1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 2017 Dell EMC 5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org> 6 * Copyright (c) 1988, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #include <sys/param.h> 39 #include <sys/elf.h> 40 #include <sys/time.h> 41 #include <sys/resourcevar.h> 42 #define _WANT_UCRED 43 #include <sys/ucred.h> 44 #undef _WANT_UCRED 45 #include <sys/proc.h> 46 #include <sys/user.h> 47 #include <sys/stat.h> 48 #include <sys/vnode.h> 49 #include <sys/socket.h> 50 #define _WANT_SOCKET 51 #include <sys/socketvar.h> 52 #include <sys/domain.h> 53 #define _WANT_PROTOSW 54 #include <sys/protosw.h> 55 #include <sys/un.h> 56 #define _WANT_UNPCB 57 #include <sys/unpcb.h> 58 #include <sys/sysctl.h> 59 #include <sys/tty.h> 60 #include <sys/filedesc.h> 61 #include <sys/queue.h> 62 #define _WANT_FILE 63 #include <sys/file.h> 64 #include <sys/conf.h> 65 #include <sys/ksem.h> 66 #include <sys/mman.h> 67 #include <sys/capsicum.h> 68 #include <sys/ptrace.h> 69 #define _WANT_MOUNT 70 #include <sys/mount.h> 71 #include <sys/filedesc.h> 72 #include <sys/pipe.h> 73 #include <fs/devfs/devfs.h> 74 #include <fs/devfs/devfs_int.h> 75 #include <nfs/nfsproto.h> 76 #include <nfsclient/nfs.h> 77 #include <nfsclient/nfsnode.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_map.h> 81 #include <vm/vm_object.h> 82 83 #include <net/route.h> 84 #include <netinet/in.h> 85 #include <netinet/in_systm.h> 86 #include <netinet/ip.h> 87 88 #include <assert.h> 89 #include <ctype.h> 90 #include <err.h> 91 #include <fcntl.h> 92 #include <kvm.h> 93 #include <libutil.h> 94 #include <limits.h> 95 #include <paths.h> 96 #include <pwd.h> 97 #include <stdio.h> 98 #include <stdlib.h> 99 #include <stddef.h> 100 #include <string.h> 101 #include <unistd.h> 102 #include <netdb.h> 103 104 #include <libprocstat.h> 105 #include "libprocstat_internal.h" 106 #include "common_kvm.h" 107 #include "core.h" 108 109 int statfs(const char *, struct statfs *); /* XXX */ 110 111 #define PROCSTAT_KVM 1 112 #define PROCSTAT_SYSCTL 2 113 #define PROCSTAT_CORE 3 114 115 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp, 116 size_t nchr, int env); 117 static char *getmnton(kvm_t *kd, struct mount *m); 118 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core, 119 int *cntp); 120 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core, 121 unsigned int *cntp); 122 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp); 123 static struct filestat_list *procstat_getfiles_kvm( 124 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 125 static struct filestat_list *procstat_getfiles_sysctl( 126 struct procstat *procstat, struct kinfo_proc *kp, int mmapped); 127 static int procstat_get_pipe_info_sysctl(struct filestat *fst, 128 struct pipestat *pipe, char *errbuf); 129 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 130 struct pipestat *pipe, char *errbuf); 131 static int procstat_get_pts_info_sysctl(struct filestat *fst, 132 struct ptsstat *pts, char *errbuf); 133 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 134 struct ptsstat *pts, char *errbuf); 135 static int procstat_get_sem_info_sysctl(struct filestat *fst, 136 struct semstat *sem, char *errbuf); 137 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 138 struct semstat *sem, char *errbuf); 139 static int procstat_get_shm_info_sysctl(struct filestat *fst, 140 struct shmstat *shm, char *errbuf); 141 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 142 struct shmstat *shm, char *errbuf); 143 static int procstat_get_socket_info_sysctl(struct filestat *fst, 144 struct sockstat *sock, char *errbuf); 145 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 146 struct sockstat *sock, char *errbuf); 147 static int to_filestat_flags(int flags); 148 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 149 struct vnstat *vn, char *errbuf); 150 static int procstat_get_vnode_info_sysctl(struct filestat *fst, 151 struct vnstat *vn, char *errbuf); 152 static gid_t *procstat_getgroups_core(struct procstat_core *core, 153 unsigned int *count); 154 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, 155 unsigned int *count); 156 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count); 157 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid, 158 int *cntp); 159 static int procstat_getosrel_core(struct procstat_core *core, 160 int *osrelp); 161 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, 162 int *osrelp); 163 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp); 164 static int procstat_getpathname_core(struct procstat_core *core, 165 char *pathname, size_t maxlen); 166 static int procstat_getpathname_sysctl(pid_t pid, char *pathname, 167 size_t maxlen); 168 static int procstat_getrlimit_core(struct procstat_core *core, int which, 169 struct rlimit* rlimit); 170 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, 171 int which, struct rlimit* rlimit); 172 static int procstat_getrlimit_sysctl(pid_t pid, int which, 173 struct rlimit* rlimit); 174 static int procstat_getumask_core(struct procstat_core *core, 175 unsigned short *maskp); 176 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, 177 unsigned short *maskp); 178 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp); 179 static int vntype2psfsttype(int type); 180 181 void 182 procstat_close(struct procstat *procstat) 183 { 184 185 assert(procstat); 186 if (procstat->type == PROCSTAT_KVM) 187 kvm_close(procstat->kd); 188 else if (procstat->type == PROCSTAT_CORE) 189 procstat_core_close(procstat->core); 190 procstat_freeargv(procstat); 191 procstat_freeenvv(procstat); 192 free(procstat); 193 } 194 195 struct procstat * 196 procstat_open_sysctl(void) 197 { 198 struct procstat *procstat; 199 200 procstat = calloc(1, sizeof(*procstat)); 201 if (procstat == NULL) { 202 warn("malloc()"); 203 return (NULL); 204 } 205 procstat->type = PROCSTAT_SYSCTL; 206 return (procstat); 207 } 208 209 struct procstat * 210 procstat_open_kvm(const char *nlistf, const char *memf) 211 { 212 struct procstat *procstat; 213 kvm_t *kd; 214 char buf[_POSIX2_LINE_MAX]; 215 216 procstat = calloc(1, sizeof(*procstat)); 217 if (procstat == NULL) { 218 warn("malloc()"); 219 return (NULL); 220 } 221 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf); 222 if (kd == NULL) { 223 warnx("kvm_openfiles(): %s", buf); 224 free(procstat); 225 return (NULL); 226 } 227 procstat->type = PROCSTAT_KVM; 228 procstat->kd = kd; 229 return (procstat); 230 } 231 232 struct procstat * 233 procstat_open_core(const char *filename) 234 { 235 struct procstat *procstat; 236 struct procstat_core *core; 237 238 procstat = calloc(1, sizeof(*procstat)); 239 if (procstat == NULL) { 240 warn("malloc()"); 241 return (NULL); 242 } 243 core = procstat_core_open(filename); 244 if (core == NULL) { 245 free(procstat); 246 return (NULL); 247 } 248 procstat->type = PROCSTAT_CORE; 249 procstat->core = core; 250 return (procstat); 251 } 252 253 struct kinfo_proc * 254 procstat_getprocs(struct procstat *procstat, int what, int arg, 255 unsigned int *count) 256 { 257 struct kinfo_proc *p0, *p; 258 size_t len, olen; 259 int name[4]; 260 int cnt; 261 int error; 262 263 assert(procstat); 264 assert(count); 265 p = NULL; 266 if (procstat->type == PROCSTAT_KVM) { 267 *count = 0; 268 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt); 269 if (p0 == NULL || cnt <= 0) 270 return (NULL); 271 *count = cnt; 272 len = *count * sizeof(*p); 273 p = malloc(len); 274 if (p == NULL) { 275 warnx("malloc(%zu)", len); 276 goto fail; 277 } 278 bcopy(p0, p, len); 279 return (p); 280 } else if (procstat->type == PROCSTAT_SYSCTL) { 281 len = 0; 282 name[0] = CTL_KERN; 283 name[1] = KERN_PROC; 284 name[2] = what; 285 name[3] = arg; 286 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 287 if (error < 0 && errno != EPERM) { 288 warn("sysctl(kern.proc)"); 289 goto fail; 290 } 291 if (len == 0) { 292 warnx("no processes?"); 293 goto fail; 294 } 295 do { 296 len += len / 10; 297 p = reallocf(p, len); 298 if (p == NULL) { 299 warnx("reallocf(%zu)", len); 300 goto fail; 301 } 302 olen = len; 303 error = sysctl(name, nitems(name), p, &len, NULL, 0); 304 } while (error < 0 && errno == ENOMEM && olen == len); 305 if (error < 0 && errno != EPERM) { 306 warn("sysctl(kern.proc)"); 307 goto fail; 308 } 309 /* Perform simple consistency checks. */ 310 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 311 warnx("kinfo_proc structure size mismatch (len = %zu)", len); 312 goto fail; 313 } 314 *count = len / sizeof(*p); 315 return (p); 316 } else if (procstat->type == PROCSTAT_CORE) { 317 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL, 318 &len); 319 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) { 320 warnx("kinfo_proc structure size mismatch"); 321 goto fail; 322 } 323 *count = len / sizeof(*p); 324 return (p); 325 } else { 326 warnx("unknown access method: %d", procstat->type); 327 return (NULL); 328 } 329 fail: 330 if (p) 331 free(p); 332 return (NULL); 333 } 334 335 void 336 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p) 337 { 338 339 if (p != NULL) 340 free(p); 341 p = NULL; 342 } 343 344 struct filestat_list * 345 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 346 { 347 348 switch (procstat->type) { 349 case PROCSTAT_KVM: 350 return (procstat_getfiles_kvm(procstat, kp, mmapped)); 351 case PROCSTAT_SYSCTL: 352 case PROCSTAT_CORE: 353 return (procstat_getfiles_sysctl(procstat, kp, mmapped)); 354 default: 355 warnx("unknown access method: %d", procstat->type); 356 return (NULL); 357 } 358 } 359 360 void 361 procstat_freefiles(struct procstat *procstat, struct filestat_list *head) 