1 /*-
2 * SPDX-License-Identifier: BSD-4-Clause
3 *
4 * Copyright (c) 2017 Dell EMC
5 * Copyright (c) 2009 Stanislav Sedov <stas@FreeBSD.org>
6 * Copyright (c) 1988, 1993
7 * The Regents of the University of California. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
36 */
37
38 #include <sys/param.h>
39 #include <sys/elf.h>
40 #include <sys/time.h>
41 #include <sys/resourcevar.h>
42 #define _WANT_UCRED
43 #include <sys/ucred.h>
44 #undef _WANT_UCRED
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/stat.h>
48 #include <sys/vnode.h>
49 #include <sys/socket.h>
50 #define _WANT_SOCKET
51 #include <sys/socketvar.h>
52 #include <sys/domain.h>
53 #include <sys/protosw.h>
54 #include <sys/un.h>
55 #define _WANT_UNPCB
56 #include <sys/unpcb.h>
57 #include <sys/sysctl.h>
58 #include <sys/tty.h>
59 #include <sys/filedesc.h>
60 #include <sys/queue.h>
61 #define _WANT_FILE
62 #include <sys/file.h>
63 #include <sys/conf.h>
64 #include <sys/ksem.h>
65 #include <sys/mman.h>
66 #include <sys/capsicum.h>
67 #include <sys/ptrace.h>
68 #define _WANT_MOUNT
69 #include <sys/mount.h>
70 #include <sys/filedesc.h>
71 #include <sys/pipe.h>
72 #include <fs/devfs/devfs.h>
73 #include <fs/devfs/devfs_int.h>
74 #include <nfs/nfsproto.h>
75 #include <nfsclient/nfs.h>
76 #include <nfsclient/nfsnode.h>
77
78 #include <vm/vm.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81
82 #include <net/route.h>
83 #include <netinet/in.h>
84 #include <netinet/in_systm.h>
85 #include <netinet/ip.h>
86
87 #include <assert.h>
88 #include <ctype.h>
89 #include <err.h>
90 #include <fcntl.h>
91 #include <kvm.h>
92 #include <libutil.h>
93 #include <limits.h>
94 #include <paths.h>
95 #include <pwd.h>
96 #include <stdio.h>
97 #include <stdlib.h>
98 #include <stddef.h>
99 #include <string.h>
100 #include <unistd.h>
101 #include <netdb.h>
102
103 #include <libprocstat.h>
104 #include "libprocstat_internal.h"
105 #include "common_kvm.h"
106 #include "core.h"
107
108 int statfs(const char *, struct statfs *); /* XXX */
109
110 #define PROCSTAT_KVM 1
111 #define PROCSTAT_SYSCTL 2
112 #define PROCSTAT_CORE 3
113
114 static char **getargv(struct procstat *procstat, struct kinfo_proc *kp,
115 size_t nchr, int env);
116 static char *getmnton(kvm_t *kd, struct mount *m);
117 static struct kinfo_vmentry * kinfo_getvmmap_core(struct procstat_core *core,
118 int *cntp);
119 static Elf_Auxinfo *procstat_getauxv_core(struct procstat_core *core,
120 unsigned int *cntp);
121 static Elf_Auxinfo *procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp);
122 static struct filestat_list *procstat_getfiles_kvm(
123 struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
124 static struct filestat_list *procstat_getfiles_sysctl(
125 struct procstat *procstat, struct kinfo_proc *kp, int mmapped);
126 static int procstat_get_pipe_info_sysctl(struct filestat *fst,
127 struct pipestat *pipe, char *errbuf);
128 static int procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
129 struct pipestat *pipe, char *errbuf);
130 static int procstat_get_pts_info_sysctl(struct filestat *fst,
131 struct ptsstat *pts, char *errbuf);
132 static int procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
133 struct ptsstat *pts, char *errbuf);
134 static int procstat_get_sem_info_sysctl(struct filestat *fst,
135 struct semstat *sem, char *errbuf);
136 static int procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
137 struct semstat *sem, char *errbuf);
138 static int procstat_get_shm_info_sysctl(struct filestat *fst,
139 struct shmstat *shm, char *errbuf);
140 static int procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
141 struct shmstat *shm, char *errbuf);
142 static int procstat_get_socket_info_sysctl(struct filestat *fst,
143 struct sockstat *sock, char *errbuf);
144 static int procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
145 struct sockstat *sock, char *errbuf);
146 static int to_filestat_flags(int flags);
147 static int procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
148 struct vnstat *vn, char *errbuf);
149 static int procstat_get_vnode_info_sysctl(struct filestat *fst,
150 struct vnstat *vn, char *errbuf);
151 static gid_t *procstat_getgroups_core(struct procstat_core *core,
152 unsigned int *count);
153 static gid_t * procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp,
154 unsigned int *count);
155 static gid_t *procstat_getgroups_sysctl(pid_t pid, unsigned int *count);
156 static struct kinfo_kstack *procstat_getkstack_sysctl(pid_t pid,
157 int *cntp);
158 static int procstat_getosrel_core(struct procstat_core *core,
159 int *osrelp);
160 static int procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp,
161 int *osrelp);
162 static int procstat_getosrel_sysctl(pid_t pid, int *osrelp);
163 static int procstat_getpathname_core(struct procstat_core *core,
164 char *pathname, size_t maxlen);
165 static int procstat_getpathname_sysctl(pid_t pid, char *pathname,
166 size_t maxlen);
167 static int procstat_getrlimit_core(struct procstat_core *core, int which,
168 struct rlimit* rlimit);
169 static int procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp,
170 int which, struct rlimit* rlimit);
171 static int procstat_getrlimit_sysctl(pid_t pid, int which,
172 struct rlimit* rlimit);
173 static int procstat_getumask_core(struct procstat_core *core,
174 unsigned short *maskp);
175 static int procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp,
176 unsigned short *maskp);
177 static int procstat_getumask_sysctl(pid_t pid, unsigned short *maskp);
178 static int vntype2psfsttype(int type);
179
180 void
procstat_close(struct procstat * procstat)181 procstat_close(struct procstat *procstat)
182 {
183
184 assert(procstat);
185 if (procstat->type == PROCSTAT_KVM)
186 kvm_close(procstat->kd);
187 else if (procstat->type == PROCSTAT_CORE)
188 procstat_core_close(procstat->core);
189 procstat_freeargv(procstat);
190 procstat_freeenvv(procstat);
191 free(procstat);
192 }
193
194 struct procstat *
procstat_open_sysctl(void)195 procstat_open_sysctl(void)
196 {
197 struct procstat *procstat;
198
199 procstat = calloc(1, sizeof(*procstat));
200 if (procstat == NULL) {
201 warn("malloc()");
202 return (NULL);
203 }
204 procstat->type = PROCSTAT_SYSCTL;
205 return (procstat);
206 }
207
208 struct procstat *
procstat_open_kvm(const char * nlistf,const char * memf)209 procstat_open_kvm(const char *nlistf, const char *memf)
210 {
211 struct procstat *procstat;
212 kvm_t *kd;
213 char buf[_POSIX2_LINE_MAX];
214
215 procstat = calloc(1, sizeof(*procstat));
216 if (procstat == NULL) {
217 warn("malloc()");
218 return (NULL);
219 }
220 kd = kvm_openfiles(nlistf, memf, NULL, O_RDONLY, buf);
221 if (kd == NULL) {
222 warnx("kvm_openfiles(): %s", buf);
223 free(procstat);
224 return (NULL);
225 }
226 procstat->type = PROCSTAT_KVM;
227 procstat->kd = kd;
228 return (procstat);
229 }
230
231 struct procstat *
procstat_open_core(const char * filename)232 procstat_open_core(const char *filename)
233 {
234 struct procstat *procstat;
235 struct procstat_core *core;
236
237 procstat = calloc(1, sizeof(*procstat));
238 if (procstat == NULL) {
239 warn("malloc()");
240 return (NULL);
241 }
242 core = procstat_core_open(filename);
243 if (core == NULL) {
