_t)unpcb.unp_conn; 1558 sock->sendq = s.so_snd.sb_ccc; 1559 sock->recvq = s.so_rcv.sb_ccc; 1560 } 1561 } 1562 break; 1563 default: 1564 break; 1565 } 1566 return (0); 1567 1568 fail: 1569 if (errbuf != NULL) 1570 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1571 return (1); 1572 } 1573 1574 static int 1575 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, 1576 char *errbuf __unused) 1577 { 1578 struct kinfo_file *kif; 1579 1580 assert(sock); 1581 assert(fst); 1582 bzero(sock, sizeof(*sock)); 1583 kif = fst->fs_typedep; 1584 if (kif == NULL) 1585 return (0); 1586 1587 /* 1588 * Fill in known data. 1589 */ 1590 sock->type = kif->kf_sock_type; 1591 sock->proto = kif->kf_sock_protocol; 1592 sock->dom_family = kif->kf_sock_domain; 1593 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; 1594 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); 1595 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local, 1596 kif->kf_un.kf_sock.kf_sa_local.ss_len); 1597 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer, 1598 kif->kf_un.kf_sock.kf_sa_peer.ss_len); 1599 1600 /* 1601 * Protocol specific data. 1602 */ 1603 switch(sock->dom_family) { 1604 case AF_INET: 1605 case AF_INET6: 1606 if (sock->proto == IPPROTO_TCP) { 1607 sock->inp_ppcb = kif->kf_un.kf_sock.kf_sock_inpcb; 1608 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1609 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1610 } 1611 break; 1612 case AF_UNIX: 1613 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { 1614 sock->so_rcv_sb_state = 1615 kif->kf_un.kf_sock.kf_sock_rcv_sb_state; 1616 sock->so_snd_sb_state = 1617 kif->kf_un.kf_sock.kf_sock_snd_sb_state; 1618 sock->unp_conn = 1619 kif->kf_un.kf_sock.kf_sock_unpconn; 1620 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1621 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1622 } 1623 break; 1624 default: 1625 break; 1626 } 1627 return (0); 1628 } 1629 1630 /* 1631 * Descriptor flags to filestat translation. 1632 */ 1633 static int 1634 to_filestat_flags(int flags) 1635 { 1636 static struct { 1637 int flag; 1638 int fst_flag; 1639 } fstflags[] = { 1640 { FREAD, PS_FST_FFLAG_READ }, 1641 { FWRITE, PS_FST_FFLAG_WRITE }, 1642 { O_APPEND, PS_FST_FFLAG_APPEND }, 1643 { O_ASYNC, PS_FST_FFLAG_ASYNC }, 1644 { O_CREAT, PS_FST_FFLAG_CREAT }, 1645 { O_DIRECT, PS_FST_FFLAG_DIRECT }, 1646 { O_EXCL, PS_FST_FFLAG_EXCL }, 1647 { O_EXEC, PS_FST_FFLAG_EXEC }, 1648 { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, 1649 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 1650 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 1651 { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, 1652 { O_SYNC, PS_FST_FFLAG_SYNC }, 1653 { O_TRUNC, PS_FST_FFLAG_TRUNC } 1654 }; 1655 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) 1656 int fst_flags; 1657 unsigned int i; 1658 1659 fst_flags = 0; 1660 for (i = 0; i < NFSTFLAGS; i++) 1661 if (flags & fstflags[i].flag) 1662 fst_flags |= fstflags[i].fst_flag; 1663 return (fst_flags); 1664 } 1665 1666 /* 1667 * Vnode type to filestate translation. 1668 */ 1669 static int 1670 vntype2psfsttype(int type) 1671 { 1672 static struct { 1673 int vtype; 1674 int fst_vtype; 1675 } vt2fst[] = { 1676 { VBAD, PS_FST_VTYPE_VBAD }, 1677 { VBLK, PS_FST_VTYPE_VBLK }, 1678 { VCHR, PS_FST_VTYPE_VCHR }, 1679 { VDIR, PS_FST_VTYPE_VDIR }, 1680 { VFIFO, PS_FST_VTYPE_VFIFO }, 1681 { VLNK, PS_FST_VTYPE_VLNK }, 1682 { VNON, PS_FST_VTYPE_VNON }, 1683 { VREG, PS_FST_VTYPE_VREG }, 1684 { VSOCK, PS_FST_VTYPE_VSOCK } 1685 }; 1686 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) 1687 unsigned int i, fst_type; 1688 1689 fst_type = PS_FST_VTYPE_UNKNOWN; 1690 for (i = 0; i < NVFTYPES; i++) { 1691 if (type == vt2fst[i].vtype) { 1692 fst_type = vt2fst[i].fst_vtype; 1693 break; 1694 } 1695 } 1696 return (fst_type); 1697 } 1698 1699 static