362 { 363 struct filestat *fst, *tmp; 364 365 STAILQ_FOREACH_SAFE(fst, head, next, tmp) { 366 if (fst->fs_path != NULL) 367 free(fst->fs_path); 368 free(fst); 369 } 370 free(head); 371 if (procstat->vmentries != NULL) { 372 free(procstat->vmentries); 373 procstat->vmentries = NULL; 374 } 375 if (procstat->files != NULL) { 376 free(procstat->files); 377 procstat->files = NULL; 378 } 379 } 380 381 static struct filestat * 382 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags, 383 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp) 384 { 385 struct filestat *entry; 386 387 entry = calloc(1, sizeof(*entry)); 388 if (entry == NULL) { 389 warn("malloc()"); 390 return (NULL); 391 } 392 entry->fs_typedep = typedep; 393 entry->fs_fflags = fflags; 394 entry->fs_uflags = uflags; 395 entry->fs_fd = fd; 396 entry->fs_type = type; 397 entry->fs_ref_count = refcount; 398 entry->fs_offset = offset; 399 entry->fs_path = path; 400 if (cap_rightsp != NULL) 401 entry->fs_cap_rights = *cap_rightsp; 402 else 403 cap_rights_init(&entry->fs_cap_rights); 404 return (entry); 405 } 406 407 static struct vnode * 408 getctty(kvm_t *kd, struct kinfo_proc *kp) 409 { 410 struct pgrp pgrp; 411 struct proc proc; 412 struct session sess; 413 int error; 414 415 assert(kp); 416 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 417 sizeof(proc)); 418 if (error == 0) { 419 warnx("can't read proc struct at %p for pid %d", 420 kp->ki_paddr, kp->ki_pid); 421 return (NULL); 422 } 423 if (proc.p_pgrp == NULL) 424 return (NULL); 425 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp, 426 sizeof(pgrp)); 427 if (error == 0) { 428 warnx("can't read pgrp struct at %p for pid %d", 429 proc.p_pgrp, kp->ki_pid); 430 return (NULL); 431 } 432 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess, 433 sizeof(sess)); 434 if (error == 0) { 435 warnx("can't read session struct at %p for pid %d", 436 pgrp.pg_session, kp->ki_pid); 437 return (NULL); 438 } 439 return (sess.s_ttyvp); 440 } 441 442 static int 443 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest) 444 { 445 kvm_t *kd; 446 447 kd = (kvm_t *)token; 448 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest))); 449 } 450 451 static struct filestat_list * 452 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped) 453 { 454 struct file file; 455 struct filedesc filed; 456 struct pwddesc pathsd; 457 struct fdescenttbl *fdt; 458 struct pwd pwd; 459 unsigned long pwd_addr; 460 struct vm_map_entry vmentry; 461 struct vm_object object; 462 struct vmspace vmspace; 463 vm_map_entry_t entryp; 464 vm_object_t objp; 465 struct vnode *vp; 466 struct filestat *entry; 467 struct filestat_list *head; 468 kvm_t *kd; 469 void *data; 470 int fflags; 471 unsigned int i; 472 int prot, type; 473 size_t fdt_size; 474 unsigned int nfiles; 475 bool haspwd; 476 477 assert(procstat); 478 kd = procstat->kd; 479 if (kd == NULL) 480 return (NULL); 481 if (kp->ki_fd == NULL || kp->ki_pd == NULL) 482 return (NULL); 483 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed, 484 sizeof(filed))) { 485 warnx("can't read filedesc at %p", (void *)kp->ki_fd); 486 return (NULL); 487 } 488 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd, 489 sizeof(pathsd))) { 490 warnx("can't read pwddesc at %p", (void *)kp->ki_pd); 491 return (NULL); 492 } 493 haspwd = false; 494 pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd)); 495 if (pwd_addr != 0) { 496 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) { 497 warnx("can't read fd_pwd at %p", (void *)pwd_addr); 498 return (NULL); 499 } 500 haspwd = true; 501 } 502 503 /* 504 * Allocate list head. 505 */ 506 head = malloc(sizeof(*head)); 507 if (head == NULL) 508 return (NULL); 509 STAILQ_INIT(head); 510 511 /* root directory vnode, if one. */ 512 if (haspwd) { 513 if (pwd.pwd_rdir) { 514 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1, 515 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL); 516 if (entry != NULL) 517 STAILQ_INSERT_TAIL(head, entry, next); 518 } 519 /* current working directory vnode. */ 520 if (pwd.pwd_cdir) { 521 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1, 522 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL); 523 if (entry != NULL) 524 STAILQ_INSERT_TAIL(head, entry, next); 525 } 526 /* jail root, if any. */ 527 if (pwd.pwd_jdir) { 528 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1, 529 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL); 530 if (entry != NULL) 531 STAILQ_INSERT_TAIL(head, entry, next); 532 } 533 } 534 /* ktrace vnode, if one */ 535 if (kp->ki_tracep) { 536 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1, 537 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 538 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL); 539 if (entry != NULL) 540 STAILQ_INSERT_TAIL(head, entry, next); 541 } 542 /* text vnode, if one */ 543 if (kp->ki_textvp) { 544 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1, 545 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL); 546 if (entry != NULL) 547 STAILQ_INSERT_TAIL(head, entry, next); 548 } 549 /* Controlling terminal. */ 550 if ((vp = getctty(kd, kp)) != NULL) { 551 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1, 552 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE, 553 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL); 554 if (entry != NULL) 555 STAILQ_INSERT_TAIL(head, entry, next); 556 } 557 558 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles, 559 sizeof(nfiles))) { 560 warnx("can't read fd_files at %p", (void *)filed.fd_files); 561 return (NULL); 562 } 563 564 fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent); 565 fdt = malloc(fdt_size); 566 if (fdt == NULL) { 567 warn("malloc(%zu)", fdt_size); 568 goto do_mmapped; 569 } 570 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) { 571 warnx("cannot read file structures at %p", (void *)filed.fd_files); 572 free(fdt); 573 goto do_mmapped; 574 } 575 for (i = 0; i < nfiles; i++) { 576 if (fdt->fdt_ofiles[i].fde_file == NULL) { 577 continue; 578 } 579 if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file, 580 sizeof(struct file))) { 581 warnx("can't read file %d at %p", i, 582 (void *)fdt->fdt_ofiles[i].fde_file); 583 continue; 584 } 585 switch (file.f_type) { 586 case DTYPE_VNODE: 587 type = PS_FST_TYPE_VNODE; 588 data = file.f_vnode; 589 break; 590 case DTYPE_SOCKET: 591 type = PS_FST_TYPE_SOCKET; 592 data = file.f_data; 593 break; 594 case DTYPE_PIPE: 595 type = PS_FST_TYPE_PIPE; 596 data = file.f_data; 597 break; 598 case DTYPE_FIFO: 599 type = PS_FST_TYPE_FIFO; 600 data = file.f_vnode; 601 break; 602 #ifdef DTYPE_PTS 603 case DTYPE_PTS: 604 type = PS_FST_TYPE_PTS; 605 data = file.f_data; 606 break; 607 #endif 608 case DTYPE_SEM: 609 type = PS_FST_TYPE_SEM; 610 data = file.f_data; 611 break; 612 case DTYPE_SHM: 613 type = PS_FST_TYPE_SHM; 614 data = file.f_data; 615 break; 616 case DTYPE_PROCDESC: 617 type = PS_FST_TYPE_PROCDESC; 618 data = file.f_data; 619 break; 620 case DTYPE_DEV: 621 type = PS_FST_TYPE_DEV; 622 data = file.f_data; 623 break; 624 case DTYPE_EVENTFD: 625 type = PS_FST_TYPE_EVENTFD; 626 data = file.f_data; 627 break; 628 case DTYPE_INOTIFY: 629 type = PS_FST_TYPE_INOTIFY; 630 data = file.f_data; 631 break; 632 default: 633 continue; 634 } 635 /* XXXRW: No capability rights support for kvm yet. */ 636 entry = filestat_new_entry(data, type, i, 637 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL); 638 if (entry != NULL) 639 STAILQ_INSERT_TAIL(head, entry, next); 640 } 641 free(fdt); 642 643 do_mmapped: 644 645 /* 646 * Process mmapped files if requested. 647 */ 648 if (mmapped) { 649 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace, 650 sizeof(vmspace))) { 651 warnx("can't read vmspace at %p", 652 (void *)kp->ki_vmspace); 653 goto exit; 654 } 655 656 vmentry = vmspace.vm_map.header; 657 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader); 658 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header; 659 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) { 660 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP) 661 continue; 662 if ((objp = vmentry.object.vm_object) == NULL) 663 continue; 664 for (; objp; objp = object.backing_object) { 665 if (!kvm_read_all(kd, (unsigned long)objp, 666 &object, sizeof(object))) { 667 warnx("can't read vm_object at %p", 668 (void *)objp); 669 break; 670 } 671 } 672 673 /* We want only vnode objects. */ 674 if (object.type != OBJT_VNODE) 675 continue; 676 677 prot = vmentry.protection; 678 fflags = 0; 679 if (prot & VM_PROT_READ) 680 fflags = PS_FST_FFLAG_READ; 681 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 && 682 prot & VM_PROT_WRITE) 683 fflags |= PS_FST_FFLAG_WRITE; 684 685 /* 686 * Create filestat entry. 687 */ 688 entry = filestat_new_entry(object.handle, 689 PS_FST_TYPE_VNODE, -1, fflags, 690 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL); 691 if (entry != NULL) 692 STAILQ_INSERT_TAIL(head, entry, next); 693 } 694 if (entryp == NULL) 695 warnx("can't read vm_map_entry"); 696 } 697 exit: 698 return (head); 699 } 700 701 /* 702 * kinfo types to filestat translation. 