244 free(procstat);
245 return (NULL);
246 }
247 procstat->type = PROCSTAT_CORE;
248 procstat->core = core;
249 return (procstat);
250 }
251
252 struct kinfo_proc *
procstat_getprocs(struct procstat * procstat,int what,int arg,unsigned int * count)253 procstat_getprocs(struct procstat *procstat, int what, int arg,
254 unsigned int *count)
255 {
256 struct kinfo_proc *p0, *p;
257 size_t len, olen;
258 int name[4];
259 int cnt;
260 int error;
261
262 assert(procstat);
263 assert(count);
264 p = NULL;
265 if (procstat->type == PROCSTAT_KVM) {
266 *count = 0;
267 p0 = kvm_getprocs(procstat->kd, what, arg, &cnt);
268 if (p0 == NULL || cnt <= 0)
269 return (NULL);
270 *count = cnt;
271 len = *count * sizeof(*p);
272 p = malloc(len);
273 if (p == NULL) {
274 warnx("malloc(%zu)", len);
275 goto fail;
276 }
277 bcopy(p0, p, len);
278 return (p);
279 } else if (procstat->type == PROCSTAT_SYSCTL) {
280 len = 0;
281 name[0] = CTL_KERN;
282 name[1] = KERN_PROC;
283 name[2] = what;
284 name[3] = arg;
285 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
286 if (error < 0 && errno != EPERM) {
287 warn("sysctl(kern.proc)");
288 goto fail;
289 }
290 if (len == 0) {
291 warnx("no processes?");
292 goto fail;
293 }
294 do {
295 len += len / 10;
296 p = reallocf(p, len);
297 if (p == NULL) {
298 warnx("reallocf(%zu)", len);
299 goto fail;
300 }
301 olen = len;
302 error = sysctl(name, nitems(name), p, &len, NULL, 0);
303 } while (error < 0 && errno == ENOMEM && olen == len);
304 if (error < 0 && errno != EPERM) {
305 warn("sysctl(kern.proc)");
306 goto fail;
307 }
308 /* Perform simple consistency checks. */
309 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
310 warnx("kinfo_proc structure size mismatch (len = %zu)", len);
311 goto fail;
312 }
313 *count = len / sizeof(*p);
314 return (p);
315 } else if (procstat->type == PROCSTAT_CORE) {
316 p = procstat_core_get(procstat->core, PSC_TYPE_PROC, NULL,
317 &len);
318 if ((len % sizeof(*p)) != 0 || p->ki_structsize != sizeof(*p)) {
319 warnx("kinfo_proc structure size mismatch");
320 goto fail;
321 }
322 *count = len / sizeof(*p);
323 return (p);
324 } else {
325 warnx("unknown access method: %d", procstat->type);
326 return (NULL);
327 }
328 fail:
329 if (p)
330 free(p);
331 return (NULL);
332 }
333
334 void
procstat_freeprocs(struct procstat * procstat __unused,struct kinfo_proc * p)335 procstat_freeprocs(struct procstat *procstat __unused, struct kinfo_proc *p)
336 {
337
338 if (p != NULL)
339 free(p);
340 p = NULL;
341 }
342
343 struct filestat_list *
procstat_getfiles(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)344 procstat_getfiles(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
345 {
346
347 switch (procstat->type) {
348 case PROCSTAT_KVM:
349 return (procstat_getfiles_kvm(procstat, kp, mmapped));
350 case PROCSTAT_SYSCTL:
351 case PROCSTAT_CORE:
352 return (procstat_getfiles_sysctl(procstat, kp, mmapped));
353 default:
354 warnx("unknown access method: %d", procstat->type);
355 return (NULL);
356 }
357 }
358
359 void
procstat_freefiles(struct procstat * procstat,struct filestat_list * head)360 procstat_freefiles(struct procstat *procstat, struct filestat_list *head)
361 {
362 struct filestat *fst, *tmp;
363
364 STAILQ_FOREACH_SAFE(fst, head, next, tmp) {
365 if (fst->fs_path != NULL)
366 free(fst->fs_path);
367 free(fst);
368 }
369 free(head);
370 if (procstat->vmentries != NULL) {
371 free(procstat->vmentries);
372 procstat->vmentries = NULL;
373 }
374 if (procstat->files != NULL) {
375 free(procstat->files);
376 procstat->files = NULL;
377 }
378 }
379
380 static struct filestat *
filestat_new_entry(void * typedep,int type,int fd,int fflags,int uflags,int refcount,off_t offset,char * path,cap_rights_t * cap_rightsp)381 filestat_new_entry(void *typedep, int type, int fd, int fflags, int uflags,
382 int refcount, off_t offset, char *path, cap_rights_t *cap_rightsp)
383 {
384 struct filestat *entry;
385
386 entry = calloc(1, sizeof(*entry));
387 if (entry == NULL) {
388 warn("malloc()");
389 return (NULL);
390 }
391 entry->fs_typedep = typedep;
392 entry->fs_fflags = fflags;
393 entry->fs_uflags = uflags;
394 entry->fs_fd = fd;
395 entry->fs_type = type;
396 entry->fs_ref_count = refcount;
397 entry->fs_offset = offset;
398 entry->fs_path = path;
399 if (cap_rightsp != NULL)
400 entry->fs_cap_rights = *cap_rightsp;
401 else
402 cap_rights_init(&entry->fs_cap_rights);
403 return (entry);
404 }
405
406 static struct vnode *
getctty(kvm_t * kd,struct kinfo_proc * kp)407 getctty(kvm_t *kd, struct kinfo_proc *kp)
408 {
409 struct pgrp pgrp;
410 struct proc proc;
411 struct session sess;
412 int error;
413
414 assert(kp);
415 error = kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
416 sizeof(proc));
417 if (error == 0) {
418 warnx("can't read proc struct at %p for pid %d",
419 kp->ki_paddr, kp->ki_pid);
420 return (NULL);
421 }
422 if (proc.p_pgrp == NULL)
423 return (NULL);
424 error = kvm_read_all(kd, (unsigned long)proc.p_pgrp, &pgrp,
425 sizeof(pgrp));
426 if (error == 0) {
427 warnx("can't read pgrp struct at %p for pid %d",
428 proc.p_pgrp, kp->ki_pid);
429 return (NULL);
430 }
431 error = kvm_read_all(kd, (unsigned long)pgrp.pg_session, &sess,
432 sizeof(sess));
433 if (error == 0) {
434 warnx("can't read session struct at %p for pid %d",
435 pgrp.pg_session, kp->ki_pid);
436 return (NULL);
437 }
438 return (sess.s_ttyvp);
439 }
440
441 static int
procstat_vm_map_reader(void * token,vm_map_entry_t addr,vm_map_entry_t dest)442 procstat_vm_map_reader(void *token, vm_map_entry_t addr, vm_map_entry_t dest)
443 {
444 kvm_t *kd;
445
446 kd = (kvm_t *)token;
447 return (kvm_read_all(kd, (unsigned long)addr, dest, sizeof(*dest)));
448 }
449
450 static struct filestat_list *
procstat_getfiles_kvm(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)451 procstat_getfiles_kvm(struct procstat *procstat, struct kinfo_proc *kp, int mmapped)
452 {
453 struct file file;
454 struct filedesc filed;
455 struct pwddesc pathsd;
456 struct fdescenttbl *fdt;
457 struct pwd pwd;
458 unsigned long pwd_addr;
459 struct vm_map_entry vmentry;
460 struct vm_object object;
461 struct vmspace vmspace;
462 vm_map_entry_t entryp;
463 vm_object_t objp;
464 struct vnode *vp;
465 struct filestat *entry;
466 struct filestat_list *head;
467 kvm_t *kd;
468 void *data;
469 int fflags;
470 unsigned int i;
471 int prot, type;
472 size_t fdt_size;
473 unsigned int nfiles;
474 bool haspwd;
475
476 assert(procstat);
477 kd = procstat->kd;
478 if (kd == NULL)
479 return (NULL);
480 if (kp->ki_fd == NULL || kp->ki_pd == NULL)
481 return (NULL);
482 if (!kvm_read_all(kd, (unsigned long)kp->ki_fd, &filed,
483 sizeof(filed))) {
484 warnx("can't read filedesc at %p", (void *)kp->ki_fd);
485 return (NULL);
486 }
487 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pathsd,
488 sizeof(pathsd))) {
489 warnx("can't read pwddesc at %p", (void *)kp->ki_pd);
490 return (NULL);
491 }
492 haspwd = false;
493 pwd_addr = (unsigned long)(PWDDESC_KVM_LOAD_PWD(&pathsd));
494 if (pwd_addr != 0) {
495 if (!kvm_read_all(kd, pwd_addr, &pwd, sizeof(pwd))) {
496 warnx("can't read fd_pwd at %p", (void *)pwd_addr);
497 return (NULL);
498 }
499 haspwd = true;
500 }
501
502 /*
503 * Allocate list head.