char * 1700 getmnton(kvm_t *kd, struct mount *m) 1701 { 1702 struct mount mnt; 1703 static struct mtab { 1704 struct mtab *next; 1705 struct mount *m; 1706 char mntonname[MNAMELEN + 1]; 1707 } *mhead = NULL; 1708 struct mtab *mt; 1709 1710 for (mt = mhead; mt != NULL; mt = mt->next) 1711 if (m == mt->m) 1712 return (mt->mntonname); 1713 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { 1714 warnx("can't read mount table at %p", (void *)m); 1715 return (NULL); 1716 } 1717 if ((mt = malloc(sizeof (struct mtab))) == NULL) 1718 err(1, NULL); 1719 mt->m = m; 1720 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); 1721 mt->mntonname[MNAMELEN] = '\0'; 1722 mt->next = mhead; 1723 mhead = mt; 1724 return (mt->mntonname); 1725 } 1726 1727 /* 1728 * Auxiliary structures and functions to get process environment or 1729 * command line arguments. 1730 */ 1731 struct argvec { 1732 char *buf; 1733 size_t bufsize; 1734 char **argv; 1735 size_t argc; 1736 }; 1737 1738 static struct argvec * 1739 argvec_alloc(size_t bufsize) 1740 { 1741 struct argvec *av; 1742 1743 av = malloc(sizeof(*av)); 1744 if (av == NULL) 1745 return (NULL); 1746 av->bufsize = bufsize; 1747 av->buf = malloc(av->bufsize); 1748 if (av->buf == NULL) { 1749 free(av); 1750 return (NULL); 1751 } 1752 av->argc = 32; 1753 av->argv = malloc(sizeof(char *) * av->argc); 1754 if (av->argv == NULL) { 1755 free(av->buf); 1756 free(av); 1757 return (NULL); 1758 } 1759 return av; 1760 } 1761 1762 static void 1763 argvec_free(struct argvec * av) 1764 { 1765 1766 free(av->argv); 1767 free(av->buf); 1768 free(av); 1769 } 1770 1771 static char ** 1772 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) 1773 { 1774 int error, name[4], argc, i; 1775 struct argvec *av, **avp; 1776 enum psc_type type; 1777 size_t len; 1778 char *p, **argv; 1779 1780 assert(procstat); 1781 assert(kp); 1782 if (procstat->type == PROCSTAT_KVM) { 1783 warnx("can't use kvm access method"); 1784 return (NULL); 1785 } 1786 if (procstat->type != PROCSTAT_SYSCTL && 1787 procstat->type != PROCSTAT_CORE) { 1788 warnx("unknown access method: %d", procstat->type); 1789 return (NULL); 1790 } 1791 1792 if (nchr == 0 || nchr > ARG_MAX) 1793 nchr = ARG_MAX; 1794 1795 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); 1796 av = *avp; 1797 1798 if (av == NULL) 1799 { 1800 av = argvec_alloc(nchr); 1801 if (av == NULL) 1802 { 1803 warn("malloc(%zu)", nchr); 1804 return (NULL); 1805 } 1806 *avp = av; 1807 } else if (av->bufsize < nchr) { 1808 av->buf = reallocf(av->buf, nchr); 1809 if (av->buf == NULL) { 1810 warn("malloc(%zu)", nchr); 1811 return (NULL); 1812 } 1813 } 1814 if (procstat->type == PROCSTAT_SYSCTL) { 1815 name[0] = CTL_KERN; 1816 name[1] = KERN_PROC; 1817 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 1818 name[3] = kp->ki_pid; 1819 len = nchr; 1820 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0); 1821 if (error != 0 && errno != ESRCH && errno != EPERM) 1822 warn("sysctl(kern.proc.%s)", env ? "env" : "args"); 1823 if (error != 0 || len == 0) 1824 return (NULL); 1825 } else /* procstat->type == PROCSTAT_CORE */ { 1826 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; 1827 len = nchr; 1828 if (procstat_core_get(procstat->core, type, av->buf, &len) 1829 == NULL) { 1830 return (NULL); 1831 } 1832 } 1833 1834 argv = av->argv; 1835 argc = av->argc; 1836 i = 0; 1837 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { 1838 argv[i++] = p; 1839 if (i < argc) 1840 continue; 1841 /* Grow argv. */ 1842 argc += argc; 1843 argv = realloc(argv, sizeof(char *) * argc); 1844 if (argv == NULL) { 1845 warn("malloc(%zu)", sizeof(char *) * argc); 1846 return (NULL); 1847 } 1848 av->argv = argv; 1849 av->argc = argc; 1850 } 1851 argv[i] = NULL; 1852 1853 return (argv); 1854 } 1855 1856 /* 1857 * Return process command line arguments. 