703 */ 704 static int 705 kinfo_type2fst(int kftype) 706 { 707 static struct { 708 int kf_type; 709 int fst_type; 710 } kftypes2fst[] = { 711 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC }, 712 { KF_TYPE_DEV, PS_FST_TYPE_DEV }, 713 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO }, 714 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE }, 715 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE }, 716 { KF_TYPE_NONE, PS_FST_TYPE_NONE }, 717 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE }, 718 { KF_TYPE_PTS, PS_FST_TYPE_PTS }, 719 { KF_TYPE_SEM, PS_FST_TYPE_SEM }, 720 { KF_TYPE_SHM, PS_FST_TYPE_SHM }, 721 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET }, 722 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE }, 723 { KF_TYPE_EVENTFD, PS_FST_TYPE_EVENTFD }, 724 { KF_TYPE_INOTIFY, PS_FST_TYPE_INOTIFY }, 725 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN } 726 }; 727 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst)) 728 unsigned int i; 729 730 for (i = 0; i < NKFTYPES; i++) 731 if (kftypes2fst[i].kf_type == kftype) 732 break; 733 if (i == NKFTYPES) 734 return (PS_FST_TYPE_UNKNOWN); 735 return (kftypes2fst[i].fst_type); 736 } 737 738 /* 739 * kinfo flags to filestat translation. 740 */ 741 static int 742 kinfo_fflags2fst(int kfflags) 743 { 744 static struct { 745 int kf_flag; 746 int fst_flag; 747 } kfflags2fst[] = { 748 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND }, 749 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC }, 750 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT }, 751 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT }, 752 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL }, 753 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC }, 754 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK }, 755 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC }, 756 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK }, 757 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 758 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 759 { KF_FLAG_READ, PS_FST_FFLAG_READ }, 760 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK }, 761 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC }, 762 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE } 763 }; 764 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst)) 765 unsigned int i; 766 int flags; 767 768 flags = 0; 769 for (i = 0; i < NKFFLAGS; i++) 770 if ((kfflags & kfflags2fst[i].kf_flag) != 0) 771 flags |= kfflags2fst[i].fst_flag; 772 return (flags); 773 } 774 775 static int 776 kinfo_uflags2fst(int fd) 777 { 778 779 switch (fd) { 780 case KF_FD_TYPE_CTTY: 781 return (PS_FST_UFLAG_CTTY); 782 case KF_FD_TYPE_CWD: 783 return (PS_FST_UFLAG_CDIR); 784 case KF_FD_TYPE_JAIL: 785 return (PS_FST_UFLAG_JAIL); 786 case KF_FD_TYPE_TEXT: 787 return (PS_FST_UFLAG_TEXT); 788 case KF_FD_TYPE_TRACE: 789 return (PS_FST_UFLAG_TRACE); 790 case KF_FD_TYPE_ROOT: 791 return (PS_FST_UFLAG_RDIR); 792 } 793 return (0); 794 } 795 796 static struct kinfo_file * 797 kinfo_getfile_core(struct procstat_core *core, int *cntp) 798 { 799 int cnt; 800 size_t len; 801 char *buf, *bp, *eb; 802 struct kinfo_file *kif, *kp, *kf; 803 804 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len); 805 if (buf == NULL) 806 return (NULL); 807 /* 808 * XXXMG: The code below is just copy&past from libutil. 809 * The code duplication can be avoided if libutil 810 * is extended to provide something like: 811 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf, 812 * size_t len, int *cntp); 813 */ 814 815 /* Pass 1: count items */ 816 cnt = 0; 817 bp = buf; 818 eb = buf + len; 819 while (bp < eb) { 820 kf = (struct kinfo_file *)(uintptr_t)bp; 821 if (kf->kf_structsize == 0) 822 break; 823 bp += kf->kf_structsize; 824 cnt++; 825 } 826 827 kif = calloc(cnt, sizeof(*kif)); 828 if (kif == NULL) { 829 free(buf); 830 return (NULL); 831 } 832 bp = buf; 833 eb = buf + len; 834 kp = kif; 835 /* Pass 2: unpack */ 836 while (bp < eb) { 837 kf = (struct kinfo_file *)(uintptr_t)bp; 838 if (kf->kf_structsize == 0) 839 break; 840 /* Copy/expand into pre-zeroed buffer */ 841 memcpy(kp, kf, kf->kf_structsize); 842 /* Advance to next packed record */ 843 bp += kf->kf_structsize; 844 /* Set field size to fixed length, advance */ 845 kp->kf_structsize = sizeof(*kp); 846 kp++; 847 } 848 free(buf); 849 *cntp = cnt; 850 return (kif); /* Caller must free() return value */ 851 } 852 853 static struct filestat_list * 854 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp, 855 int mmapped) 856 { 857 struct kinfo_file *kif, *files; 858 struct kinfo_vmentry *kve, *vmentries; 859 struct filestat_list *head; 860 struct filestat *entry; 861 char *path; 862 off_t offset; 863 int cnt, fd, fflags; 864 int i, type, uflags; 865 int refcount; 866 cap_rights_t cap_rights; 867 868 assert(kp); 869 switch (procstat->type) { 870 case PROCSTAT_SYSCTL: 871 files = kinfo_getfile(kp->ki_pid, &cnt); 872 break; 873 case PROCSTAT_CORE: 874 files = kinfo_getfile_core(procstat->core, &cnt); 875 break; 876 default: 877 assert(!"invalid type"); 878 } 879 if (files == NULL && errno != EPERM) { 880 warn("kinfo_getfile()"); 881 return (NULL); 882 } 883 procstat->files = files; 884 885 /* 886 * Allocate list head. 887 */ 888 head = malloc(sizeof(*head)); 889 if (head == NULL) 890 return (NULL); 891 STAILQ_INIT(head); 892 for (i = 0; i < cnt; i++) { 893 kif = &files[i]; 894 895 type = kinfo_type2fst(kif->kf_type); 896 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1; 897 fflags = kinfo_fflags2fst(kif->kf_flags); 898 uflags = kinfo_uflags2fst(kif->kf_fd); 899 refcount = kif->kf_ref_count; 900 offset = kif->kf_offset; 901 if (*kif->kf_path != '\0') 902 path = strdup(kif->kf_path); 903 else 904 path = NULL; 905 cap_rights = kif->kf_cap_rights; 906 907 /* 908 * Create filestat entry. 909 */ 910 entry = filestat_new_entry(kif, type, fd, fflags, uflags, 911 refcount, offset, path, &cap_rights); 912 if (entry != NULL) 913 STAILQ_INSERT_TAIL(head, entry, next); 914 } 915 if (mmapped != 0) { 916 vmentries = procstat_getvmmap(procstat, kp, &cnt); 917 procstat->vmentries = vmentries; 918 if (vmentries == NULL || cnt == 0) 919 goto fail; 920 for (i = 0; i < cnt; i++) { 921 kve = &vmentries[i]; 922 if (kve->kve_type != KVME_TYPE_VNODE) 923 continue; 924 fflags = 0; 925 if (kve->kve_protection & KVME_PROT_READ) 926 fflags = PS_FST_FFLAG_READ; 927 if ((kve->kve_flags & KVME_FLAG_COW) == 0 && 928 kve->kve_protection & KVME_PROT_WRITE) 929 fflags |= PS_FST_FFLAG_WRITE; 930 offset = kve->kve_offset; 931 refcount = kve->kve_ref_count; 932 if (*kve->kve_path != '\0') 933 path = strdup(kve->kve_path); 934 else 935 path = NULL; 936 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1, 937 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path, 938 NULL); 939 if (entry != NULL) 940 STAILQ_INSERT_TAIL(head, entry, next); 941 } 942 } 943 fail: 944 return (head); 945 } 946 947 int 948 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst, 949 struct pipestat *ps, char *errbuf) 950 { 951 952 assert(ps); 953 if (procstat->type == PROCSTAT_KVM) { 954 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps, 955 errbuf)); 956 } else if (procstat->type == PROCSTAT_SYSCTL || 957 procstat->type == PROCSTAT_CORE) { 958 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf)); 959 } else { 960 warnx("unknown access method: %d", procstat->type); 961 if (errbuf != NULL) 962 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 963 return (1); 964 } 965 } 966 967 static int 968 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst, 969 struct pipestat *ps, char *errbuf) 970 { 971 struct pipe pi; 972 void *pipep; 973 974 assert(kd); 975 assert(ps); 976 assert(fst); 977 bzero(ps, sizeof(*ps)); 978 pipep = fst->fs_typedep; 979 if (pipep == NULL) 980 goto fail; 981 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) { 982 warnx("can't read pipe at %p", (void *)pipep); 983 goto fail; 984 } 985 ps->addr = (uintptr_t)pipep; 986 ps->peer = (uintptr_t)pi.pipe_peer; 987 ps->buffer_cnt = pi.pipe_buffer.cnt; 988 return (0); 989 990 fail: 991 if (errbuf != NULL) 992 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 993 return (1); 994 } 995 996 static int 997 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps, 998 char *errbuf __unused) 999 { 1000 struct kinfo_file *kif; 1001 1002 assert(ps); 1003 assert(fst); 1004 bzero(ps, sizeof(*ps)); 1005 kif = fst->fs_typedep; 1006 if (kif == NULL) 1007 return (1); 1008 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr; 1009 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer; 1010 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt; 1011 return (0); 1012 } 1013 1014 int 1015 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst, 1016 struct ptsstat *pts, char *errbuf) 1017 { 1018 1019 assert(pts); 1020 if (procstat->type == PROCSTAT_KVM) { 1021 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts, 1022 errbuf)); 1023 } else if (procstat->type == PROCSTAT_SYSCTL || 1024 procstat->type == PROCSTAT_CORE) { 1025 return (procstat_get_pts_info_sysctl(fst, pts, errbuf)); 1026 } else { 1027 warnx("unknown access method: %d", procstat->type); 1028 if (errbuf != NULL) 1029 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1030 return (1); 1031 } 1032 } 1033 1034 static int 1035 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst, 1036 struct ptsstat *pts, char *errbuf) 1037 { 1038 struct tty tty; 1039 void *ttyp; 1040 1041 assert(kd); 1042 assert(pts); 1043 assert(fst); 1044 bzero(pts, sizeof(*pts)); 1045 ttyp = fst->fs_typedep; 1046 if (ttyp == NULL) 1047 goto fail; 1048 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) { 1049 warnx("can't read tty at %p", (void *)ttyp); 1050 goto fail; 1051 } 1052 pts->dev = dev2udev(kd, tty.t_dev); 1053 (void)kdevtoname(kd, tty.t_dev, pts->devname); 1054 return (0); 1055 1056 fail: 1057 if (errbuf != NULL) 1058 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1059 return (1); 1060 } 1061 1062 static int 1063 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts, 1064 char *errbuf __unused) 1065 { 1066 struct kinfo_file *kif; 1067 1068 assert(pts); 1069 assert(fst); 1070 bzero(pts, sizeof(*pts)); 1071 kif = fst->fs_typedep; 1072 if (kif == NULL) 1073 return (0); 1074 pts->dev = kif->kf_un.kf_pts.kf_pts_dev; 1075 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname)); 1076 return (0); 1077 } 1078 1079 int 1080 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst, 1081 struct semstat *sem, char *errbuf) 1082 { 1083 1084 assert(sem); 1085 if (procstat->type == PROCSTAT_KVM) { 1086 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem, 1087 errbuf)); 1088 } else if (procstat->type == PROCSTAT_SYSCTL || 1089 procstat->type == PROCSTAT_CORE) { 1090 return (procstat_get_sem_info_sysctl(fst, sem, errbuf)); 1091 } else { 1092 warnx("unknown access method: %d", procstat->type); 1093 if (errbuf != NULL) 1094 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1095 return (1); 1096 } 1097 } 1098 1099 static int 1100 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst, 1101 struct semstat *sem, char *errbuf) 1102 { 1103 struct ksem ksem; 1104 void *ksemp; 1105 char *path; 1106 int i; 1107 1108 assert(kd); 1109 assert(sem); 1110 assert(fst); 1111 bzero(sem, sizeof(*sem)); 1112 ksemp = fst->fs_typedep; 1113 if (ksemp == NULL) 1114 goto fail; 1115 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem, 1116 sizeof(struct ksem))) { 1117 warnx("can't read ksem at %p", (void *)ksemp); 1118 goto fail; 1119 } 1120 sem->mode = S_IFREG | ksem.ks_mode; 1121 sem->value = ksem.ks_value; 1122 if (fst->fs_path == NULL && ksem.ks_path != NULL) { 1123 path = malloc(MAXPATHLEN); 1124 for (i = 0; i < MAXPATHLEN - 1; i++) { 1125 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i, 1126 path + i, 1)) 1127 break; 1128 if (path[i] == '\0') 1129 break; 1130 } 1131 path[i] = '\0'; 1132 if (i == 0) 1133 free(path); 1134 else 1135 fst->fs_path = path; 1136 } 1137 return (0); 1138 1139 fail: 1140 if (errbuf != NULL) 1141 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1142 return (1); 1143 } 1144 1145 static int 1146 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem, 1147 char *errbuf __unused) 1148 { 1149 struct kinfo_file *kif; 1150 1151 assert(sem); 1152 assert(fst); 1153 bzero(sem, sizeof(*sem)); 1154 kif = fst->fs_typedep; 1155 if (kif == NULL) 1156 return (0); 1157 sem->value = kif->kf_un.kf_sem.kf_sem_value; 1158 sem->mode = kif->kf_un.kf_sem.kf_sem_mode; 1159 return (0); 1160 } 1161 1162 int 1163 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst, 1164 struct shmstat *shm, char *errbuf) 1165 { 1166 1167 assert(shm); 1168 if (procstat->type == PROCSTAT_KVM) { 1169 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm, 1170 errbuf)); 1171 } else if (procstat->type == PROCSTAT_SYSCTL || 1172 procstat->type == PROCSTAT_CORE) { 1173 return (procstat_get_shm_info_sysctl(fst, shm, errbuf)); 1174 } else { 1175 warnx("unknown access method: %d", procstat->type); 1176 if (errbuf != NULL) 1177 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1178 return (1); 1179 } 1180 } 1181 1182 static int 1183 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst, 1184 struct shmstat *shm, char *errbuf) 1185 { 1186 struct shmfd shmfd; 1187 void *shmfdp; 1188 char *path; 1189 int i; 1190 1191 assert(kd); 1192 assert(shm); 1193 assert(fst); 1194 bzero(shm, sizeof(*shm)); 1195 shmfdp = fst->fs_typedep; 1196 if (shmfdp == NULL) 1197 goto fail; 1198 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd, 1199 sizeof(struct shmfd))) { 1200 warnx("can't read shmfd at %p", (void *)shmfdp); 1201 goto fail; 1202 } 1203 shm->mode = S_IFREG | shmfd.shm_mode; 1204 shm->size = shmfd.shm_size; 1205 if (fst->fs_path == NULL && shmfd.shm_path != NULL) { 1206 path = malloc(MAXPATHLEN); 1207 for (i = 0; i < MAXPATHLEN - 1; i++) { 1208 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i, 1209 path + i, 1)) 1210 break; 1211 if (path[i] == '\0') 1212 break; 1213 } 1214 path[i] = '\0'; 1215 if (i == 0) 1216 free(path); 1217 else 1218 fst->fs_path = path; 1219 } 1220 return (0); 1221 1222 fail: 1223 if (errbuf != NULL) 1224 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1225 return (1); 1226 } 1227 1228 static int 1229 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm, 1230 char *errbuf __unused) 1231 { 1232 struct kinfo_file *kif; 1233 1234 assert(shm); 1235 assert(fst); 1236 bzero(shm, sizeof(*shm)); 1237 kif = fst->fs_typedep; 1238 if (kif == NULL) 1239 return (0); 1240 shm->size = kif->kf_un.kf_file.kf_file_size; 1241 shm->mode = kif->kf_un.kf_file.kf_file_mode; 1242 return (0); 1243 } 1244 1245 int 1246 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst, 1247 struct vnstat *vn, char *errbuf) 1248 { 1249 1250 assert(vn); 1251 if (procstat->type == PROCSTAT_KVM) { 1252 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn, 1253 errbuf)); 1254 } else if (procstat->type == PROCSTAT_SYSCTL || 1255 procstat->type == PROCSTAT_CORE) { 1256 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf)); 1257 } else { 1258 warnx("unknown access method: %d", procstat->type); 1259 if (errbuf != NULL) 1260 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1261 return (1); 1262 } 1263 } 1264 1265 static int 1266 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst, 1267 struct vnstat *vn, char *errbuf) 1268 { 1269 /* Filesystem specific handlers. */ 1270 #define FSTYPE(fst) {#fst, fst##_filestat} 1271 struct { 1272 const char *tag; 1273 int (*handler)(kvm_t *kd, struct vnode *vp, 1274 struct vnstat *vn); 1275 } fstypes[] = { 1276 FSTYPE(devfs), 1277 FSTYPE(isofs), 1278 FSTYPE(msdosfs), 1279 FSTYPE(nfs), 1280 FSTYPE(smbfs), 1281 FSTYPE(udf), 1282 FSTYPE(ufs), 1283 #ifdef LIBPROCSTAT_ZFS 1284 FSTYPE(zfs), 1285 #endif 1286 }; 1287 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes)) 1288 struct vnode vnode; 1289 char tagstr[12]; 1290 void *vp; 1291 int error; 1292 unsigned int i; 1293 1294 assert(kd); 1295 assert(vn); 1296 assert(fst); 1297 vp = fst->fs_typedep; 1298 if (vp == NULL) 1299 goto fail; 1300 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode)); 1301 if (error == 0) { 1302 warnx("can't read vnode at %p", (void *)vp); 1303 goto fail; 1304 } 1305 bzero(vn, sizeof(*vn)); 1306 vn->vn_type = vntype2psfsttype(vnode.v_type); 1307 if (vnode.v_type == VNON || vnode.v_type == VBAD) 1308 return (0); 1309 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name, 1310 tagstr, sizeof(tagstr)); 1311 if (error == 0) { 1312 warnx("can't read lo_name at %p", (void *)vp); 1313 goto fail; 1314 } 1315 tagstr[sizeof(tagstr) - 1] = '\0'; 1316 1317 /* 1318 * Find appropriate handler. 1319 */ 1320 for (i = 0; i < NTYPES; i++) 1321 if (!strcmp(fstypes[i].tag, tagstr)) { 1322 if (fstypes[i].handler(kd, &vnode, vn) != 0) { 1323 goto fail; 1324 } 1325 break; 1326 } 1327 if (i == NTYPES) { 1328 if (errbuf != NULL) 1329 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr); 1330 return (1); 1331 } 1332 vn->vn_mntdir = getmnton(kd, vnode.v_mount); 1333 if (VTYPE_ISDEV(vnode.v_type) && vnode.v_rdev != NULL) { 1334 vn->vn_dev = dev2udev(kd, vnode.v_rdev); 1335 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname); 1336 } else { 1337 vn->vn_dev = -1; 1338 } 1339 return (0); 1340 1341 fail: 1342 if (errbuf != NULL) 1343 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1344 return (1); 1345 } 1346 1347 /* 1348 * kinfo vnode type to filestat translation. 1349 */ 1350 static int 1351 kinfo_vtype2fst(int kfvtype) 1352 { 1353 static struct { 1354 int kf_vtype; 1355 int fst_vtype; 1356 } kfvtypes2fst[] = { 1357 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD }, 1358 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK }, 1359 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR }, 1360 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR }, 1361 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO }, 1362 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK }, 1363 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON }, 1364 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG }, 1365 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK } 1366 }; 1367 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst)) 1368 unsigned int i; 1369 1370 for (i = 0; i < NKFVTYPES; i++) 1371 if (kfvtypes2fst[i].kf_vtype == kfvtype) 1372 break; 1373 if (i == NKFVTYPES) 1374 return (PS_FST_VTYPE_UNKNOWN); 1375 return (kfvtypes2fst[i].fst_vtype); 1376 } 1377 1378 static int 1379 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn, 1380 char *errbuf) 1381 { 1382 struct statfs stbuf; 1383 struct kinfo_file *kif; 1384 struct kinfo_vmentry *kve; 1385 char *name, *path; 1386 uint64_t fileid; 1387 uint64_t size; 1388 uint64_t fsid; 1389 uint64_t rdev; 1390 uint16_t mode; 1391 int vntype; 1392 int status; 1393 1394 assert(fst); 1395 assert(vn); 1396 bzero(vn, sizeof(*vn)); 1397 if (fst->fs_typedep == NULL) 1398 return (1); 1399 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) { 1400 kve = fst->fs_typedep; 1401 fileid = kve->kve_vn_fileid; 1402 fsid = kve->kve_vn_fsid; 1403 mode = kve->kve_vn_mode; 1404 path = kve->kve_path; 1405 rdev = kve->kve_vn_rdev; 1406 size = kve->kve_vn_size; 1407 vntype = kinfo_vtype2fst(kve->kve_vn_type); 1408 status = kve->kve_status; 1409 } else { 1410 kif = fst->fs_typedep; 1411 fileid = kif->kf_un.kf_file.kf_file_fileid; 1412 fsid = kif->kf_un.kf_file.kf_file_fsid; 1413 mode = kif->kf_un.kf_file.kf_file_mode; 1414 path = kif->kf_path; 1415 rdev = kif->kf_un.kf_file.kf_file_rdev; 1416 size = kif->kf_un.kf_file.kf_file_size; 1417 vntype = kinfo_vtype2fst(kif->kf_vnode_type); 1418 status = kif->kf_status; 1419 } 1420 