504 */
505 head = malloc(sizeof(*head));
506 if (head == NULL)
507 return (NULL);
508 STAILQ_INIT(head);
509
510 /* root directory vnode, if one. */
511 if (haspwd) {
512 if (pwd.pwd_rdir) {
513 entry = filestat_new_entry(pwd.pwd_rdir, PS_FST_TYPE_VNODE, -1,
514 PS_FST_FFLAG_READ, PS_FST_UFLAG_RDIR, 0, 0, NULL, NULL);
515 if (entry != NULL)
516 STAILQ_INSERT_TAIL(head, entry, next);
517 }
518 /* current working directory vnode. */
519 if (pwd.pwd_cdir) {
520 entry = filestat_new_entry(pwd.pwd_cdir, PS_FST_TYPE_VNODE, -1,
521 PS_FST_FFLAG_READ, PS_FST_UFLAG_CDIR, 0, 0, NULL, NULL);
522 if (entry != NULL)
523 STAILQ_INSERT_TAIL(head, entry, next);
524 }
525 /* jail root, if any. */
526 if (pwd.pwd_jdir) {
527 entry = filestat_new_entry(pwd.pwd_jdir, PS_FST_TYPE_VNODE, -1,
528 PS_FST_FFLAG_READ, PS_FST_UFLAG_JAIL, 0, 0, NULL, NULL);
529 if (entry != NULL)
530 STAILQ_INSERT_TAIL(head, entry, next);
531 }
532 }
533 /* ktrace vnode, if one */
534 if (kp->ki_tracep) {
535 entry = filestat_new_entry(kp->ki_tracep, PS_FST_TYPE_VNODE, -1,
536 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
537 PS_FST_UFLAG_TRACE, 0, 0, NULL, NULL);
538 if (entry != NULL)
539 STAILQ_INSERT_TAIL(head, entry, next);
540 }
541 /* text vnode, if one */
542 if (kp->ki_textvp) {
543 entry = filestat_new_entry(kp->ki_textvp, PS_FST_TYPE_VNODE, -1,
544 PS_FST_FFLAG_READ, PS_FST_UFLAG_TEXT, 0, 0, NULL, NULL);
545 if (entry != NULL)
546 STAILQ_INSERT_TAIL(head, entry, next);
547 }
548 /* Controlling terminal. */
549 if ((vp = getctty(kd, kp)) != NULL) {
550 entry = filestat_new_entry(vp, PS_FST_TYPE_VNODE, -1,
551 PS_FST_FFLAG_READ | PS_FST_FFLAG_WRITE,
552 PS_FST_UFLAG_CTTY, 0, 0, NULL, NULL);
553 if (entry != NULL)
554 STAILQ_INSERT_TAIL(head, entry, next);
555 }
556
557 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, &nfiles,
558 sizeof(nfiles))) {
559 warnx("can't read fd_files at %p", (void *)filed.fd_files);
560 return (NULL);
561 }
562
563 fdt_size = sizeof(*fdt) + nfiles * sizeof(struct filedescent);
564 fdt = malloc(fdt_size);
565 if (fdt == NULL) {
566 warn("malloc(%zu)", fdt_size);
567 goto do_mmapped;
568 }
569 if (!kvm_read_all(kd, (unsigned long)filed.fd_files, fdt, fdt_size)) {
570 warnx("cannot read file structures at %p", (void *)filed.fd_files);
571 free(fdt);
572 goto do_mmapped;
573 }
574 for (i = 0; i < nfiles; i++) {
575 if (fdt->fdt_ofiles[i].fde_file == NULL) {
576 continue;
577 }
578 if (!kvm_read_all(kd, (unsigned long)fdt->fdt_ofiles[i].fde_file, &file,
579 sizeof(struct file))) {
580 warnx("can't read file %d at %p", i,
581 (void *)fdt->fdt_ofiles[i].fde_file);
582 continue;
583 }
584 switch (file.f_type) {
585 case DTYPE_VNODE:
586 type = PS_FST_TYPE_VNODE;
587 data = file.f_vnode;
588 break;
589 case DTYPE_SOCKET:
590 type = PS_FST_TYPE_SOCKET;
591 data = file.f_data;
592 break;
593 case DTYPE_PIPE:
594 type = PS_FST_TYPE_PIPE;
595 data = file.f_data;
596 break;
597 case DTYPE_FIFO:
598 type = PS_FST_TYPE_FIFO;
599 data = file.f_vnode;
600 break;
601 #ifdef DTYPE_PTS
602 case DTYPE_PTS:
603 type = PS_FST_TYPE_PTS;
604 data = file.f_data;
605 break;
606 #endif
607 case DTYPE_SEM:
608 type = PS_FST_TYPE_SEM;
609 data = file.f_data;
610 break;
611 case DTYPE_SHM:
612 type = PS_FST_TYPE_SHM;
613 data = file.f_data;
614 break;
615 case DTYPE_PROCDESC:
616 type = PS_FST_TYPE_PROCDESC;
617 data = file.f_data;
618 break;
619 case DTYPE_DEV:
620 type = PS_FST_TYPE_DEV;
621 data = file.f_data;
622 break;
623 case DTYPE_EVENTFD:
624 type = PS_FST_TYPE_EVENTFD;
625 data = file.f_data;
626 break;
627 default:
628 continue;
629 }
630 /* XXXRW: No capability rights support for kvm yet. */
631 entry = filestat_new_entry(data, type, i,
632 to_filestat_flags(file.f_flag), 0, 0, 0, NULL, NULL);
633 if (entry != NULL)
634 STAILQ_INSERT_TAIL(head, entry, next);
635 }
636 free(fdt);
637
638 do_mmapped:
639
640 /*
641 * Process mmapped files if requested.
642 */
643 if (mmapped) {
644 if (!kvm_read_all(kd, (unsigned long)kp->ki_vmspace, &vmspace,
645 sizeof(vmspace))) {
646 warnx("can't read vmspace at %p",
647 (void *)kp->ki_vmspace);
648 goto exit;
649 }
650
651 vmentry = vmspace.vm_map.header;
652 for (entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader);
653 entryp != NULL && entryp != &kp->ki_vmspace->vm_map.header;
654 entryp = vm_map_entry_read_succ(kd, &vmentry, procstat_vm_map_reader)) {
655 if (vmentry.eflags & MAP_ENTRY_IS_SUB_MAP)
656 continue;
657 if ((objp = vmentry.object.vm_object) == NULL)
658 continue;
659 for (; objp; objp = object.backing_object) {
660 if (!kvm_read_all(kd, (unsigned long)objp,
661 &object, sizeof(object))) {
662 warnx("can't read vm_object at %p",
663 (void *)objp);
664 break;
665 }
666 }
667
668 /* We want only vnode objects. */
669 if (object.type != OBJT_VNODE)
670 continue;
671
672 prot = vmentry.protection;
673 fflags = 0;
674 if (prot & VM_PROT_READ)
675 fflags = PS_FST_FFLAG_READ;
676 if ((vmentry.eflags & MAP_ENTRY_COW) == 0 &&
677 prot & VM_PROT_WRITE)
678 fflags |= PS_FST_FFLAG_WRITE;
679
680 /*
681 * Create filestat entry.
682 */
683 entry = filestat_new_entry(object.handle,
684 PS_FST_TYPE_VNODE, -1, fflags,
685 PS_FST_UFLAG_MMAP, 0, 0, NULL, NULL);
686 if (entry != NULL)
687 STAILQ_INSERT_TAIL(head, entry, next);
688 }
689 if (entryp == NULL)
690 warnx("can't read vm_map_entry");
691 }
692 exit:
693 return (head);
694 }
695
696 /*
697 * kinfo types to filestat translation.
698 */
699 static int
kinfo_type2fst(int kftype)700 kinfo_type2fst(int kftype)
701 {
702 static struct {
703 int kf_type;
704 int fst_type;
705 } kftypes2fst[] = {
706 { KF_TYPE_PROCDESC, PS_FST_TYPE_PROCDESC },
707 { KF_TYPE_DEV, PS_FST_TYPE_DEV },
708 { KF_TYPE_FIFO, PS_FST_TYPE_FIFO },
709 { KF_TYPE_KQUEUE, PS_FST_TYPE_KQUEUE },
710 { KF_TYPE_MQUEUE, PS_FST_TYPE_MQUEUE },
711 { KF_TYPE_NONE, PS_FST_TYPE_NONE },
712 { KF_TYPE_PIPE, PS_FST_TYPE_PIPE },
713 { KF_TYPE_PTS, PS_FST_TYPE_PTS },
714 { KF_TYPE_SEM, PS_FST_TYPE_SEM },
715 { KF_TYPE_SHM, PS_FST_TYPE_SHM },
716 { KF_TYPE_SOCKET, PS_FST_TYPE_SOCKET },
717 { KF_TYPE_VNODE, PS_FST_TYPE_VNODE },
718 { KF_TYPE_EVENTFD, PS_FST_TYPE_EVENTFD },
719 { KF_TYPE_UNKNOWN, PS_FST_TYPE_UNKNOWN }
720 };
721 #define NKFTYPES (sizeof(kftypes2fst) / sizeof(*kftypes2fst))
722 unsigned int i;
723
724 for (i = 0; i < NKFTYPES; i++)
725 if (kftypes2fst[i].kf_type == kftype)
726 break;
727 if (i == NKFTYPES)
728 return (PS_FST_TYPE_UNKNOWN);
729 return (kftypes2fst[i].fst_type);
730 }
731
732 /*
733 * kinfo flags to filestat translation.
734 */
735 static int
kinfo_fflags2fst(int kfflags)736 kinfo_fflags2fst(int kfflags)
737 {
738 static struct {
739 int kf_flag;
740 int fst_flag;
741 } kfflags2fst[] = {
742 { KF_FLAG_APPEND, PS_FST_FFLAG_APPEND },
743 { KF_FLAG_ASYNC, PS_FST_FFLAG_ASYNC },
744 { KF_FLAG_CREAT, PS_FST_FFLAG_CREAT },
745 { KF_FLAG_DIRECT, PS_FST_FFLAG_DIRECT },
746 { KF_FLAG_EXCL, PS_FST_FFLAG_EXCL },
747 { KF_FLAG_EXEC, PS_FST_FFLAG_EXEC },
748 { KF_FLAG_EXLOCK, PS_FST_FFLAG_EXLOCK },
749 { KF_FLAG_FSYNC, PS_FST_FFLAG_SYNC },
750 { KF_FLAG_HASLOCK, PS_FST_FFLAG_HASLOCK },
751 { KF_FLAG_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
752 { KF_FLAG_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
753 { KF_FLAG_READ, PS_FST_FFLAG_READ },
754 { KF_FLAG_SHLOCK, PS_FST_FFLAG_SHLOCK },
755 { KF_FLAG_TRUNC, PS_FST_FFLAG_TRUNC },
756 { KF_FLAG_WRITE, PS_FST_FFLAG_WRITE }
757 };
758 #define NKFFLAGS (sizeof(kfflags2fst) / sizeof(*kfflags2fst))
759 unsigned int i;
760 int flags;
761
762 flags = 0;
763 for (i = 0; i < NKFFLAGS; i++)
764 if ((kfflags & kfflags2fst[i].kf_flag) != 0)
765 flags |= kfflags2fst[i].fst_flag;
766 return (flags);
767 }
768
769 static int
kinfo_uflags2fst(int fd)770 kinfo_uflags2fst(int fd)
771 {
772
773 switch (fd) {
774 case KF_FD_TYPE_CTTY:
775 return (PS_FST_UFLAG_CTTY);
776 case KF_FD_TYPE_CWD:
777 return (PS_FST_UFLAG_CDIR);
778 case KF_FD_TYPE_JAIL:
779 return (PS_FST_UFLAG_JAIL);
780 case KF_FD_TYPE_TEXT:
781 return (PS_FST_UFLAG_TEXT);
782 case KF_FD_TYPE_TRACE:
783 return (PS_FST_UFLAG_TRACE);
784 case KF_FD_TYPE_ROOT:
785 return (PS_FST_UFLAG_RDIR);
786 }
787 return (0);
788 }
789
790 static struct kinfo_file *
kinfo_getfile_core(struct procstat_core * core,int * cntp)791 kinfo_getfile_core(struct procstat_core *core, int *cntp)
792 {
793 int cnt;
794 size_t len;
795 char *buf, *bp, *eb;
796 struct kinfo_file *kif, *kp, *kf;
797
798 buf = procstat_core_get(core, PSC_TYPE_FILES, NULL, &len);
799 if (buf == NULL)
800 return (NULL);
801 /*
802 * XXXMG: The code below is just copy&past from libutil.