1858 */ 1859 char ** 1860 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1861 { 1862 1863 return (getargv(procstat, p, nchr, 0)); 1864 } 1865 1866 /* 1867 * Free the buffer allocated by procstat_getargv(). 1868 */ 1869 void 1870 procstat_freeargv(struct procstat *procstat) 1871 { 1872 1873 if (procstat->argv != NULL) { 1874 argvec_free(procstat->argv); 1875 procstat->argv = NULL; 1876 } 1877 } 1878 1879 /* 1880 * Return process environment. 1881 */ 1882 char ** 1883 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1884 { 1885 1886 return (getargv(procstat, p, nchr, 1)); 1887 } 1888 1889 /* 1890 * Free the buffer allocated by procstat_getenvv(). 1891 */ 1892 void 1893 procstat_freeenvv(struct procstat *procstat) 1894 { 1895 if (procstat->envv != NULL) { 1896 argvec_free(procstat->envv); 1897 procstat->envv = NULL; 1898 } 1899 } 1900 1901 static struct kinfo_vmentry * 1902 kinfo_getvmmap_core(struct procstat_core *core, int *cntp) 1903 { 1904 int cnt; 1905 size_t len; 1906 char *buf, *bp, *eb; 1907 struct kinfo_vmentry *kiv, *kp, *kv; 1908 1909 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); 1910 if (buf == NULL) 1911 return (NULL); 1912 1913 /* 1914 * XXXMG: The code below is just copy&past from libutil. 1915 * The code duplication can be avoided if libutil 1916 * is extended to provide something like: 1917 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, 1918 * size_t len, int *cntp); 1919 */ 1920 1921 /* Pass 1: count items */ 1922 cnt = 0; 1923 bp = buf; 1924 eb = buf + len; 1925 while (bp < eb) { 1926 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1927 if (kv->kve_structsize == 0) 1928 break; 1929 bp += kv->kve_structsize; 1930 cnt++; 1931 } 1932 1933 kiv = calloc(cnt, sizeof(*kiv)); 1934 if (kiv == NULL) { 1935 free(buf); 1936 return (NULL); 1937 } 1938 bp = buf; 1939 eb = buf + len; 1940 kp = kiv; 1941 /* Pass 2: unpack */ 1942 while (bp < eb) { 1943 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1944 if (kv->kve_structsize == 0) 1945 break; 1946 /* Copy/expand into pre-zeroed buffer */ 1947 memcpy(kp, kv, kv->kve_structsize); 1948 /* Advance to next packed record */ 1949 bp += kv->kve_structsize; 1950 /* Set field size to fixed length, advance */ 1951 kp->kve_structsize = sizeof(*kp); 1952 kp++; 1953 } 1954 free(buf); 1955 *cntp = cnt; 1956 return (kiv); /* Caller must free() return value */ 1957 } 1958 1959 struct kinfo_vmentry * 1960 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, 1961 unsigned int *cntp) 1962 { 1963 1964 switch(procstat->type) { 1965 case PROCSTAT_KVM: 1966 warnx("kvm method is not supported"); 1967 return (NULL); 1968 case PROCSTAT_SYSCTL: 1969 return (kinfo_getvmmap(kp->ki_pid, cntp)); 1970 case PROCSTAT_CORE: 1971 return (kinfo_getvmmap_core(procstat->core, cntp)); 1972 default: 1973 warnx("unknown access method: %d", procstat->type); 1974 return (NULL); 1975 } 1976 } 1977 1978 void 1979 procstat_freevmmap(struct procstat *procstat __unused, 1980 struct kinfo_vmentry *vmmap) 1981 { 1982 1983 free(vmmap); 1984 } 1985 1986 static gid_t * 1987 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) 1988 { 1989 struct proc proc; 1990 struct ucred ucred; 1991 gid_t *groups; 1992 size_t len; 1993 1994 assert(kd != NULL); 1995 assert(kp != NULL); 1996 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 1997 sizeof(proc))) { 1998 warnx("can't read proc struct at %p for pid %d", 1999 kp->ki_paddr, kp->ki_pid); 2000 return (NULL); 2001 } 2002 if (proc.p_ucred == NOCRED) 2003 return (NULL); 2004 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, 2005 sizeof(ucred))) { 2006 warnx("can't read ucred struct at %p for pid %d", 2007 proc.p_ucred, kp->ki_pid); 2008 return (NULL); 2009 } 2010 len = ucred.cr_ngroups * sizeof(gid_t); 2011 groups = malloc(len); 2012 if (groups == NULL) { 2013 warn("malloc(%zu)", len); 2014 return (NULL); 2015 } 2016 