vn->vn_type = vntype; 1421 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD) 1422 return (0); 1423 if ((status & KF_ATTR_VALID) == 0) { 1424 if (errbuf != NULL) { 1425 snprintf(errbuf, _POSIX2_LINE_MAX, 1426 "? (no info available)"); 1427 } 1428 return (1); 1429 } 1430 if (path && *path) { 1431 statfs(path, &stbuf); 1432 vn->vn_mntdir = strdup(stbuf.f_mntonname); 1433 } else 1434 vn->vn_mntdir = strdup("-"); 1435 vn->vn_dev = rdev; 1436 if (vntype == PS_FST_VTYPE_VBLK) { 1437 name = devname(rdev, S_IFBLK); 1438 if (name != NULL) 1439 strlcpy(vn->vn_devname, name, 1440 sizeof(vn->vn_devname)); 1441 } else if (vntype == PS_FST_VTYPE_VCHR) { 1442 name = devname(vn->vn_dev, S_IFCHR); 1443 if (name != NULL) 1444 strlcpy(vn->vn_devname, name, 1445 sizeof(vn->vn_devname)); 1446 } 1447 vn->vn_fsid = fsid; 1448 vn->vn_fileid = fileid; 1449 vn->vn_size = size; 1450 vn->vn_mode = mode; 1451 return (0); 1452 } 1453 1454 int 1455 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst, 1456 struct sockstat *sock, char *errbuf) 1457 { 1458 1459 assert(sock); 1460 if (procstat->type == PROCSTAT_KVM) { 1461 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock, 1462 errbuf)); 1463 } else if (procstat->type == PROCSTAT_SYSCTL || 1464 procstat->type == PROCSTAT_CORE) { 1465 return (procstat_get_socket_info_sysctl(fst, sock, errbuf)); 1466 } else { 1467 warnx("unknown access method: %d", procstat->type); 1468 if (errbuf != NULL) 1469 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1470 return (1); 1471 } 1472 } 1473 1474 static int 1475 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst, 1476 struct sockstat *sock, char *errbuf) 1477 { 1478 struct domain dom; 1479 struct protosw proto; 1480 struct socket s; 1481 struct unpcb unpcb; 1482 ssize_t len; 1483 void *so; 1484 1485 assert(kd); 1486 assert(sock); 1487 assert(fst); 1488 bzero(sock, sizeof(*sock)); 1489 so = fst->fs_typedep; 1490 if (so == NULL) 1491 goto fail; 1492 sock->so_addr = (uintptr_t)so; 1493 /* fill in socket */ 1494 if (!kvm_read_all(kd, (unsigned long)so, &s, 1495 sizeof(struct socket))) { 1496 warnx("can't read sock at %p", (void *)so); 1497 goto fail; 1498 } 1499 /* fill in protosw entry */ 1500 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto, 1501 sizeof(struct protosw))) { 1502 warnx("can't read protosw at %p", (void *)s.so_proto); 1503 goto fail; 1504 } 1505 /* fill in domain */ 1506 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom, 1507 sizeof(struct domain))) { 1508 warnx("can't read domain at %p", 1509 (void *)proto.pr_domain); 1510 goto fail; 1511 } 1512 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname, 1513 sizeof(sock->dname) - 1)) < 0) { 1514 warnx("can't read domain name at %p", (void *)dom.dom_name); 1515 sock->dname[0] = '\0'; 1516 } 1517 else 1518 sock->dname[len] = '\0'; 1519 1520 /* 1521 * Fill in known data. 1522 */ 1523 sock->type = s.so_type; 1524 sock->proto = proto.pr_protocol; 1525 sock->dom_family = dom.dom_family; 1526 sock->so_pcb = (uintptr_t)s.so_pcb; 1527 sock->sendq = s.so_snd.sb_ccc; 1528 sock->recvq = s.so_rcv.sb_ccc; 1529 sock->so_rcv_sb_state = s.so_rcv.sb_state; 1530 sock->so_snd_sb_state = s.so_snd.sb_state; 1531 1532 /* 1533 * Protocol specific data. 1534 */ 1535 switch (dom.dom_family) { 1536 case AF_UNIX: 1537 if (s.so_pcb) { 1538 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb, 1539 sizeof(struct unpcb)) != sizeof(struct unpcb)){ 1540 warnx("can't read unpcb at %p", 1541 (void *)s.so_pcb); 1542 } else if (unpcb.unp_conn) { 1543 sock->unp_conn = (uintptr_t)unpcb.unp_conn; 1544 } 1545 } 1546 break; 1547 default: 1548 break; 1549 } 1550 return (0); 1551 1552 fail: 1553 if (errbuf != NULL) 1554 snprintf(errbuf, _POSIX2_LINE_MAX, "error"); 1555 return (1); 1556 } 1557 1558 static int 1559 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock, 1560 char *errbuf __unused) 1561 { 1562 struct kinfo_file *kif; 1563 1564 assert(sock); 1565 assert(fst); 1566 bzero(sock, sizeof(*sock)); 1567 kif = fst->fs_typedep; 1568 if (kif == NULL) 1569 return (0); 1570 1571 /* 1572 * Fill in known data. 1573 */ 1574 sock->type = kif->kf_sock_type; 1575 sock->proto = kif->kf_sock_protocol; 1576 sock->dom_family = kif->kf_sock_domain; 1577 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb; 1578 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname)); 1579 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local, 1580 kif->kf_un.kf_sock.kf_sa_local.ss_len); 1581 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer, 1582 kif->kf_un.kf_sock.kf_sa_peer.ss_len); 1583 1584 /* 1585 * Protocol specific data. 1586 */ 1587 switch (sock->dom_family) { 1588 case AF_INET: 1589 case AF_INET6: 1590 if (sock->proto == IPPROTO_TCP) { 1591 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1592 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1593 } 1594 break; 1595 case AF_UNIX: 1596 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) { 1597 sock->so_rcv_sb_state = 1598 kif->kf_un.kf_sock.kf_sock_rcv_sb_state; 1599 sock->so_snd_sb_state = 1600 kif->kf_un.kf_sock.kf_sock_snd_sb_state; 1601 sock->unp_conn = 1602 kif->kf_un.kf_sock.kf_sock_unpconn; 1603 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq; 1604 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq; 1605 } 1606 break; 1607 default: 1608 break; 1609 } 1610 return (0); 1611 } 1612 1613 /* 1614 * Descriptor flags to filestat translation. 1615 */ 1616 static int 1617 to_filestat_flags(int flags) 1618 { 1619 static struct { 1620 int flag; 1621 int fst_flag; 1622 } fstflags[] = { 1623 { FREAD, PS_FST_FFLAG_READ }, 1624 { FWRITE, PS_FST_FFLAG_WRITE }, 1625 { O_APPEND, PS_FST_FFLAG_APPEND }, 1626 { O_ASYNC, PS_FST_FFLAG_ASYNC }, 1627 { O_CREAT, PS_FST_FFLAG_CREAT }, 1628 { O_DIRECT, PS_FST_FFLAG_DIRECT }, 1629 { O_EXCL, PS_FST_FFLAG_EXCL }, 1630 { O_EXEC, PS_FST_FFLAG_EXEC }, 1631 { O_EXLOCK, PS_FST_FFLAG_EXLOCK }, 1632 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW }, 1633 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK }, 1634 { O_SHLOCK, PS_FST_FFLAG_SHLOCK }, 1635 { O_SYNC, PS_FST_FFLAG_SYNC }, 1636 { O_TRUNC, PS_FST_FFLAG_TRUNC } 1637 }; 1638 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags)) 1639 int fst_flags; 1640 unsigned int i; 1641 1642 fst_flags = 0; 1643 for (i = 0; i < NFSTFLAGS; i++) 1644 if (flags & fstflags[i].flag) 1645 fst_flags |= fstflags[i].fst_flag; 1646 return (fst_flags); 1647 } 1648 1649 /* 1650 * Vnode type to filestate translation. 1651 */ 1652 static int 1653 vntype2psfsttype(int type) 1654 { 1655 static struct { 1656 int vtype; 1657 int fst_vtype; 1658 } vt2fst[] = { 1659 { VBAD, PS_FST_VTYPE_VBAD }, 1660 { VBLK, PS_FST_VTYPE_VBLK }, 1661 { VCHR, PS_FST_VTYPE_VCHR }, 1662 { VDIR, PS_FST_VTYPE_VDIR }, 1663 { VFIFO, PS_FST_VTYPE_VFIFO }, 1664 { VLNK, PS_FST_VTYPE_VLNK }, 1665 { VNON, PS_FST_VTYPE_VNON }, 1666 { VREG, PS_FST_VTYPE_VREG }, 1667 { VSOCK, PS_FST_VTYPE_VSOCK } 1668 }; 1669 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst)) 1670 unsigned int i, fst_type; 1671 1672 fst_type = PS_FST_VTYPE_UNKNOWN; 1673 for (i = 0; i < NVFTYPES; i++) { 1674 if (type == vt2fst[i].vtype) { 1675 fst_type = vt2fst[i].fst_vtype; 1676 break; 1677 } 1678 } 1679 return (fst_type); 1680 } 1681 1682 static char * 1683 getmnton(kvm_t *kd, struct mount *m) 1684 { 1685 struct mount mnt; 1686 static struct mtab { 1687 struct mtab *next; 1688 struct mount *m; 1689 char mntonname[MNAMELEN + 1]; 1690 } *mhead = NULL; 1691 struct mtab *mt; 1692 1693 for (mt = mhead; mt != NULL; mt = mt->next) 1694 if (m == mt->m) 1695 return (mt->mntonname); 1696 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) { 1697 warnx("can't read mount table at %p", (void *)m); 1698 return (NULL); 1699 } 1700 if ((mt = malloc(sizeof (struct mtab))) == NULL) 1701 err(1, NULL); 1702 mt->m = m; 1703 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN); 1704 mt->mntonname[MNAMELEN] = '\0'; 1705 mt->next = mhead; 1706 mhead = mt; 1707 return (mt->mntonname); 1708 } 1709 1710 /* 1711 * Auxiliary structures and functions to get process environment or 1712 * command line arguments. 1713 */ 1714 struct argvec { 1715 char *buf; 1716 size_t bufsize; 1717 char **argv; 1718 size_t argc; 1719 }; 1720 1721 static struct argvec * 1722 argvec_alloc(size_t bufsize) 1723 { 1724 struct argvec *av; 1725 1726 av = malloc(sizeof(*av)); 1727 if (av == NULL) 1728 return (NULL); 1729 av->bufsize = bufsize; 1730 av->buf = malloc(av->bufsize); 1731 if (av->buf == NULL) { 1732 free(av); 1733 return (NULL); 1734 } 1735 av->argc = 32; 1736 av->argv = malloc(sizeof(char *) * av->argc); 1737 if (av->argv == NULL) { 1738 free(av->buf); 1739 free(av); 1740 return (NULL); 1741 } 1742 return av; 1743 } 1744 1745 static void 1746 argvec_free(struct argvec * av) 1747 { 1748 1749 free(av->argv); 1750 free(av->buf); 1751 free(av); 1752 } 1753 1754 static char ** 1755 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env) 1756 { 1757 int error, name[4], argc, i; 1758 struct argvec *av, **avp; 1759 enum psc_type type; 1760 size_t len; 1761 char *p, **argv; 1762 1763 assert(procstat); 1764 assert(kp); 1765 if (procstat->type == PROCSTAT_KVM) { 1766 warnx("can't use kvm access method"); 1767 return (NULL); 1768 } 1769 if (procstat->type != PROCSTAT_SYSCTL && 1770 procstat->type != PROCSTAT_CORE) { 1771 warnx("unknown access method: %d", procstat->type); 1772 return (NULL); 1773 } 1774 1775 if (nchr == 0 || nchr > ARG_MAX) 1776 nchr = ARG_MAX; 1777 1778 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv); 1779 av = *avp; 1780 1781 if (av == NULL) 1782 { 1783 av = argvec_alloc(nchr); 1784 if (av == NULL) 1785 { 1786 warn("malloc(%zu)", nchr); 1787 return (NULL); 1788 } 1789 *avp = av; 1790 } else if (av->bufsize < nchr) { 1791 av->buf = reallocf(av->buf, nchr); 1792 if (av->buf == NULL) { 1793 warn("malloc(%zu)", nchr); 1794 return (NULL); 1795 } 1796 } 1797 if (procstat->type == PROCSTAT_SYSCTL) { 1798 name[0] = CTL_KERN; 1799 name[1] = KERN_PROC; 1800 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 1801 name[3] = kp->ki_pid; 1802 len = nchr; 1803 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0); 1804 if (error != 0 && errno != ESRCH && errno != EPERM) 1805 warn("sysctl(kern.proc.