803 * The code duplication can be avoided if libutil
804 * is extended to provide something like:
805 * struct kinfo_file *kinfo_getfile_from_buf(const char *buf,
806 * size_t len, int *cntp);
807 */
808
809 /* Pass 1: count items */
810 cnt = 0;
811 bp = buf;
812 eb = buf + len;
813 while (bp < eb) {
814 kf = (struct kinfo_file *)(uintptr_t)bp;
815 if (kf->kf_structsize == 0)
816 break;
817 bp += kf->kf_structsize;
818 cnt++;
819 }
820
821 kif = calloc(cnt, sizeof(*kif));
822 if (kif == NULL) {
823 free(buf);
824 return (NULL);
825 }
826 bp = buf;
827 eb = buf + len;
828 kp = kif;
829 /* Pass 2: unpack */
830 while (bp < eb) {
831 kf = (struct kinfo_file *)(uintptr_t)bp;
832 if (kf->kf_structsize == 0)
833 break;
834 /* Copy/expand into pre-zeroed buffer */
835 memcpy(kp, kf, kf->kf_structsize);
836 /* Advance to next packed record */
837 bp += kf->kf_structsize;
838 /* Set field size to fixed length, advance */
839 kp->kf_structsize = sizeof(*kp);
840 kp++;
841 }
842 free(buf);
843 *cntp = cnt;
844 return (kif); /* Caller must free() return value */
845 }
846
847 static struct filestat_list *
procstat_getfiles_sysctl(struct procstat * procstat,struct kinfo_proc * kp,int mmapped)848 procstat_getfiles_sysctl(struct procstat *procstat, struct kinfo_proc *kp,
849 int mmapped)
850 {
851 struct kinfo_file *kif, *files;
852 struct kinfo_vmentry *kve, *vmentries;
853 struct filestat_list *head;
854 struct filestat *entry;
855 char *path;
856 off_t offset;
857 int cnt, fd, fflags;
858 int i, type, uflags;
859 int refcount;
860 cap_rights_t cap_rights;
861
862 assert(kp);
863 switch (procstat->type) {
864 case PROCSTAT_SYSCTL:
865 files = kinfo_getfile(kp->ki_pid, &cnt);
866 break;
867 case PROCSTAT_CORE:
868 files = kinfo_getfile_core(procstat->core, &cnt);
869 break;
870 default:
871 assert(!"invalid type");
872 }
873 if (files == NULL && errno != EPERM) {
874 warn("kinfo_getfile()");
875 return (NULL);
876 }
877 procstat->files = files;
878
879 /*
880 * Allocate list head.
881 */
882 head = malloc(sizeof(*head));
883 if (head == NULL)
884 return (NULL);
885 STAILQ_INIT(head);
886 for (i = 0; i < cnt; i++) {
887 kif = &files[i];
888
889 type = kinfo_type2fst(kif->kf_type);
890 fd = kif->kf_fd >= 0 ? kif->kf_fd : -1;
891 fflags = kinfo_fflags2fst(kif->kf_flags);
892 uflags = kinfo_uflags2fst(kif->kf_fd);
893 refcount = kif->kf_ref_count;
894 offset = kif->kf_offset;
895 if (*kif->kf_path != '\0')
896 path = strdup(kif->kf_path);
897 else
898 path = NULL;
899 cap_rights = kif->kf_cap_rights;
900
901 /*
902 * Create filestat entry.
903 */
904 entry = filestat_new_entry(kif, type, fd, fflags, uflags,
905 refcount, offset, path, &cap_rights);
906 if (entry != NULL)
907 STAILQ_INSERT_TAIL(head, entry, next);
908 }
909 if (mmapped != 0) {
910 vmentries = procstat_getvmmap(procstat, kp, &cnt);
911 procstat->vmentries = vmentries;
912 if (vmentries == NULL || cnt == 0)
913 goto fail;
914 for (i = 0; i < cnt; i++) {
915 kve = &vmentries[i];
916 if (kve->kve_type != KVME_TYPE_VNODE)
917 continue;
918 fflags = 0;
919 if (kve->kve_protection & KVME_PROT_READ)
920 fflags = PS_FST_FFLAG_READ;
921 if ((kve->kve_flags & KVME_FLAG_COW) == 0 &&
922 kve->kve_protection & KVME_PROT_WRITE)
923 fflags |= PS_FST_FFLAG_WRITE;
924 offset = kve->kve_offset;
925 refcount = kve->kve_ref_count;
926 if (*kve->kve_path != '\0')
927 path = strdup(kve->kve_path);
928 else
929 path = NULL;
930 entry = filestat_new_entry(kve, PS_FST_TYPE_VNODE, -1,
931 fflags, PS_FST_UFLAG_MMAP, refcount, offset, path,
932 NULL);
933 if (entry != NULL)
934 STAILQ_INSERT_TAIL(head, entry, next);
935 }
936 }
937 fail:
938 return (head);
939 }
940
941 int
procstat_get_pipe_info(struct procstat * procstat,struct filestat * fst,struct pipestat * ps,char * errbuf)942 procstat_get_pipe_info(struct procstat *procstat, struct filestat *fst,
943 struct pipestat *ps, char *errbuf)
944 {
945
946 assert(ps);
947 if (procstat->type == PROCSTAT_KVM) {
948 return (procstat_get_pipe_info_kvm(procstat->kd, fst, ps,
949 errbuf));
950 } else if (procstat->type == PROCSTAT_SYSCTL ||
951 procstat->type == PROCSTAT_CORE) {
952 return (procstat_get_pipe_info_sysctl(fst, ps, errbuf));
953 } else {
954 warnx("unknown access method: %d", procstat->type);
955 if (errbuf != NULL)
956 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
957 return (1);
958 }
959 }
960
961 static int
procstat_get_pipe_info_kvm(kvm_t * kd,struct filestat * fst,struct pipestat * ps,char * errbuf)962 procstat_get_pipe_info_kvm(kvm_t *kd, struct filestat *fst,
963 struct pipestat *ps, char *errbuf)
964 {
965 struct pipe pi;
966 void *pipep;
967
968 assert(kd);
969 assert(ps);
970 assert(fst);
971 bzero(ps, sizeof(*ps));
972 pipep = fst->fs_typedep;
973 if (pipep == NULL)
974 goto fail;
975 if (!kvm_read_all(kd, (unsigned long)pipep, &pi, sizeof(struct pipe))) {
976 warnx("can't read pipe at %p", (void *)pipep);
977 goto fail;
978 }
979 ps->addr = (uintptr_t)pipep;
980 ps->peer = (uintptr_t)pi.pipe_peer;
981 ps->buffer_cnt = pi.pipe_buffer.cnt;
982 return (0);
983
984 fail:
985 if (errbuf != NULL)
986 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
987 return (1);
988 }
989
990 static int
procstat_get_pipe_info_sysctl(struct filestat * fst,struct pipestat * ps,char * errbuf __unused)991 procstat_get_pipe_info_sysctl(struct filestat *fst, struct pipestat *ps,
992 char *errbuf __unused)
993 {
994 struct kinfo_file *kif;
995
996 assert(ps);
997 assert(fst);
998 bzero(ps, sizeof(*ps));
999 kif = fst->fs_typedep;
1000 if (kif == NULL)
1001 return (1);
1002 ps->addr = kif->kf_un.kf_pipe.kf_pipe_addr;
1003 ps->peer = kif->kf_un.kf_pipe.kf_pipe_peer;
1004 ps->buffer_cnt = kif->kf_un.kf_pipe.kf_pipe_buffer_cnt;
1005 return (0);
1006 }
1007
1008 int
procstat_get_pts_info(struct procstat * procstat,struct filestat * fst,struct ptsstat * pts,char * errbuf)1009 procstat_get_pts_info(struct procstat *procstat, struct filestat *fst,
1010 struct ptsstat *pts, char *errbuf)
1011 {
1012
1013 assert(pts);
1014 if (procstat->type == PROCSTAT_KVM) {
1015 return (procstat_get_pts_info_kvm(procstat->kd, fst, pts,
1016 errbuf));
1017 } else if (procstat->type == PROCSTAT_SYSCTL ||
1018 procstat->type == PROCSTAT_CORE) {
1019 return (procstat_get_pts_info_sysctl(fst, pts, errbuf));
1020 } else {
1021 warnx("unknown access method: %d", procstat->type);
1022 if (errbuf != NULL)
1023 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1024 return (1);
1025 }
1026 }
1027
1028 static int
procstat_get_pts_info_kvm(kvm_t * kd,struct filestat * fst,struct ptsstat * pts,char * errbuf)1029 procstat_get_pts_info_kvm(kvm_t *kd, struct filestat *fst,
1030 struct ptsstat *pts, char *errbuf)
1031 {
1032 struct tty tty;
1033 void *ttyp;
1034
1035 assert(kd);
1036 assert(pts);
1037 assert(fst);
1038 bzero(pts, sizeof(*pts));
1039 ttyp = fst->fs_typedep;
1040 if (ttyp == NULL)
1041 goto fail;
1042 if (!kvm_read_all(kd, (unsigned long)ttyp, &tty, sizeof(struct tty))) {
1043 warnx("can't read tty at %p", (void *)ttyp);
1044 goto fail;
1045 }
1046 pts->dev = dev2udev(kd, tty.t_dev);
1047 (void)kdevtoname(kd, tty.t_dev, pts->devname);
1048 return (0);
1049
1050 fail:
1051 if (errbuf != NULL)
1052 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1053 return (1);
1054 }
1055
1056 static int
procstat_get_pts_info_sysctl(struct filestat * fst,struct ptsstat * pts,char * errbuf __unused)1057 procstat_get_pts_info_sysctl(struct filestat *fst, struct ptsstat *pts,
1058 char *errbuf __unused)