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { 2017 warnx("can't read groups at %p for pid %d", 2018 ucred.cr_groups, kp->ki_pid); 2019 free(groups); 2020 return (NULL); 2021 } 2022 *cntp = ucred.cr_ngroups; 2023 return (groups); 2024 } 2025 2026 static gid_t * 2027 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) 2028 { 2029 int mib[4]; 2030 size_t len; 2031 gid_t *groups; 2032 2033 mib[0] = CTL_KERN; 2034 mib[1] = KERN_PROC; 2035 mib[2] = KERN_PROC_GROUPS; 2036 mib[3] = pid; 2037 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); 2038 groups = malloc(len); 2039 if (groups == NULL) { 2040 warn("malloc(%zu)", len); 2041 return (NULL); 2042 } 2043 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) { 2044 warn("sysctl: kern.proc.groups: %d", pid); 2045 free(groups); 2046 return (NULL); 2047 } 2048 *cntp = len / sizeof(gid_t); 2049 return (groups); 2050 } 2051 2052 static gid_t * 2053 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) 2054 { 2055 size_t len; 2056 gid_t *groups; 2057 2058 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); 2059 if (groups == NULL) 2060 return (NULL); 2061 *cntp = len / sizeof(gid_t); 2062 return (groups); 2063 } 2064 2065 gid_t * 2066 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, 2067 unsigned int *cntp) 2068 { 2069 switch(procstat->type) { 2070 case PROCSTAT_KVM: 2071 return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); 2072 case PROCSTAT_SYSCTL: 2073 return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); 2074 case PROCSTAT_CORE: 2075 return (procstat_getgroups_core(procstat->core, cntp)); 2076 default: 2077 warnx("unknown access method: %d", procstat->type); 2078 return (NULL); 2079 } 2080 } 2081 2082 void 2083 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) 2084 { 2085 2086 free(groups); 2087 } 2088 2089 static int 2090 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) 2091 { 2092 struct pwddesc pd; 2093 2094 assert(kd != NULL); 2095 assert(kp != NULL); 2096 if (kp->ki_pd == NULL) 2097 return (-1); 2098 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) { 2099 warnx("can't read pwddesc at %p for pid %d", kp->ki_pd, 2100 kp->ki_pid); 2101 return (-1); 2102 } 2103 *maskp = pd.pd_cmask; 2104 return (0); 2105 } 2106 2107 static int 2108 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) 2109 { 2110 int error; 2111 int mib[4]; 2112 size_t len; 2113 2114 mib[0] = CTL_KERN; 2115 mib[1] = KERN_PROC; 2116 mib[2] = KERN_PROC_UMASK; 2117 mib[3] = pid; 2118 len = sizeof(*maskp); 2119 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0); 2120 if (error != 0 && errno != ESRCH && errno != EPERM) 2121 warn("sysctl: kern.proc.umask: %d", pid); 2122 return (error); 2123 } 2124 2125 static int 2126 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) 2127 { 2128 size_t len; 2129 unsigned short *buf; 2130 2131 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); 2132 if (buf == NULL) 2133 return (-1); 2134 if (len < sizeof(*maskp)) { 2135 free(buf); 2136 return (-1); 2137 } 2138 *maskp = *buf; 2139 free(buf); 2140 return (0); 2141 } 2142 2143 int 2144 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, 2145 unsigned short *maskp) 2146 { 2147 switch(procstat->type) { 2148 case PROCSTAT_KVM: 2149 return (procstat_getumask_kvm(procstat->kd, kp, maskp)); 2150 case PROCSTAT_SYSCTL: 2151 return (procstat_getumask_sysctl(kp->ki_pid, maskp)); 2152 case PROCSTAT_CORE: 2153 return (procstat_getumask_core(procstat->core, maskp)); 2154 default: 2155 warnx("unknown access method: %d", procstat->type); 2156 return (-1); 2157 } 2158 } 2159 2160 static int 2161 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, 2162 struct rlimit* rlimit) 2163 { 2164 struct proc proc; 2165 unsigned long offset; 2166 2167 assert(kd != NULL); 2168 assert(kp != NULL); 2169 assert(which >= 0 && which < RLIM_NLIMITS); 2170 