%s)", env ? "env" : "args"); 1806 if (error != 0 || len == 0) 1807 return (NULL); 1808 } else /* procstat->type == PROCSTAT_CORE */ { 1809 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV; 1810 len = nchr; 1811 if (procstat_core_get(procstat->core, type, av->buf, &len) 1812 == NULL) { 1813 return (NULL); 1814 } 1815 } 1816 1817 argv = av->argv; 1818 argc = av->argc; 1819 i = 0; 1820 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) { 1821 argv[i++] = p; 1822 if (i < argc) 1823 continue; 1824 /* Grow argv. */ 1825 argc += argc; 1826 argv = realloc(argv, sizeof(char *) * argc); 1827 if (argv == NULL) { 1828 warn("malloc(%zu)", sizeof(char *) * argc); 1829 return (NULL); 1830 } 1831 av->argv = argv; 1832 av->argc = argc; 1833 } 1834 argv[i] = NULL; 1835 1836 return (argv); 1837 } 1838 1839 /* 1840 * Return process command line arguments. 1841 */ 1842 char ** 1843 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1844 { 1845 1846 return (getargv(procstat, p, nchr, 0)); 1847 } 1848 1849 /* 1850 * Free the buffer allocated by procstat_getargv(). 1851 */ 1852 void 1853 procstat_freeargv(struct procstat *procstat) 1854 { 1855 1856 if (procstat->argv != NULL) { 1857 argvec_free(procstat->argv); 1858 procstat->argv = NULL; 1859 } 1860 } 1861 1862 /* 1863 * Return process environment. 1864 */ 1865 char ** 1866 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr) 1867 { 1868 1869 return (getargv(procstat, p, nchr, 1)); 1870 } 1871 1872 /* 1873 * Free the buffer allocated by procstat_getenvv(). 1874 */ 1875 void 1876 procstat_freeenvv(struct procstat *procstat) 1877 { 1878 if (procstat->envv != NULL) { 1879 argvec_free(procstat->envv); 1880 procstat->envv = NULL; 1881 } 1882 } 1883 1884 static struct kinfo_vmentry * 1885 kinfo_getvmmap_core(struct procstat_core *core, int *cntp) 1886 { 1887 int cnt; 1888 size_t len; 1889 char *buf, *bp, *eb; 1890 struct kinfo_vmentry *kiv, *kp, *kv; 1891 1892 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len); 1893 if (buf == NULL) 1894 return (NULL); 1895 1896 /* 1897 * XXXMG: The code below is just copy&past from libutil. 1898 * The code duplication can be avoided if libutil 1899 * is extended to provide something like: 1900 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf, 1901 * size_t len, int *cntp); 1902 */ 1903 1904 /* Pass 1: count items */ 1905 cnt = 0; 1906 bp = buf; 1907 eb = buf + len; 1908 while (bp < eb) { 1909 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1910 if (kv->kve_structsize == 0) 1911 break; 1912 bp += kv->kve_structsize; 1913 cnt++; 1914 } 1915 1916 kiv = calloc(cnt, sizeof(*kiv)); 1917 if (kiv == NULL) { 1918 free(buf); 1919 return (NULL); 1920 } 1921 bp = buf; 1922 eb = buf + len; 1923 kp = kiv; 1924 /* Pass 2: unpack */ 1925 while (bp < eb) { 1926 kv = (struct kinfo_vmentry *)(uintptr_t)bp; 1927 if (kv->kve_structsize == 0) 1928 break; 1929 /* Copy/expand into pre-zeroed buffer */ 1930 memcpy(kp, kv, kv->kve_structsize); 1931 /* Advance to next packed record */ 1932 bp += kv->kve_structsize; 1933 /* Set field size to fixed length, advance */ 1934 kp->kve_structsize = sizeof(*kp); 1935 kp++; 1936 } 1937 free(buf); 1938 *cntp = cnt; 1939 return (kiv); /* Caller must free() return value */ 1940 } 1941 1942 struct kinfo_vmentry * 1943 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp, 1944 unsigned int *cntp) 1945 { 1946 1947 switch (procstat->type) { 1948 case PROCSTAT_KVM: 1949 warnx("kvm method is not supported"); 1950 return (NULL); 1951 case PROCSTAT_SYSCTL: 1952 return (kinfo_getvmmap(kp->ki_pid, cntp)); 1953 case PROCSTAT_CORE: 1954 return (kinfo_getvmmap_core(procstat->core, cntp)); 1955 default: 1956 warnx("unknown access method: %d", procstat->type); 1957 return (NULL); 1958 } 1959 } 1960 1961 void 1962 procstat_freevmmap(struct procstat *procstat __unused, 1963 struct kinfo_vmentry *vmmap) 1964 { 1965 1966 free(vmmap); 1967 } 1968 1969 static gid_t * 1970 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp) 1971 { 1972 struct proc proc; 1973 struct ucred ucred; 1974 gid_t *groups; 1975 size_t len; 1976 1977 assert(kd != NULL); 1978 assert(kp != NULL); 1979 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 1980 sizeof(proc))) { 1981 warnx("can't read proc struct at %p for pid %d", 1982 kp->ki_paddr, kp->ki_pid); 1983 return (NULL); 1984 } 1985 if (proc.p_ucred == NOCRED) 1986 return (NULL); 1987 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred, 1988 sizeof(ucred))) { 1989 warnx("can't read ucred struct at %p for pid %d", 1990 proc.p_ucred, kp->ki_pid); 1991 return (NULL); 1992 } 1993 len = ucred.cr_ngroups * sizeof(gid_t); 1994 groups = malloc(len); 1995 if (groups == NULL) { 1996 warn("malloc(%zu)", len); 1997 return (NULL); 1998 } 1999 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) { 2000 warnx("can't read groups at %p for pid %d", 2001 ucred.cr_groups, kp->ki_pid); 2002 free(groups); 2003 return (NULL); 2004 } 2005 *cntp = ucred.cr_ngroups; 2006 return (groups); 2007 } 2008 2009 static gid_t * 2010 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp) 2011 { 2012 int mib[4]; 2013 size_t len; 2014 gid_t *groups; 2015 2016 mib[0] = CTL_KERN; 2017 mib[1] = KERN_PROC; 2018 mib[2] = KERN_PROC_GROUPS; 2019 mib[3] = pid; 2020 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t); 2021 groups = malloc(len); 2022 if (groups == NULL) { 2023 warn("malloc(%zu)", len); 2024 return (NULL); 2025 } 2026 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) { 2027 warn("sysctl: kern.proc.groups: %d", pid); 2028 free(groups); 2029 return (NULL); 2030 } 2031 *cntp = len / sizeof(gid_t); 2032 return (groups); 2033 } 2034 2035 static gid_t * 2036 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp) 2037 { 2038 size_t len; 2039 gid_t *groups; 2040 2041 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len); 2042 if (groups == NULL) 2043 return (NULL); 2044 *cntp = len / sizeof(gid_t); 2045 return (groups); 2046 } 2047 2048 gid_t * 2049 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp, 2050 unsigned int *cntp) 2051 { 2052 switch (procstat->type) { 2053 case PROCSTAT_KVM: 2054 return (procstat_getgroups_kvm(procstat->kd, kp, cntp)); 2055 case PROCSTAT_SYSCTL: 2056 return (procstat_getgroups_sysctl(kp->ki_pid, cntp)); 2057 case PROCSTAT_CORE: 2058 return (procstat_getgroups_core(procstat->core, cntp)); 2059 default: 2060 warnx("unknown access method: %d", procstat->type); 2061 return (NULL); 2062 } 2063 } 2064 2065 void 2066 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups) 2067 { 2068 2069 free(groups); 2070 } 2071 2072 static int 2073 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp) 2074 { 2075 struct pwddesc pd; 2076 2077 assert(kd != NULL); 2078 assert(kp != NULL); 2079 if (kp->ki_pd == NULL) 2080 return (-1); 2081 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) { 2082 warnx("can't read pwddesc at %p for pid %d", kp->ki_pd, 2083 kp->ki_pid); 2084 return (-1); 2085 } 2086 *maskp = pd.pd_cmask; 2087 return (0); 2088 } 2089 2090 static int 2091 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp) 2092 { 2093 int error; 2094 int mib[4]; 2095 size_t len; 2096 2097 mib[0] = CTL_KERN; 2098 mib[1] = KERN_PROC; 2099 mib[2] = KERN_PROC_UMASK; 2100 mib[3] = pid; 2101 len = sizeof(*maskp); 2102 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0); 2103 if (error != 0 && errno != ESRCH && errno != EPERM) 2104 warn("sysctl: kern.proc.umask: %d", pid); 2105 return (error); 2106 } 2107 2108 static int 2109 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp) 2110 { 2111 size_t len; 2112 unsigned short *buf; 2113 2114 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len); 2115 if (buf == NULL) 2116 return (-1); 2117 if (len < sizeof(*maskp)) { 2118 free(buf); 2119 return (-1); 2120 } 2121 *maskp = *buf; 2122 free(buf); 2123 return (0); 2124 } 2125 2126 int 2127 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp, 2128 unsigned short *maskp) 2129 { 2130 switch (procstat->type) { 2131 case PROCSTAT_KVM: 2132 return (procstat_getumask_kvm(procstat->kd, kp, maskp)); 2133 case PROCSTAT_SYSCTL: 2134 return (procstat_getumask_sysctl(kp->ki_pid, maskp)); 2135 case PROCSTAT_CORE: 2136 return (procstat_getumask_core(procstat->core, maskp)); 2137 default: 2138 warnx("unknown access method: %d", procstat->type); 2139 return (-1); 2140 } 2141 } 2142 2143 static int 2144 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which, 2145 struct rlimit* rlimit) 2146 { 2147 struct proc proc; 2148 unsigned long offset; 2149 2150 assert(kd != NULL); 2151 assert(kp != NULL); 2152 assert(which >= 0 && which < RLIM_NLIMITS); 2153 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2154 sizeof(proc))) { 2155 warnx("can't read proc struct at %p for pid %d", 2156 kp->ki_paddr, kp->ki_pid); 2157 return (-1); 2158 } 2159 if (proc.p_limit == NULL) 2160 return (-1); 2161 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which; 2162 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) { 2163 warnx("can't read rlimit