1059 {
1060 struct kinfo_file *kif;
1061
1062 assert(pts);
1063 assert(fst);
1064 bzero(pts, sizeof(*pts));
1065 kif = fst->fs_typedep;
1066 if (kif == NULL)
1067 return (0);
1068 pts->dev = kif->kf_un.kf_pts.kf_pts_dev;
1069 strlcpy(pts->devname, kif->kf_path, sizeof(pts->devname));
1070 return (0);
1071 }
1072
1073 int
procstat_get_sem_info(struct procstat * procstat,struct filestat * fst,struct semstat * sem,char * errbuf)1074 procstat_get_sem_info(struct procstat *procstat, struct filestat *fst,
1075 struct semstat *sem, char *errbuf)
1076 {
1077
1078 assert(sem);
1079 if (procstat->type == PROCSTAT_KVM) {
1080 return (procstat_get_sem_info_kvm(procstat->kd, fst, sem,
1081 errbuf));
1082 } else if (procstat->type == PROCSTAT_SYSCTL ||
1083 procstat->type == PROCSTAT_CORE) {
1084 return (procstat_get_sem_info_sysctl(fst, sem, errbuf));
1085 } else {
1086 warnx("unknown access method: %d", procstat->type);
1087 if (errbuf != NULL)
1088 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1089 return (1);
1090 }
1091 }
1092
1093 static int
procstat_get_sem_info_kvm(kvm_t * kd,struct filestat * fst,struct semstat * sem,char * errbuf)1094 procstat_get_sem_info_kvm(kvm_t *kd, struct filestat *fst,
1095 struct semstat *sem, char *errbuf)
1096 {
1097 struct ksem ksem;
1098 void *ksemp;
1099 char *path;
1100 int i;
1101
1102 assert(kd);
1103 assert(sem);
1104 assert(fst);
1105 bzero(sem, sizeof(*sem));
1106 ksemp = fst->fs_typedep;
1107 if (ksemp == NULL)
1108 goto fail;
1109 if (!kvm_read_all(kd, (unsigned long)ksemp, &ksem,
1110 sizeof(struct ksem))) {
1111 warnx("can't read ksem at %p", (void *)ksemp);
1112 goto fail;
1113 }
1114 sem->mode = S_IFREG | ksem.ks_mode;
1115 sem->value = ksem.ks_value;
1116 if (fst->fs_path == NULL && ksem.ks_path != NULL) {
1117 path = malloc(MAXPATHLEN);
1118 for (i = 0; i < MAXPATHLEN - 1; i++) {
1119 if (!kvm_read_all(kd, (unsigned long)ksem.ks_path + i,
1120 path + i, 1))
1121 break;
1122 if (path[i] == '\0')
1123 break;
1124 }
1125 path[i] = '\0';
1126 if (i == 0)
1127 free(path);
1128 else
1129 fst->fs_path = path;
1130 }
1131 return (0);
1132
1133 fail:
1134 if (errbuf != NULL)
1135 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1136 return (1);
1137 }
1138
1139 static int
procstat_get_sem_info_sysctl(struct filestat * fst,struct semstat * sem,char * errbuf __unused)1140 procstat_get_sem_info_sysctl(struct filestat *fst, struct semstat *sem,
1141 char *errbuf __unused)
1142 {
1143 struct kinfo_file *kif;
1144
1145 assert(sem);
1146 assert(fst);
1147 bzero(sem, sizeof(*sem));
1148 kif = fst->fs_typedep;
1149 if (kif == NULL)
1150 return (0);
1151 sem->value = kif->kf_un.kf_sem.kf_sem_value;
1152 sem->mode = kif->kf_un.kf_sem.kf_sem_mode;
1153 return (0);
1154 }
1155
1156 int
procstat_get_shm_info(struct procstat * procstat,struct filestat * fst,struct shmstat * shm,char * errbuf)1157 procstat_get_shm_info(struct procstat *procstat, struct filestat *fst,
1158 struct shmstat *shm, char *errbuf)
1159 {
1160
1161 assert(shm);
1162 if (procstat->type == PROCSTAT_KVM) {
1163 return (procstat_get_shm_info_kvm(procstat->kd, fst, shm,
1164 errbuf));
1165 } else if (procstat->type == PROCSTAT_SYSCTL ||
1166 procstat->type == PROCSTAT_CORE) {
1167 return (procstat_get_shm_info_sysctl(fst, shm, errbuf));
1168 } else {
1169 warnx("unknown access method: %d", procstat->type);
1170 if (errbuf != NULL)
1171 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1172 return (1);
1173 }
1174 }
1175
1176 static int
procstat_get_shm_info_kvm(kvm_t * kd,struct filestat * fst,struct shmstat * shm,char * errbuf)1177 procstat_get_shm_info_kvm(kvm_t *kd, struct filestat *fst,
1178 struct shmstat *shm, char *errbuf)
1179 {
1180 struct shmfd shmfd;
1181 void *shmfdp;
1182 char *path;
1183 int i;
1184
1185 assert(kd);
1186 assert(shm);
1187 assert(fst);
1188 bzero(shm, sizeof(*shm));
1189 shmfdp = fst->fs_typedep;
1190 if (shmfdp == NULL)
1191 goto fail;
1192 if (!kvm_read_all(kd, (unsigned long)shmfdp, &shmfd,
1193 sizeof(struct shmfd))) {
1194 warnx("can't read shmfd at %p", (void *)shmfdp);
1195 goto fail;
1196 }
1197 shm->mode = S_IFREG | shmfd.shm_mode;
1198 shm->size = shmfd.shm_size;
1199 if (fst->fs_path == NULL && shmfd.shm_path != NULL) {
1200 path = malloc(MAXPATHLEN);
1201 for (i = 0; i < MAXPATHLEN - 1; i++) {
1202 if (!kvm_read_all(kd, (unsigned long)shmfd.shm_path + i,
1203 path + i, 1))
1204 break;
1205 if (path[i] == '\0')
1206 break;
1207 }
1208 path[i] = '\0';
1209 if (i == 0)
1210 free(path);
1211 else
1212 fst->fs_path = path;
1213 }
1214 return (0);
1215
1216 fail:
1217 if (errbuf != NULL)
1218 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1219 return (1);
1220 }
1221
1222 static int
procstat_get_shm_info_sysctl(struct filestat * fst,struct shmstat * shm,char * errbuf __unused)1223 procstat_get_shm_info_sysctl(struct filestat *fst, struct shmstat *shm,
1224 char *errbuf __unused)
1225 {
1226 struct kinfo_file *kif;
1227
1228 assert(shm);
1229 assert(fst);
1230 bzero(shm, sizeof(*shm));
1231 kif = fst->fs_typedep;
1232 if (kif == NULL)
1233 return (0);
1234 shm->size = kif->kf_un.kf_file.kf_file_size;
1235 shm->mode = kif->kf_un.kf_file.kf_file_mode;
1236 return (0);
1237 }
1238
1239 int
procstat_get_vnode_info(struct procstat * procstat,struct filestat * fst,struct vnstat * vn,char * errbuf)1240 procstat_get_vnode_info(struct procstat *procstat, struct filestat *fst,
1241 struct vnstat *vn, char *errbuf)
1242 {
1243
1244 assert(vn);
1245 if (procstat->type == PROCSTAT_KVM) {
1246 return (procstat_get_vnode_info_kvm(procstat->kd, fst, vn,
1247 errbuf));
1248 } else if (procstat->type == PROCSTAT_SYSCTL ||
1249 procstat->type == PROCSTAT_CORE) {
1250 return (procstat_get_vnode_info_sysctl(fst, vn, errbuf));
1251 } else {
1252 warnx("unknown access method: %d", procstat->type);
1253 if (errbuf != NULL)
1254 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1255 return (1);
1256 }
1257 }
1258
1259 static int
procstat_get_vnode_info_kvm(kvm_t * kd,struct filestat * fst,struct vnstat * vn,char * errbuf)1260 procstat_get_vnode_info_kvm(kvm_t *kd, struct filestat *fst,
1261 struct vnstat *vn, char *errbuf)
1262 {
1263 /* Filesystem specific handlers. */
1264 #define FSTYPE(fst) {#fst, fst##_filestat}
1265 struct {
1266 const char *tag;
1267 int (*handler)(kvm_t *kd, struct vnode *vp,
1268 struct vnstat *vn);
1269 } fstypes[] = {
1270 FSTYPE(devfs),
1271 FSTYPE(isofs),
1272 FSTYPE(msdosfs),
1273 FSTYPE(nfs),
1274 FSTYPE(smbfs),
1275 FSTYPE(udf),
1276 FSTYPE(ufs),
1277 #ifdef LIBPROCSTAT_ZFS
1278 FSTYPE(zfs),
1279 #endif
1280 };
1281 #define NTYPES (sizeof(fstypes) / sizeof(*fstypes))
1282 struct vnode vnode;
1283 char tagstr[12];
1284 void *vp;
1285 int error;
1286 unsigned int i;
1287
1288 assert(kd);
1289 assert(vn);
1290 assert(fst);
1291 vp = fst->fs_typedep;
1292 if (vp == NULL)
1293 goto fail;
1294 error = kvm_read_all(kd, (unsigned long)vp, &vnode, sizeof(vnode));
1295 if (error == 0) {
1296 warnx("can't read vnode at %p", (void *)vp);
1297 goto fail;
1298 }
1299 bzero(vn, sizeof(*vn));
1300 vn->vn_type = vntype2psfsttype(vnode.v_type);
1301 if (vnode.v_type == VNON || vnode.v_type == VBAD)
1302 return (0);
1303 error = kvm_read_all(kd, (unsigned long)vnode.v_lock.lock_object.lo_name,
1304 tagstr, sizeof(tagstr));
1305 if (error == 0) {
1306 warnx("can't read lo_name at %p", (void *)vp);
1307 goto fail;
1308 }
1309 tagstr[sizeof(tagstr) - 1] = '\0';
1310
1311 /*
1312 * Find appropriate handler.