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2171 sizeof(proc))) { 2172 warnx("can't read proc struct at %p for pid %d", 2173 kp->ki_paddr, kp->ki_pid); 2174 return (-1); 2175 } 2176 if (proc.p_limit == NULL) 2177 return (-1); 2178 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; 2179 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { 2180 warnx("can't read rlimit struct at %p for pid %d", 2181 (void *)offset, kp->ki_pid); 2182 return (-1); 2183 } 2184 return (0); 2185 } 2186 2187 static int 2188 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) 2189 { 2190 int error, name[5]; 2191 size_t len; 2192 2193 name[0] = CTL_KERN; 2194 name[1] = KERN_PROC; 2195 name[2] = KERN_PROC_RLIMIT; 2196 name[3] = pid; 2197 name[4] = which; 2198 len = sizeof(struct rlimit); 2199 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0); 2200 if (error < 0 && errno != ESRCH) { 2201 warn("sysctl: kern.proc.rlimit: %d", pid); 2202 return (-1); 2203 } 2204 if (error < 0 || len != sizeof(struct rlimit)) 2205 return (-1); 2206 return (0); 2207 } 2208 2209 static int 2210 procstat_getrlimit_core(struct procstat_core *core, int which, 2211 struct rlimit* rlimit) 2212 { 2213 size_t len; 2214 struct rlimit* rlimits; 2215 2216 if (which < 0 || which >= RLIM_NLIMITS) { 2217 errno = EINVAL; 2218 warn("getrlimit: which"); 2219 return (-1); 2220 } 2221 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); 2222 if (rlimits == NULL) 2223 return (-1); 2224 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { 2225 free(rlimits); 2226 return (-1); 2227 } 2228 *rlimit = rlimits[which]; 2229 free(rlimits); 2230 return (0); 2231 } 2232 2233 int 2234 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, 2235 struct rlimit* rlimit) 2236 { 2237 switch(procstat->type) { 2238 case PROCSTAT_KVM: 2239 return (procstat_getrlimit_kvm(procstat->kd, kp, which, 2240 rlimit)); 2241 case PROCSTAT_SYSCTL: 2242 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); 2243 case PROCSTAT_CORE: 2244 return (procstat_getrlimit_core(procstat->core, which, rlimit)); 2245 default: 2246 warnx("unknown access method: %d", procstat->type); 2247 return (-1); 2248 } 2249 } 2250 2251 static int 2252 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) 2253 { 2254 int error, name[4]; 2255 size_t len; 2256 2257 name[0] = CTL_KERN; 2258 name[1] = KERN_PROC; 2259 name[2] = KERN_PROC_PATHNAME; 2260 name[3] = pid; 2261 len = maxlen; 2262 error = sysctl(name, nitems(name), pathname, &len, NULL, 0); 2263 if (error != 0 && errno != ESRCH) 2264 warn("sysctl: kern.proc.pathname: %d", pid); 2265 if (len == 0) 2266 pathname[0] = '\0'; 2267 return (error); 2268 } 2269 2270 static int 2271 procstat_getpathname_core(struct procstat_core *core, char *pathname, 2272 size_t maxlen) 2273 { 2274 struct kinfo_file *files; 2275 int cnt, i, result; 2276 2277 files = kinfo_getfile_core(core, &cnt); 2278 if (files == NULL) 2279 return (-1); 2280 result = -1; 2281 for (i = 0; i < cnt; i++) { 2282 if (files[i].kf_fd != KF_FD_TYPE_TEXT) 2283 continue; 2284 strncpy(pathname, files[i].kf_path, maxlen); 2285 result = 0; 2286 break; 2287 } 2288 free(files); 2289 return (result); 2290 } 2291 2292 int 2293 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, 2294 char *pathname, size_t maxlen) 2295 { 2296 switch(procstat->type) { 2297 case PROCSTAT_KVM: 2298 /* XXX: Return empty string. */ 2299 if (maxlen > 0) 2300 pathname[0] = '\0'; 2301 return (0); 2302 case PROCSTAT_SYSCTL: 2303 return (procstat_getpathname_sysctl(kp->ki_pid, pathname, 2304 maxlen)); 2305 case PROCSTAT_CORE: 2306 return (procstat_getpathname_core(procstat->core, pathname, 2307 maxlen)); 2308 default: 2309 warnx("unknown access method: %d", procstat->type); 2310 return (-1); 2311 } 2312 } 2313 2314 static int 2315 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) 2316 { 2317 struct