struct at %p for pid %d", 2164 (void *)offset, kp->ki_pid); 2165 return (-1); 2166 } 2167 return (0); 2168 } 2169 2170 static int 2171 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit) 2172 { 2173 int error, name[5]; 2174 size_t len; 2175 2176 name[0] = CTL_KERN; 2177 name[1] = KERN_PROC; 2178 name[2] = KERN_PROC_RLIMIT; 2179 name[3] = pid; 2180 name[4] = which; 2181 len = sizeof(struct rlimit); 2182 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0); 2183 if (error < 0 && errno != ESRCH) { 2184 warn("sysctl: kern.proc.rlimit: %d", pid); 2185 return (-1); 2186 } 2187 if (error < 0 || len != sizeof(struct rlimit)) 2188 return (-1); 2189 return (0); 2190 } 2191 2192 static int 2193 procstat_getrlimit_core(struct procstat_core *core, int which, 2194 struct rlimit* rlimit) 2195 { 2196 size_t len; 2197 struct rlimit* rlimits; 2198 2199 if (which < 0 || which >= RLIM_NLIMITS) { 2200 errno = EINVAL; 2201 warn("getrlimit: which"); 2202 return (-1); 2203 } 2204 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len); 2205 if (rlimits == NULL) 2206 return (-1); 2207 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) { 2208 free(rlimits); 2209 return (-1); 2210 } 2211 *rlimit = rlimits[which]; 2212 free(rlimits); 2213 return (0); 2214 } 2215 2216 int 2217 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which, 2218 struct rlimit* rlimit) 2219 { 2220 switch (procstat->type) { 2221 case PROCSTAT_KVM: 2222 return (procstat_getrlimit_kvm(procstat->kd, kp, which, 2223 rlimit)); 2224 case PROCSTAT_SYSCTL: 2225 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit)); 2226 case PROCSTAT_CORE: 2227 return (procstat_getrlimit_core(procstat->core, which, rlimit)); 2228 default: 2229 warnx("unknown access method: %d", procstat->type); 2230 return (-1); 2231 } 2232 } 2233 2234 static int 2235 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen) 2236 { 2237 int error, name[4]; 2238 size_t len; 2239 2240 name[0] = CTL_KERN; 2241 name[1] = KERN_PROC; 2242 name[2] = KERN_PROC_PATHNAME; 2243 name[3] = pid; 2244 len = maxlen; 2245 error = sysctl(name, nitems(name), pathname, &len, NULL, 0); 2246 if (error != 0 && errno != ESRCH) 2247 warn("sysctl: kern.proc.pathname: %d", pid); 2248 if (len == 0) 2249 pathname[0] = '\0'; 2250 return (error); 2251 } 2252 2253 static int 2254 procstat_getpathname_core(struct procstat_core *core, char *pathname, 2255 size_t maxlen) 2256 { 2257 struct kinfo_file *files; 2258 int cnt, i, result; 2259 2260 files = kinfo_getfile_core(core, &cnt); 2261 if (files == NULL) 2262 return (-1); 2263 result = -1; 2264 for (i = 0; i < cnt; i++) { 2265 if (files[i].kf_fd != KF_FD_TYPE_TEXT) 2266 continue; 2267 strncpy(pathname, files[i].kf_path, maxlen); 2268 result = 0; 2269 break; 2270 } 2271 free(files); 2272 return (result); 2273 } 2274 2275 int 2276 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp, 2277 char *pathname, size_t maxlen) 2278 { 2279 switch (procstat->type) { 2280 case PROCSTAT_KVM: 2281 /* XXX: Return empty string. */ 2282 if (maxlen > 0) 2283 pathname[0] = '\0'; 2284 return (0); 2285 case PROCSTAT_SYSCTL: 2286 return (procstat_getpathname_sysctl(kp->ki_pid, pathname, 2287 maxlen)); 2288 case PROCSTAT_CORE: 2289 return (procstat_getpathname_core(procstat->core, pathname, 2290 maxlen)); 2291 default: 2292 warnx("unknown access method: %d", procstat->type); 2293 return (-1); 2294 } 2295 } 2296 2297 static int 2298 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp) 2299 { 2300 struct proc proc; 2301 2302 assert(kd != NULL); 2303 assert(kp != NULL); 2304 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc, 2305 sizeof(proc))) { 2306 warnx("can't read proc struct at %p for pid %d", 2307 kp->ki_paddr, kp->ki_pid); 2308 return (-1); 2309 } 2310 *osrelp = proc.p_osrel; 2311 return (0); 2312 } 2313 2314 static int 2315 procstat_getosrel_sysctl(pid_t pid, int *osrelp) 2316 { 2317 int error, name[4]; 2318 size_t len; 2319 2320 name[0] = CTL_KERN; 2321 name[1] = KERN_PROC; 2322 name[2] = KERN_PROC_OSREL; 2323 name[3] = pid; 2324 len = sizeof(*osrelp); 2325 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0); 2326 if (error != 0 && errno != ESRCH) 2327 warn("sysctl: kern.proc.osrel: %d", pid); 2328 return (error); 2329 } 2330 2331 static int 2332 procstat_getosrel_core(struct procstat_core *core, int *osrelp) 2333 { 2334 size_t len; 2335 int *buf; 2336 2337 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len); 2338 if (buf == NULL) 2339 return (-1); 2340 if (len < sizeof(*osrelp)) { 2341 free(buf); 2342 return (-1); 2343 } 2344 *osrelp = *buf; 2345 free(buf); 2346 return (0); 2347 } 2348 2349 int 2350 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp) 2351 { 2352 switch (procstat->type) { 2353 case PROCSTAT_KVM: 2354 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp)); 2355 case PROCSTAT_SYSCTL: 2356 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp)); 2357 case PROCSTAT_CORE: 2358 return (procstat_getosrel_core(procstat->core, osrelp)); 2359 default: 2360 warnx("unknown access method: %d", procstat->type); 2361 return (-1); 2362 } 2363 } 2364 2365 #define PROC_AUXV_MAX 256 2366 2367 #ifdef PS_ARCH_HAS_FREEBSD32 2368 static const char *elf32_sv_names[] = { 2369 "Linux ELF32", 2370 "FreeBSD ELF32", 2371 }; 2372 2373 static int 2374 is_elf32_sysctl(pid_t pid) 2375 { 2376 int error, name[4]; 2377 size_t len, i; 2378 char sv_name[32]; 2379 2380 name[0] = CTL_KERN; 2381 name[1] = KERN_PROC; 2382 name[2] = KERN_PROC_SV_NAME; 2383 name[3] = pid; 2384 len = sizeof(sv_name); 2385 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0); 2386 if (error != 0 || len == 0) 2387 return (0); 2388 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) { 2389 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0) 2390 return (1); 2391 } 2392 return (0); 2393 } 2394 2395 static Elf_Auxinfo * 2396 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp) 2397 { 2398 Elf_Auxinfo *auxv; 2399 Elf32_Auxinfo *auxv32; 2400 size_t len; 2401 unsigned int i, count; 2402 int name[4]; 2403 2404 name[0] = CTL_KERN; 2405 name[1] = KERN_PROC; 2406 name[2] = KERN_PROC_AUXV; 2407 name[3] = pid; 2408 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo); 2409 auxv = NULL; 2410 auxv32 = malloc(len); 2411 if (auxv32 == NULL) { 2412 warn("malloc(%zu)", len); 2413 goto out; 2414 } 2415 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) { 2416 if (errno != ESRCH && errno != EPERM) 2417 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2418 goto out; 2419 } 2420 count = len / sizeof(Elf32_Auxinfo); 2421 auxv = malloc(count * sizeof(Elf_Auxinfo)); 2422 if (auxv == NULL) { 2423 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo)); 2424 goto out; 2425 } 2426 for (i = 0; i < count; i++) { 2427 /* 2428 * XXX: We expect that values for a_type on a 32-bit platform 2429 * are directly mapped to values on 64-bit one, which is not 2430 * necessarily true. 2431 */ 2432 auxv[i].a_type = auxv32[i].a_type; 2433 /* 2434 * Don't sign extend values. Existing entries are positive 2435 * integers or pointers. Under freebsd32, programs typically 2436 * have a full [0, 2^32) address space (perhaps minus the last 2437 * page) and treating this as a signed integer would be 2438 * confusing since these are not kernel pointers. 2439 * 2440 * XXX: A more complete translation would be ABI and 2441 * type-aware. 2442 */ 2443 auxv[i].a_un.a_val = (uint32_t)auxv32[i].a_un.a_val; 2444 } 2445 *cntp = count; 2446 out: 2447 free(auxv32); 2448 return (auxv); 2449 } 2450 #endif /* PS_ARCH_HAS_FREEBSD32 */ 2451 2452 static Elf_Auxinfo * 2453 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp) 2454 { 2455 Elf_Auxinfo *auxv; 2456 int name[4]; 2457 size_t len; 2458 2459 #ifdef PS_ARCH_HAS_FREEBSD32 2460 if (is_elf32_sysctl(pid)) 2461 return (procstat_getauxv32_sysctl(pid, cntp)); 2462 #endif 2463 name[0] = CTL_KERN; 2464 name[1] = KERN_PROC; 2465 name[2] = KERN_PROC_AUXV; 2466 name[3] = pid; 2467 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo); 2468 auxv = malloc(len); 2469 if (auxv == NULL) { 2470 warn("malloc(%zu)", len); 2471 return (NULL); 2472 } 2473 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) { 2474 if (errno != ESRCH && errno != EPERM) 2475 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno); 2476 free(auxv); 2477 return (NULL); 2478 } 2479 *cntp = len / sizeof(Elf_Auxinfo); 2480 return (auxv); 2481 } 2482 2483 static Elf_Auxinfo * 2484 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp) 2485 { 2486 Elf_Auxinfo *auxv; 2487 size_t len; 2488 2489 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len); 2490 if (auxv == NULL) 2491 return (NULL); 2492 *cntp = len / sizeof(Elf_Auxinfo); 2493 return (auxv); 2494 } 2495 2496 Elf_Auxinfo * 2497 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp, 2498 unsigned int *cntp) 2499 { 2500 switch (procstat->type) { 2501 case PROCSTAT_KVM: 2502 warnx("kvm method is not supported"); 2503 return (NULL); 2504 case PROCSTAT_SYSCTL: 2505 return (procstat_getauxv_sysctl(kp->ki_pid, cntp)); 2506 case PROCSTAT_CORE: 2507 return (procstat_getauxv_core(procstat->core, cntp)); 2508 default: 2509 warnx("unknown access method: %d", procstat->type); 2510 return (NULL); 2511 } 2512 } 2513 2514 void 2515 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv) 2516 { 2517 2518 free(auxv); 2519 } 2520 2521 static struct ptrace_lwpinfo * 2522 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp) 2523 { 2524 void *buf; 2525 struct ptrace_lwpinfo *pl; 2526 unsigned int cnt; 2527 size_t len; 2528 2529 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO); 2530 if (cnt == 0) 2531 return (NULL); 