1313 */
1314 for (i = 0; i < NTYPES; i++)
1315 if (!strcmp(fstypes[i].tag, tagstr)) {
1316 if (fstypes[i].handler(kd, &vnode, vn) != 0) {
1317 goto fail;
1318 }
1319 break;
1320 }
1321 if (i == NTYPES) {
1322 if (errbuf != NULL)
1323 snprintf(errbuf, _POSIX2_LINE_MAX, "?(%s)", tagstr);
1324 return (1);
1325 }
1326 vn->vn_mntdir = getmnton(kd, vnode.v_mount);
1327 if ((vnode.v_type == VBLK || vnode.v_type == VCHR) &&
1328 vnode.v_rdev != NULL){
1329 vn->vn_dev = dev2udev(kd, vnode.v_rdev);
1330 (void)kdevtoname(kd, vnode.v_rdev, vn->vn_devname);
1331 } else {
1332 vn->vn_dev = -1;
1333 }
1334 return (0);
1335
1336 fail:
1337 if (errbuf != NULL)
1338 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1339 return (1);
1340 }
1341
1342 /*
1343 * kinfo vnode type to filestat translation.
1344 */
1345 static int
kinfo_vtype2fst(int kfvtype)1346 kinfo_vtype2fst(int kfvtype)
1347 {
1348 static struct {
1349 int kf_vtype;
1350 int fst_vtype;
1351 } kfvtypes2fst[] = {
1352 { KF_VTYPE_VBAD, PS_FST_VTYPE_VBAD },
1353 { KF_VTYPE_VBLK, PS_FST_VTYPE_VBLK },
1354 { KF_VTYPE_VCHR, PS_FST_VTYPE_VCHR },
1355 { KF_VTYPE_VDIR, PS_FST_VTYPE_VDIR },
1356 { KF_VTYPE_VFIFO, PS_FST_VTYPE_VFIFO },
1357 { KF_VTYPE_VLNK, PS_FST_VTYPE_VLNK },
1358 { KF_VTYPE_VNON, PS_FST_VTYPE_VNON },
1359 { KF_VTYPE_VREG, PS_FST_VTYPE_VREG },
1360 { KF_VTYPE_VSOCK, PS_FST_VTYPE_VSOCK }
1361 };
1362 #define NKFVTYPES (sizeof(kfvtypes2fst) / sizeof(*kfvtypes2fst))
1363 unsigned int i;
1364
1365 for (i = 0; i < NKFVTYPES; i++)
1366 if (kfvtypes2fst[i].kf_vtype == kfvtype)
1367 break;
1368 if (i == NKFVTYPES)
1369 return (PS_FST_VTYPE_UNKNOWN);
1370 return (kfvtypes2fst[i].fst_vtype);
1371 }
1372
1373 static int
procstat_get_vnode_info_sysctl(struct filestat * fst,struct vnstat * vn,char * errbuf)1374 procstat_get_vnode_info_sysctl(struct filestat *fst, struct vnstat *vn,
1375 char *errbuf)
1376 {
1377 struct statfs stbuf;
1378 struct kinfo_file *kif;
1379 struct kinfo_vmentry *kve;
1380 char *name, *path;
1381 uint64_t fileid;
1382 uint64_t size;
1383 uint64_t fsid;
1384 uint64_t rdev;
1385 uint16_t mode;
1386 int vntype;
1387 int status;
1388
1389 assert(fst);
1390 assert(vn);
1391 bzero(vn, sizeof(*vn));
1392 if (fst->fs_typedep == NULL)
1393 return (1);
1394 if (fst->fs_uflags & PS_FST_UFLAG_MMAP) {
1395 kve = fst->fs_typedep;
1396 fileid = kve->kve_vn_fileid;
1397 fsid = kve->kve_vn_fsid;
1398 mode = kve->kve_vn_mode;
1399 path = kve->kve_path;
1400 rdev = kve->kve_vn_rdev;
1401 size = kve->kve_vn_size;
1402 vntype = kinfo_vtype2fst(kve->kve_vn_type);
1403 status = kve->kve_status;
1404 } else {
1405 kif = fst->fs_typedep;
1406 fileid = kif->kf_un.kf_file.kf_file_fileid;
1407 fsid = kif->kf_un.kf_file.kf_file_fsid;
1408 mode = kif->kf_un.kf_file.kf_file_mode;
1409 path = kif->kf_path;
1410 rdev = kif->kf_un.kf_file.kf_file_rdev;
1411 size = kif->kf_un.kf_file.kf_file_size;
1412 vntype = kinfo_vtype2fst(kif->kf_vnode_type);
1413 status = kif->kf_status;
1414 }
1415 vn->vn_type = vntype;
1416 if (vntype == PS_FST_VTYPE_VNON || vntype == PS_FST_VTYPE_VBAD)
1417 return (0);
1418 if ((status & KF_ATTR_VALID) == 0) {
1419 if (errbuf != NULL) {
1420 snprintf(errbuf, _POSIX2_LINE_MAX,
1421 "? (no info available)");
1422 }
1423 return (1);
1424 }
1425 if (path && *path) {
1426 statfs(path, &stbuf);
1427 vn->vn_mntdir = strdup(stbuf.f_mntonname);
1428 } else
1429 vn->vn_mntdir = strdup("-");
1430 vn->vn_dev = rdev;
1431 if (vntype == PS_FST_VTYPE_VBLK) {
1432 name = devname(rdev, S_IFBLK);
1433 if (name != NULL)
1434 strlcpy(vn->vn_devname, name,
1435 sizeof(vn->vn_devname));
1436 } else if (vntype == PS_FST_VTYPE_VCHR) {
1437 name = devname(vn->vn_dev, S_IFCHR);
1438 if (name != NULL)
1439 strlcpy(vn->vn_devname, name,
1440 sizeof(vn->vn_devname));
1441 }
1442 vn->vn_fsid = fsid;
1443 vn->vn_fileid = fileid;
1444 vn->vn_size = size;
1445 vn->vn_mode = mode;
1446 return (0);
1447 }
1448
1449 int
procstat_get_socket_info(struct procstat * procstat,struct filestat * fst,struct sockstat * sock,char * errbuf)1450 procstat_get_socket_info(struct procstat *procstat, struct filestat *fst,
1451 struct sockstat *sock, char *errbuf)
1452 {
1453
1454 assert(sock);
1455 if (procstat->type == PROCSTAT_KVM) {
1456 return (procstat_get_socket_info_kvm(procstat->kd, fst, sock,
1457 errbuf));
1458 } else if (procstat->type == PROCSTAT_SYSCTL ||
1459 procstat->type == PROCSTAT_CORE) {
1460 return (procstat_get_socket_info_sysctl(fst, sock, errbuf));
1461 } else {
1462 warnx("unknown access method: %d", procstat->type);
1463 if (errbuf != NULL)
1464 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1465 return (1);
1466 }
1467 }
1468
1469 static int
procstat_get_socket_info_kvm(kvm_t * kd,struct filestat * fst,struct sockstat * sock,char * errbuf)1470 procstat_get_socket_info_kvm(kvm_t *kd, struct filestat *fst,
1471 struct sockstat *sock, char *errbuf)
1472 {
1473 struct domain dom;
1474 struct protosw proto;
1475 struct socket s;
1476 struct unpcb unpcb;
1477 ssize_t len;
1478 void *so;
1479
1480 assert(kd);
1481 assert(sock);
1482 assert(fst);
1483 bzero(sock, sizeof(*sock));
1484 so = fst->fs_typedep;
1485 if (so == NULL)
1486 goto fail;
1487 sock->so_addr = (uintptr_t)so;
1488 /* fill in socket */
1489 if (!kvm_read_all(kd, (unsigned long)so, &s,
1490 sizeof(struct socket))) {
1491 warnx("can't read sock at %p", (void *)so);
1492 goto fail;
1493 }
1494 /* fill in protosw entry */
1495 if (!kvm_read_all(kd, (unsigned long)s.so_proto, &proto,
1496 sizeof(struct protosw))) {
1497 warnx("can't read protosw at %p", (void *)s.so_proto);
1498 goto fail;
1499 }
1500 /* fill in domain */
1501 if (!kvm_read_all(kd, (unsigned long)proto.pr_domain, &dom,
1502 sizeof(struct domain))) {
1503 warnx("can't read domain at %p",
1504 (void *)proto.pr_domain);
1505 goto fail;
1506 }
1507 if ((len = kvm_read(kd, (unsigned long)dom.dom_name, sock->dname,
1508 sizeof(sock->dname) - 1)) < 0) {
1509 warnx("can't read domain name at %p", (void *)dom.dom_name);
1510 sock->dname[0] = '\0';
1511 }
1512 else
1513 sock->dname[len] = '\0';
1514
1515 /*
1516 * Fill in known data.