proc proc; 2318 2319 assert(kd != NULL); 2320 assert(kp != NULL); 2321 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2322 sizeof(proc))) { 2323 warnx("can't read proc struct at %p for pid %d", 2324 kp->ki_paddr, kp->ki_pid); 2325 return (-1); 2326 } 2327 *osrelp = proc.p_osrel; 2328 return (0); 2329 } 2330 2331 static int 2332 procstat_getosrel_sysctl(pid_t pid, int *osrelp) 2333 { 2334 int error, name[4]; 2335 size_t len; 2336 2337 name[0] = CTL_KERN; 2338 name[1] = KERN_PROC; 2339 name[2] = KERN_PROC_OSREL; 2340 name[3] = pid; 2341 len = sizeof(*osrelp); 2342 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0); 2343 if (error != 0 && errno != ESRCH) 2344 warn("sysctl: kern.proc.osrel: %d", pid); 2345 return (error); 2346 } 2347 2348 static int 2349 procstat_getosrel_core(struct procstat_core *core, int *osrelp) 2350 { 2351 size_t len; 2352 int *buf; 2353 2354 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); 2355 if (buf == NULL) 2356 return (-1); 2357 if (len < sizeof(*osrelp)) { 2358 free(buf); 2359 return (-1); 2360 } 2361 *osrelp = *buf; 2362 free(buf); 2363 return (0); 2364 } 2365 2366 int 2367 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) 2368 { 2369 switch(procstat->type) { 2370 case PROCSTAT_KVM: 2371 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); 2372 case PROCSTAT_SYSCTL: 2373 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); 2374 case PROCSTAT_CORE: 2375 return (procstat_getosrel_core(procstat->core, osrelp)); 2376 default: 2377 warnx("unknown access method: %d", procstat->type); 2378 return (-1); 2379 } 2380 } 2381 2382 #define PROC_AUXV_MAX 256 2383 2384 #if __ELF_WORD_SIZE == 64 2385 static const char *elf32_sv_names[] = { 2386 "Linux ELF32", 2387 "FreeBSD ELF32", 2388 }; 2389 2390 static int 2391 is_elf32_sysctl(pid_t pid) 2392 { 2393 int error, name[4]; 2394 size_t len, i; 2395 static char sv_name[256]; 2396 2397 name[0] = CTL_KERN; 2398 name[1] = KERN_PROC; 2399 name[2] = KERN_PROC_SV_NAME; 2400 name[3] = pid; 2401 len = sizeof(sv_name); 2402 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0); 2403 if (error != 0 || len == 0) 2404 return (0); 2405 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { 2406 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) 2407 return (1); 2408 } 2409 return (0); 2410 } 2411 2412 static Elf_Auxinfo * 2413 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) 2414 { 2415 Elf_Auxinfo *auxv; 2416 Elf32_Auxinfo *auxv32; 2417 void *ptr; 2418 size_t len; 2419 unsigned int i, count; 2420 int name[4]; 2421 2422 name[0] = CTL_KERN; 2423 name[1] = KERN_PROC; 2424 name[2] = KERN_PROC_AUXV; 2425 name[3] = pid; 2426 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); 2427 auxv = NULL; 2428 auxv32 = malloc(len); 2429 if (auxv32 == NULL) { 2430 warn("malloc(%zu)", len); 2431 goto out; 2432 } 2433 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) { 2434 if (errno != ESRCH && errno != EPERM) 2435 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2436 goto out; 2437 } 2438 count = len / sizeof(Elf_Auxinfo); 2439 auxv = malloc(count * sizeof(Elf_Auxinfo)); 2440 if (auxv == NULL) { 2441 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); 2442 goto out; 2443 } 2444 for (i = 0; i < count; i++) { 2445 /* 2446 * XXX: We expect that values for a_type on a 32-bit platform 2447 * are directly mapped to values on 64-bit one, which is not 2448 * necessarily true. 2449 */ 2450 auxv[i].a_type = auxv32[i].a_type; 2451 ptr = &auxv32[i].a_un; 2452 auxv[i].a_un.a_val = *((uint32_t *)ptr); 2453 } 2454 *cntp = count; 2455 out: 2456 free(auxv32); 2457 return (auxv); 2458 } 2459 #endif /* __ELF_WORD_SIZE == 64 */ 2460 2461 static Elf_Auxinfo * 2462 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) 2463 { 2464 Elf_Auxinfo *auxv; 2465 int name[4]; 2466 size_t len; 2467 2468 #if __ELF_WORD_SIZE == 64 