2532 2533 len = cnt * sizeof(*pl); 2534 buf = calloc(1, len); 2535 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len); 2536 if (pl == NULL) { 2537 free(buf); 2538 return (NULL); 2539 } 2540 *cntp = len / sizeof(*pl); 2541 return (pl); 2542 } 2543 2544 struct ptrace_lwpinfo * 2545 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp) 2546 { 2547 switch (procstat->type) { 2548 case PROCSTAT_KVM: 2549 warnx("kvm method is not supported"); 2550 return (NULL); 2551 case PROCSTAT_SYSCTL: 2552 warnx("sysctl method is not supported"); 2553 return (NULL); 2554 case PROCSTAT_CORE: 2555 return (procstat_getptlwpinfo_core(procstat->core, cntp)); 2556 default: 2557 warnx("unknown access method: %d", procstat->type); 2558 return (NULL); 2559 } 2560 } 2561 2562 void 2563 procstat_freeptlwpinfo(struct procstat *procstat __unused, 2564 struct ptrace_lwpinfo *pl) 2565 { 2566 free(pl); 2567 } 2568 2569 static struct kinfo_kstack * 2570 procstat_getkstack_sysctl(pid_t pid, int *cntp) 2571 { 2572 struct kinfo_kstack *kkstp; 2573 int error, name[4]; 2574 size_t len; 2575 2576 name[0] = CTL_KERN; 2577 name[1] = KERN_PROC; 2578 name[2] = KERN_PROC_KSTACK; 2579 name[3] = pid; 2580 2581 len = 0; 2582 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 2583 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) { 2584 warn("sysctl: kern.proc.kstack: %d", pid); 2585 return (NULL); 2586 } 2587 if (error == -1 && errno == ENOENT) { 2588 warnx("sysctl: kern.proc.kstack unavailable" 2589 " (options DDB or options STACK required in kernel)"); 2590 return (NULL); 2591 } 2592 if (error == -1) 2593 return (NULL); 2594 kkstp = malloc(len); 2595 if (kkstp == NULL) { 2596 warn("malloc(%zu)", len); 2597 return (NULL); 2598 } 2599 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1 && 2600 errno != ENOMEM) { 2601 warn("sysctl: kern.proc.pid: %d", pid); 2602 free(kkstp); 2603 return (NULL); 2604 } 2605 *cntp = len / sizeof(*kkstp); 2606 2607 return (kkstp); 2608 } 2609 2610 struct kinfo_kstack * 2611 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp, 2612 unsigned int *cntp) 2613 { 2614 switch (procstat->type) { 2615 case PROCSTAT_KVM: 2616 warnx("kvm method is not supported"); 2617 return (NULL); 2618 case PROCSTAT_SYSCTL: 2619 return (procstat_getkstack_sysctl(kp->ki_pid, cntp)); 2620 case PROCSTAT_CORE: 2621 warnx("core method is not supported"); 2622 return (NULL); 2623 default: 2624 warnx("unknown access method: %d", procstat->type); 2625 return (NULL); 2626 } 2627 } 2628 2629 void 2630 procstat_freekstack(struct procstat *procstat __unused, 2631 struct kinfo_kstack *kkstp) 2632 { 2633 2634 free(kkstp); 2635 } 2636 2637 static struct advlock_list * 2638 procstat_getadvlock_sysctl(struct procstat *procstat __unused) 2639 { 2640 struct advlock_list *res; 2641 struct advlock *a; 2642 void *buf; 2643 char *c; 2644 struct kinfo_lockf *kl; 2645 size_t buf_len; 2646 int error; 2647 static const int kl_name[] = { CTL_KERN, KERN_LOCKF }; 2648 2649 res = malloc(sizeof(*res)); 2650 if (res == NULL) 2651 return (NULL); 2652 STAILQ_INIT(res); 2653 buf = NULL; 2654 2655 buf_len = 0; 2656 error = sysctl(kl_name, nitems(kl_name), NULL, &buf_len, NULL, 0); 2657 if (error != 0) { 2658 warn("sysctl KERN_LOCKF size"); 2659 goto fail; 2660 } 2661 buf_len *= 2; 2662 buf = malloc(buf_len); 2663 if (buf == NULL) { 2664 warn("malloc"); 2665 goto fail; 2666 } 2667 error = sysctl(kl_name, nitems(kl_name), buf, &buf_len, NULL, 0); 2668 if (error != 0) { 2669 warn("sysctl KERN_LOCKF data"); 2670 goto fail; 2671 } 2672 2673 for (c = buf; (char *)c < (char *)buf + buf_len; 2674 c += kl->kl_structsize) { 2675 kl = (struct kinfo_lockf *)(void *)c; 2676 if (sizeof(*kl) < (size_t)kl->kl_structsize) { 2677 warn("ABI broken"); 2678 goto fail; 2679 } 2680 a = malloc(sizeof(*a)); 2681 if (a == NULL) { 2682 warn("malloc advlock"); 2683 goto fail; 2684 } 2685 switch (kl->kl_rw) { 2686 case KLOCKF_RW_READ: 2687 a->rw = PS_ADVLOCK_RO; 2688 break; 2689 case KLOCKF_RW_WRITE: 2690 a->rw = PS_ADVLOCK_RW; 2691 break; 2692 default: 2693 warn("ABI broken"); 2694 free(a); 2695 goto fail; 2696 } 2697 switch (kl->kl_type) { 2698 case KLOCKF_TYPE_FLOCK: 2699 a->type = PS_ADVLOCK_TYPE_FLOCK; 2700 break; 2701 case KLOCKF_TYPE_PID: 2702 a->type = PS_ADVLOCK_TYPE_PID; 2703 break; 2704 case KLOCKF_TYPE_REMOTE: 2705 a->type = PS_ADVLOCK_TYPE_REMOTE; 2706 break; 2707 default: 2708 warn("ABI broken"); 2709 free(a); 2710 goto fail; 2711 } 2712 a->pid = kl->kl_pid; 2713 a->sysid = kl->kl_sysid; 2714 a->file_fsid = kl->kl_file_fsid; 2715 a->file_rdev = kl->kl_file_rdev; 2716 a->file_fileid = kl->kl_file_fileid; 2717 a->start = kl->kl_start; 2718 a->len = kl->kl_len; 2719 if (kl->kl_path[0] != '\0') { 2720 a->path = strdup(kl->kl_path); 2721 if (a->path == NULL) { 2722 warn("malloc"); 2723 free(a); 2724 goto fail; 2725 } 2726 } else 2727 a->path = NULL; 2728 STAILQ_INSERT_TAIL(res, a, next); 2729 } 2730 2731 free(buf); 2732 return (res); 2733 2734 fail: 2735 free(buf); 2736 procstat_freeadvlock(procstat, res); 2737 return (NULL); 2738 } 2739 2740 struct advlock_list * 2741 procstat_getadvlock(struct procstat *procstat) 2742 { 2743 switch (procstat->type) { 2744 case PROCSTAT_KVM: 2745 warnx("kvm method is not supported"); 2746 return (NULL); 2747 case PROCSTAT_SYSCTL: 2748 return (procstat_getadvlock_sysctl(procstat)); 2749 case PROCSTAT_CORE: 2750 warnx("core method is not supported"); 2751 return (NULL); 2752 default: 2753 warnx("unknown access method: %d", procstat->type); 2754 return (NULL); 2755 } 2756 } 2757 2758 void 2759 procstat_freeadvlock(struct procstat *procstat __unused, 2760 struct advlock_list *lst) 2761 { 2762 struct advlock *a, *a1; 2763 2764 STAILQ_FOREACH_SAFE(a, lst, next, a1) { 2765 free(__DECONST(char *, a->path)); 2766 free(a); 2767 } 2768 free(lst); 2769 } 2770 2771 static rlim_t * 2772 procstat_getrlimitusage_sysctl(pid_t pid, unsigned *cntp) 2773 { 2774 int error, name[4]; 2775 rlim_t *val; 2776 size_t len; 2777 2778 name[0] = CTL_KERN; 2779 name[1] = KERN_PROC; 2780 name[2] = KERN_PROC_RLIMIT_USAGE; 2781 name[3] = pid; 2782 2783 len = 0; 2784 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 2785 if (error == -1) 2786 return (NULL); 2787 val = malloc(len); 2788 if (val == NULL) 2789 return (NULL); 2790 2791 error = sysctl(name, nitems(name), val, &len, NULL, 0); 2792 if (error == -1) { 2793 free(val); 2794 return (NULL); 2795 } 2796 *cntp = len / sizeof(rlim_t); 2797 return (val); 2798 } 2799 2800 rlim_t * 2801 procstat_getrlimitusage(struct procstat *procstat, struct kinfo_proc *kp, 2802 unsigned int *cntp) 2803 { 2804 switch (procstat->type) { 2805 case PROCSTAT_KVM: 2806 warnx("kvm method is not supported"); 2807 return (NULL); 2808 case PROCSTAT_SYSCTL: 2809 return (procstat_getrlimitusage_sysctl(kp->ki_pid, cntp)); 2810 case PROCSTAT_CORE: 2811 warnx("core method is not supported"); 2812 return (NULL); 2813 default: 2814 warnx("unknown access method: %d", procstat->type); 2815 return (NULL); 2816 } 2817 } 2818 2819 void 2820 procstat_freerlimitusage(struct procstat *procstat __unused, rlim_t *resusage) 2821 { 2822 free(resusage); 2823 } 2824 2825 static struct kinfo_knote * 2826 procstat_get_kqueue_info_sysctl(pid_t pid, int kqfd, unsigned int *cntp, 2827 char *errbuf) 2828 { 2829 int error, name[5]; 2830 struct kinfo_knote *val; 2831 size_t len; 2832 2833 name[0] = CTL_KERN; 2834 name[1] = KERN_PROC; 2835 name[2] = KERN_PROC_KQUEUE; 2836 name[3] = pid; 2837 name[4] = kqfd; 2838 2839 len = 0; 2840 error = sysctl(name, nitems(name), NULL, &len, NULL, 0); 2841 if (error == -1) { 2842 snprintf(errbuf, _POSIX2_LINE_MAX, 2843 "KERN_PROC_KQUEUE.pid<%d>.kq<%d> (size q) failed: %s", 2844 pid, kqfd, strerror(errno)); 2845 return (NULL); 2846 } 2847 val = malloc(len); 2848 if (val == NULL) { 2849 snprintf(errbuf, _POSIX2_LINE_MAX, "no memory"); 2850 return (NULL); 2851 } 2852 2853 error = sysctl(name, nitems(name), val, &len, NULL, 0); 2854 if (error == -1) { 2855 snprintf(errbuf, _POSIX2_LINE_MAX, 2856 "KERN_PROC_KQUEUE.pid<%d>.kq<%d> failed: %s", 2857 pid, kqfd, strerror(errno)); 2858 free(val); 2859 return (NULL); 2860 } 2861 *cntp = len / sizeof(*val); 2862 return (val); 2863 } 2864 2865 struct kinfo_knote * 2866 procstat_get_kqueue_info(struct procstat *procstat, 2867 struct kinfo_proc *kp, int kqfd, unsigned int *count, char *errbuf) 2868 { 2869 struct kinfo_knote *kn, *k, *res, *rn; 2870 size_t len, kqn; 2871 2872 switch (procstat->type) { 2873 case PROCSTAT_KVM: 2874 warnx("kvm method is not supported"); 2875 return (NULL); 2876 case PROCSTAT_SYSCTL: 2877 return (procstat_get_kqueue_info_sysctl(kp->ki_pid, kqfd, 2878 count, errbuf)); 2879 case PROCSTAT_CORE: 2880 k = procstat_core_get(procstat->core, PSC_TYPE_KQUEUES, 2881 NULL, &len); 2882 if (k == NULL) { 2883 snprintf(errbuf, _POSIX2_LINE_MAX, 2884 "getting NT_PROCSTAT_KQUEUES note failed"); 2885 *count = 0; 2886 return (NULL); 2887 } 2888 for (kqn = 0, kn = k; kn < k + len / sizeof(*kn); kn++) { 2889 if (kn->knt_kq_fd == kqfd) 2890 kqn++; 2891 } 2892 res = calloc(kqn, sizeof(*res)); 2893 if (res == NULL) { 2894 free(k); 2895 snprintf(errbuf, _POSIX2_LINE_MAX, 2896 "no memory"); 2897 return (NULL); 2898 } 2899 for (kn = k, rn = res; kn < k + len / sizeof(*kn); kn++) { 2900 if (kn->knt_kq_fd != kqfd) 2901 continue; 2902 *rn = *kn; 2903 rn++; 2904 } 2905 *count = kqn; 2906 free(k); 2907 return (res); 2908 default: 2909 warnx("unknown access method: %d", procstat->type); 2910 return (NULL); 2911 } 2912 } 2913 2914 void 2915 procstat_freekqinfo(struct procstat *procstat __unused, struct kinfo_knote *v) 2916 { 2917 free(v); 2918 } 2919