1517 */
1518 sock->type = s.so_type;
1519 sock->proto = proto.pr_protocol;
1520 sock->dom_family = dom.dom_family;
1521 sock->so_pcb = (uintptr_t)s.so_pcb;
1522 sock->sendq = s.so_snd.sb_ccc;
1523 sock->recvq = s.so_rcv.sb_ccc;
1524 sock->so_rcv_sb_state = s.so_rcv.sb_state;
1525 sock->so_snd_sb_state = s.so_snd.sb_state;
1526
1527 /*
1528 * Protocol specific data.
1529 */
1530 switch (dom.dom_family) {
1531 case AF_UNIX:
1532 if (s.so_pcb) {
1533 if (kvm_read(kd, (u_long)s.so_pcb, (char *)&unpcb,
1534 sizeof(struct unpcb)) != sizeof(struct unpcb)){
1535 warnx("can't read unpcb at %p",
1536 (void *)s.so_pcb);
1537 } else if (unpcb.unp_conn) {
1538 sock->unp_conn = (uintptr_t)unpcb.unp_conn;
1539 }
1540 }
1541 break;
1542 default:
1543 break;
1544 }
1545 return (0);
1546
1547 fail:
1548 if (errbuf != NULL)
1549 snprintf(errbuf, _POSIX2_LINE_MAX, "error");
1550 return (1);
1551 }
1552
1553 static int
procstat_get_socket_info_sysctl(struct filestat * fst,struct sockstat * sock,char * errbuf __unused)1554 procstat_get_socket_info_sysctl(struct filestat *fst, struct sockstat *sock,
1555 char *errbuf __unused)
1556 {
1557 struct kinfo_file *kif;
1558
1559 assert(sock);
1560 assert(fst);
1561 bzero(sock, sizeof(*sock));
1562 kif = fst->fs_typedep;
1563 if (kif == NULL)
1564 return (0);
1565
1566 /*
1567 * Fill in known data.
1568 */
1569 sock->type = kif->kf_sock_type;
1570 sock->proto = kif->kf_sock_protocol;
1571 sock->dom_family = kif->kf_sock_domain;
1572 sock->so_pcb = kif->kf_un.kf_sock.kf_sock_pcb;
1573 strlcpy(sock->dname, kif->kf_path, sizeof(sock->dname));
1574 bcopy(&kif->kf_un.kf_sock.kf_sa_local, &sock->sa_local,
1575 kif->kf_un.kf_sock.kf_sa_local.ss_len);
1576 bcopy(&kif->kf_un.kf_sock.kf_sa_peer, &sock->sa_peer,
1577 kif->kf_un.kf_sock.kf_sa_peer.ss_len);
1578
1579 /*
1580 * Protocol specific data.
1581 */
1582 switch (sock->dom_family) {
1583 case AF_INET:
1584 case AF_INET6:
1585 if (sock->proto == IPPROTO_TCP) {
1586 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1587 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1588 }
1589 break;
1590 case AF_UNIX:
1591 if (kif->kf_un.kf_sock.kf_sock_unpconn != 0) {
1592 sock->so_rcv_sb_state =
1593 kif->kf_un.kf_sock.kf_sock_rcv_sb_state;
1594 sock->so_snd_sb_state =
1595 kif->kf_un.kf_sock.kf_sock_snd_sb_state;
1596 sock->unp_conn =
1597 kif->kf_un.kf_sock.kf_sock_unpconn;
1598 sock->sendq = kif->kf_un.kf_sock.kf_sock_sendq;
1599 sock->recvq = kif->kf_un.kf_sock.kf_sock_recvq;
1600 }
1601 break;
1602 default:
1603 break;
1604 }
1605 return (0);
1606 }
1607
1608 /*
1609 * Descriptor flags to filestat translation.
1610 */
1611 static int
to_filestat_flags(int flags)1612 to_filestat_flags(int flags)
1613 {
1614 static struct {
1615 int flag;
1616 int fst_flag;
1617 } fstflags[] = {
1618 { FREAD, PS_FST_FFLAG_READ },
1619 { FWRITE, PS_FST_FFLAG_WRITE },
1620 { O_APPEND, PS_FST_FFLAG_APPEND },
1621 { O_ASYNC, PS_FST_FFLAG_ASYNC },
1622 { O_CREAT, PS_FST_FFLAG_CREAT },
1623 { O_DIRECT, PS_FST_FFLAG_DIRECT },
1624 { O_EXCL, PS_FST_FFLAG_EXCL },
1625 { O_EXEC, PS_FST_FFLAG_EXEC },
1626 { O_EXLOCK, PS_FST_FFLAG_EXLOCK },
1627 { O_NOFOLLOW, PS_FST_FFLAG_NOFOLLOW },
1628 { O_NONBLOCK, PS_FST_FFLAG_NONBLOCK },
1629 { O_SHLOCK, PS_FST_FFLAG_SHLOCK },
1630 { O_SYNC, PS_FST_FFLAG_SYNC },
1631 { O_TRUNC, PS_FST_FFLAG_TRUNC }
1632 };
1633 #define NFSTFLAGS (sizeof(fstflags) / sizeof(*fstflags))
1634 int fst_flags;
1635 unsigned int i;
1636
1637 fst_flags = 0;
1638 for (i = 0; i < NFSTFLAGS; i++)
1639 if (flags & fstflags[i].flag)
1640 fst_flags |= fstflags[i].fst_flag;
1641 return (fst_flags);
1642 }
1643
1644 /*
1645 * Vnode type to filestate translation.
1646 */
1647 static int
vntype2psfsttype(int type)1648 vntype2psfsttype(int type)
1649 {
1650 static struct {
1651 int vtype;
1652 int fst_vtype;
1653 } vt2fst[] = {
1654 { VBAD, PS_FST_VTYPE_VBAD },
1655 { VBLK, PS_FST_VTYPE_VBLK },
1656 { VCHR, PS_FST_VTYPE_VCHR },
1657 { VDIR, PS_FST_VTYPE_VDIR },
1658 { VFIFO, PS_FST_VTYPE_VFIFO },
1659 { VLNK, PS_FST_VTYPE_VLNK },
1660 { VNON, PS_FST_VTYPE_VNON },
1661 { VREG, PS_FST_VTYPE_VREG },
1662 { VSOCK, PS_FST_VTYPE_VSOCK }
1663 };
1664 #define NVFTYPES (sizeof(vt2fst) / sizeof(*vt2fst))
1665 unsigned int i, fst_type;
1666
1667 fst_type = PS_FST_VTYPE_UNKNOWN;
1668 for (i = 0; i < NVFTYPES; i++) {
1669 if (type == vt2fst[i].vtype) {
1670 fst_type = vt2fst[i].fst_vtype;
1671 break;
1672 }
1673 }
1674 return (fst_type);
1675 }
1676
1677 static char *
getmnton(kvm_t * kd,struct mount * m)1678 getmnton(kvm_t *kd, struct mount *m)
1679 {
1680 struct mount mnt;
1681 static struct mtab {
1682 struct mtab *next;
1683 struct mount *m;
1684 char mntonname[MNAMELEN + 1];
1685 } *mhead = NULL;
1686 struct mtab *mt;
1687
1688 for (mt = mhead; mt != NULL; mt = mt->next)
1689 if (m == mt->m)
1690 return (mt->mntonname);
1691 if (!kvm_read_all(kd, (unsigned long)m, &mnt, sizeof(struct mount))) {
1692 warnx("can't read mount table at %p", (void *)m);
1693 return (NULL);
1694 }
1695 if ((mt = malloc(sizeof (struct mtab))) == NULL)
1696 err(1, NULL);
1697 mt->m = m;
1698 bcopy(&mnt.mnt_stat.f_mntonname[0], &mt->mntonname[0], MNAMELEN);
1699 mt->mntonname[MNAMELEN] = '\0';
1700 mt->next = mhead;
1701 mhead = mt;
1702 return (mt->mntonname);
1703 }
1704
1705 /*
1706 * Auxiliary structures and functions to get process environment or
1707 * command line arguments.