2469 if (is_elf32_sysctl(pid)) 2470 return (procstat_getauxv32_sysctl(pid, cntp)); 2471 #endif 2472 name[0] = CTL_KERN; 2473 name[1] = KERN_PROC; 2474 name[2] = KERN_PROC_AUXV; 2475 name[3] = pid; 2476 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); 2477 auxv = malloc(len); 2478 if (auxv == NULL) { 2479 warn("malloc(%zu)", len); 2480 return (NULL); 2481 } 2482 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) { 2483 if (errno != ESRCH && errno != EPERM) 2484 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2485 free(auxv); 2486 return (NULL); 2487 } 2488 *cntp = len / sizeof(Elf_Auxinfo); 2489 return (auxv); 2490 } 2491 2492 static Elf_Auxinfo * 2493 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) 2494 { 2495 Elf_Auxinfo *auxv; 2496 size_t len; 2497 2498 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); 2499 if (auxv == NULL) 2500 return (NULL); 2501 *cntp = len / sizeof(Elf_Auxinfo); 2502 return (auxv); 2503 } 2504 2505 Elf_Auxinfo * 2506 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, 2507 unsigned int *cntp) 2508 { 2509 switch(procstat->type) { 2510 case PROCSTAT_KVM: 2511 warnx("kvm method is not supported"); 2512 return (NULL); 2513 case PROCSTAT_SYSCTL: 2514 return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); 2515 case PROCSTAT_CORE: 2516 return (procstat_getauxv_core(procstat->core, cntp)); 2517 default: 2518 warnx("unknown access method: %d", procstat->type); 2519 return (NULL); 2520 } 2521 } 2522 2523 void 2524 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) 2525 { 2526 2527 free(auxv); 2528 } 2529 2530 static struct ptrace_lwpinfo * 2531 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp) 2532 { 2533 void *buf; 2534 struct ptrace_lwpinfo *pl; 2535 unsigned int cnt; 2536 size_t len; 2537 2538 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO); 2539 if (cnt == 0) 2540 return (NULL); 2541 2542 len = cnt * sizeof(*pl); 2543 buf = calloc(1, len); 2544 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len); 2545 if (pl == NULL) { 2546 free(buf); 2547 return (NULL); 2548 } 2549 *cntp = len / sizeof(*pl); 2550 return (pl); 2551 } 2552 2553 struct ptrace_lwpinfo * 2554 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp) 2555 { 2556 switch (procstat->type) { 2557 case PROCSTAT_KVM: 2558 warnx("kvm method is not supported"); 2559 return (NULL); 2560 case PROCSTAT_SYSCTL: 2561 warnx("sysctl method is not supported"); 2562 return (NULL); 2563 case PROCSTAT_CORE: 2564 return (procstat_getptlwpinfo_core(procstat->core, cntp)); 2565 default: 2566 warnx("unknown access method: %d", procstat->type); 2567 return (NULL); 2568 } 2569 } 2570 2571 void 2572 procstat_freeptlwpinfo(struct procstat *procstat __unused, 2573 struct ptrace_lwpinfo *pl) 2574 { 2575 free(pl); 2576 } 2577 2578 static struct kinfo_kstack * 2579 procstat_getkstack_sysctl(pid_t pid, int *cntp) 2580 { 2581 struct kinfo_kstack *kkstp; 2582 int error, name[4]; 2583 size_t len; 2584 2585 name[0] = CTL_KERN; 2586 name[1] = KERN_PROC; 2587 name[2] = KERN_PROC_KSTACK; 2588 name[3] = pid; 2589 2590 len = 0; 2591 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 2592 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { 2593 warn("sysctl: kern.proc.kstack: %d", pid); 2594 return (NULL); 2595 } 2596 if (error == -1 && errno == ENOENT) { 2597 warnx("sysctl: kern.proc.kstack unavailable" 2598 " (options DDB or options STACK required in kernel)"); 2599 return (NULL); 2600 } 2601 if (error == -1) 2602 return (NULL); 2603 kkstp = malloc(len); 2604 if (kkstp == NULL) { 2605 warn("malloc(%zu)", len); 2606 return (NULL); 2607 } 2608 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1 && 2609 errno != ENOMEM) { 2610 warn("sysctl: kern.proc.pid: %d", pid); 2611 free(kkstp); 2612 return (NULL); 2613 } 2614 *cntp = len / sizeof(*kkstp); 2615 2616 return (kkstp); 2617 } 2618 2619 struct kinfo_kstack * 2620 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, 2621 unsigned int *cntp) 2622 { 2623 switch(procstat->type) { 2624 case PROCSTAT_KVM: 2625 warnx("kvm method is not supported"); 2626 return (NULL); 2627 case PROCSTAT_SYSCTL: 2628 return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); 2629 case PROCSTAT_CORE: 2630 warnx("core method is not supported"); 2631 return (NULL); 2632 default: 2633 warnx("unknown access method: %d", procstat->type); 2634 return (NULL); 2635 } 2636 } 2637 2638 void 2639 procstat_freekstack(struct procstat *procstat __unused, 2640 struct kinfo_kstack *kkstp) 2641 { 2642 2643 free(kkstp); 2644 } 2645 2646 static struct advlock_list * 2647 procstat_getadvlock_sysctl(struct procstat *procstat __unused) 2648 { 2649 struct advlock_list *res; 2650 struct advlock *a; 2651 void *buf; 2652 char *c; 2653 struct kinfo_lockf *kl; 2654 size_t buf_len; 2655 int error; 2656 static const int kl_name[] = { CTL_KERN, KERN_LOCKF }; 2657 2658 res = malloc(sizeof(*res)); 2659 if (res == NULL) 2660 return (NULL); 2661 STAILQ_INIT(res); 2662 buf = NULL; 2663 2664 buf_len = 0; 2665 error = sysctl(kl_name, nitems(kl_name), NULL, &buf_len, NULL, 0); 2666 if (error != 0) { 2667 warn("sysctl KERN_LOCKF size"); 2668 goto fail; 2669 } 2670 buf_len *= 2; 2671 buf = malloc(buf_len); 2672 if (buf == NULL) { 2673 warn("malloc"); 2674 goto fail; 2675 } 2676 error = sysctl(kl_name, nitems(kl_name), buf, &buf_len, NULL, 0); 2677 if (error != 0) { 2678 warn("sysctl KERN_LOCKF data"); 2679 goto fail; 2680 } 2681 2682 for (c = buf; (char *)c < (char *)buf + buf_len; 2683 c += kl->kl_structsize) { 2684 kl = (struct kinfo_lockf *)(void *)c; 2685 if (sizeof(*kl) < (size_t)kl->kl_structsize) { 2686 warn("ABI broken"); 2687 goto fail; 2688 } 2689 a = malloc(sizeof(*a)); 2690 if (a == NULL) { 2691 warn("malloc advlock"); 2692 goto fail; 2693 } 2694 switch (kl->kl_rw) { 2695 case KLOCKF_RW_READ: 2696 a->rw = PS_ADVLOCK_RO; 2697 break; 2698 case KLOCKF_RW_WRITE: 2699 a->rw = PS_ADVLOCK_RW; 2700 break; 2701 default: 2702 warn("ABI broken"); 2703 free(a); 2704 goto fail; 2705 } 2706 switch (kl->kl_type) { 2707 case KLOCKF_TYPE_FLOCK: 2708 a->type = PS_ADVLOCK_TYPE_FLOCK; 2709 break; 2710 case KLOCKF_TYPE_PID: 2711 a->type = PS_ADVLOCK_TYPE_PID; 2712 break; 2713 case KLOCKF_TYPE_REMOTE: 2714 a->type = PS_ADVLOCK_TYPE_REMOTE; 2715 break; 2716 default: 2717 warn("ABI broken"); 2718 free(a); 2719 goto fail; 2720 } 2721 a->pid = kl->kl_pid; 2722 a->sysid = kl->kl_sysid; 2723 a->file_fsid = kl->kl_file_fsid; 2724 a->file_rdev = kl->kl_file_rdev; 2725 a->file_fileid = kl->kl_file_fileid; 2726 a->start = kl->kl_start; 2727 a->len = kl->kl_len; 2728 if (kl->kl_path[0] != '\0') { 2729 a->path = strdup(kl->kl_path); 2730 if (a->path == NULL) { 2731 warn("malloc"); 2732 free(a); 2733 goto fail; 2734 } 2735 } else 2736 a->path = NULL; 2737 STAILQ_INSERT_TAIL(res, a, next); 2738 } 2739 2740 free(buf); 2741 return (res); 2742 2743 fail: 2744 free(buf); 2745 procstat_freeadvlock(procstat, res); 2746 return (NULL); 2747 } 2748 2749 struct advlock_list * 2750 procstat_getadvlock(struct procstat *procstat) 2751 { 2752 switch(procstat->type) { 2753 case PROCSTAT_KVM: 2754 warnx("kvm method is not supported"); 2755 return (NULL); 2756 case PROCSTAT_SYSCTL: 2757 return (procstat_getadvlock_sysctl(procstat)); 2758 case PROCSTAT_CORE: 2759 warnx("core method is not supported"); 2760 return (NULL); 2761 default: 2762 warnx("unknown access method: %d", procstat->type); 2763 return (NULL); 2764 } 2765 } 2766 2767 void 2768 procstat_freeadvlock(struct procstat *procstat __unused, 2769 struct advlock_list *lst) 2770 { 2771 struct advlock *a, *a1; 2772 2773 STAILQ_FOREACH_SAFE(a, lst, next, a1) { 2774 free(__DECONST(char *, a->path)); 2775 free(a); 2776 } 2777 free(lst); 2778 } 2779 2780