1708 */
1709 struct argvec {
1710 char *buf;
1711 size_t bufsize;
1712 char **argv;
1713 size_t argc;
1714 };
1715
1716 static struct argvec *
argvec_alloc(size_t bufsize)1717 argvec_alloc(size_t bufsize)
1718 {
1719 struct argvec *av;
1720
1721 av = malloc(sizeof(*av));
1722 if (av == NULL)
1723 return (NULL);
1724 av->bufsize = bufsize;
1725 av->buf = malloc(av->bufsize);
1726 if (av->buf == NULL) {
1727 free(av);
1728 return (NULL);
1729 }
1730 av->argc = 32;
1731 av->argv = malloc(sizeof(char *) * av->argc);
1732 if (av->argv == NULL) {
1733 free(av->buf);
1734 free(av);
1735 return (NULL);
1736 }
1737 return av;
1738 }
1739
1740 static void
argvec_free(struct argvec * av)1741 argvec_free(struct argvec * av)
1742 {
1743
1744 free(av->argv);
1745 free(av->buf);
1746 free(av);
1747 }
1748
1749 static char **
getargv(struct procstat * procstat,struct kinfo_proc * kp,size_t nchr,int env)1750 getargv(struct procstat *procstat, struct kinfo_proc *kp, size_t nchr, int env)
1751 {
1752 int error, name[4], argc, i;
1753 struct argvec *av, **avp;
1754 enum psc_type type;
1755 size_t len;
1756 char *p, **argv;
1757
1758 assert(procstat);
1759 assert(kp);
1760 if (procstat->type == PROCSTAT_KVM) {
1761 warnx("can't use kvm access method");
1762 return (NULL);
1763 }
1764 if (procstat->type != PROCSTAT_SYSCTL &&
1765 procstat->type != PROCSTAT_CORE) {
1766 warnx("unknown access method: %d", procstat->type);
1767 return (NULL);
1768 }
1769
1770 if (nchr == 0 || nchr > ARG_MAX)
1771 nchr = ARG_MAX;
1772
1773 avp = (struct argvec **)(env ? &procstat->argv : &procstat->envv);
1774 av = *avp;
1775
1776 if (av == NULL)
1777 {
1778 av = argvec_alloc(nchr);
1779 if (av == NULL)
1780 {
1781 warn("malloc(%zu)", nchr);
1782 return (NULL);
1783 }
1784 *avp = av;
1785 } else if (av->bufsize < nchr) {
1786 av->buf = reallocf(av->buf, nchr);
1787 if (av->buf == NULL) {
1788 warn("malloc(%zu)", nchr);
1789 return (NULL);
1790 }
1791 }
1792 if (procstat->type == PROCSTAT_SYSCTL) {
1793 name[0] = CTL_KERN;
1794 name[1] = KERN_PROC;
1795 name[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
1796 name[3] = kp->ki_pid;
1797 len = nchr;
1798 error = sysctl(name, nitems(name), av->buf, &len, NULL, 0);
1799 if (error != 0 && errno != ESRCH && errno != EPERM)
1800 warn("sysctl(kern.proc.%s)", env ? "env" : "args");
1801 if (error != 0 || len == 0)
1802 return (NULL);
1803 } else /* procstat->type == PROCSTAT_CORE */ {
1804 type = env ? PSC_TYPE_ENVV : PSC_TYPE_ARGV;
1805 len = nchr;
1806 if (procstat_core_get(procstat->core, type, av->buf, &len)
1807 == NULL) {
1808 return (NULL);
1809 }
1810 }
1811
1812 argv = av->argv;
1813 argc = av->argc;
1814 i = 0;
1815 for (p = av->buf; p < av->buf + len; p += strlen(p) + 1) {
1816 argv[i++] = p;
1817 if (i < argc)
1818 continue;
1819 /* Grow argv. */
1820 argc += argc;
1821 argv = realloc(argv, sizeof(char *) * argc);
1822 if (argv == NULL) {
1823 warn("malloc(%zu)", sizeof(char *) * argc);
1824 return (NULL);
1825 }
1826 av->argv = argv;
1827 av->argc = argc;
1828 }
1829 argv[i] = NULL;
1830
1831 return (argv);
1832 }
1833
1834 /*
1835 * Return process command line arguments.
1836 */
1837 char **
procstat_getargv(struct procstat * procstat,struct kinfo_proc * p,size_t nchr)1838 procstat_getargv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1839 {
1840
1841 return (getargv(procstat, p, nchr, 0));
1842 }
1843
1844 /*
1845 * Free the buffer allocated by procstat_getargv().
1846 */
1847 void
procstat_freeargv(struct procstat * procstat)1848 procstat_freeargv(struct procstat *procstat)
1849 {
1850
1851 if (procstat->argv != NULL) {
1852 argvec_free(procstat->argv);
1853 procstat->argv = NULL;
1854 }
1855 }
1856
1857 /*
1858 * Return process environment.
1859 */
1860 char **
procstat_getenvv(struct procstat * procstat,struct kinfo_proc * p,size_t nchr)1861 procstat_getenvv(struct procstat *procstat, struct kinfo_proc *p, size_t nchr)
1862 {
1863
1864 return (getargv(procstat, p, nchr, 1));
1865 }
1866
1867 /*
1868 * Free the buffer allocated by procstat_getenvv().
1869 */
1870 void
procstat_freeenvv(struct procstat * procstat)1871 procstat_freeenvv(struct procstat *procstat)
1872 {
1873 if (procstat->envv != NULL) {
1874 argvec_free(procstat->envv);
1875 procstat->envv = NULL;
1876 }
1877 }
1878
1879 static struct kinfo_vmentry *
kinfo_getvmmap_core(struct procstat_core * core,int * cntp)1880 kinfo_getvmmap_core(struct procstat_core *core, int *cntp)
1881 {
1882 int cnt;
1883 size_t len;
1884 char *buf, *bp, *eb;
1885 struct kinfo_vmentry *kiv, *kp, *kv;
1886
1887 buf = procstat_core_get(core, PSC_TYPE_VMMAP, NULL, &len);
1888 if (buf == NULL)
1889 return (NULL);
1890
1891 /*
1892 * XXXMG: The code below is just copy&past from libutil.
1893 * The code duplication can be avoided if libutil
1894 * is extended to provide something like:
1895 * struct kinfo_vmentry *kinfo_getvmmap_from_buf(const char *buf,
1896 * size_t len, int *cntp);
1897 */
1898
1899 /* Pass 1: count items */
1900 cnt = 0;
1901 bp = buf;
1902 eb = buf + len;
1903 while (bp < eb) {
1904 kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1905 if (kv->kve_structsize == 0)
1906 break;
1907 bp += kv->kve_structsize;
1908 cnt++;
1909 }
1910
1911 kiv = calloc(cnt, sizeof(*kiv));
1912 if (kiv == NULL) {
1913 free(buf);
1914 return (NULL);
1915 }
1916 bp = buf;
1917 eb = buf + len;
1918 kp = kiv;
1919 /* Pass 2: unpack */
1920 while (bp < eb) {
1921 kv = (struct kinfo_vmentry *)(uintptr_t)bp;
1922 if (kv->kve_structsize == 0)
1923 break;
1924 /* Copy/expand into pre-zeroed buffer */
1925 memcpy(kp, kv, kv->kve_structsize);
1926 /* Advance to next packed record */
1927 bp += kv->kve_structsize;
1928 /* Set field size to fixed length, advance */
1929 kp->kve_structsize = sizeof(*kp);
1930 kp++;
1931 }
1932 free(buf);
1933 *cntp = cnt;
1934 return (kiv); /* Caller must free() return value */
1935 }
1936
1937 struct kinfo_vmentry *
procstat_getvmmap(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)1938 procstat_getvmmap(struct procstat *procstat, struct kinfo_proc *kp,
1939 unsigned int *cntp)
1940 {
1941
1942 switch (procstat->type) {
1943 case PROCSTAT_KVM:
1944 warnx("kvm method is not supported");
1945 return (NULL);
1946 case PROCSTAT_SYSCTL:
1947 return (kinfo_getvmmap(kp->ki_pid, cntp));
1948 case PROCSTAT_CORE:
1949 return (kinfo_getvmmap_core(procstat->core, cntp));
1950 default:
1951 warnx("unknown access method: %d", procstat->type);
1952 return (NULL);
1953 }
1954 }
1955
1956 void
procstat_freevmmap(struct procstat * procstat __unused,struct kinfo_vmentry * vmmap)1957 procstat_freevmmap(struct procstat *procstat __unused,
1958 struct kinfo_vmentry *vmmap)
1959 {
1960
1961 free(vmmap);
1962 }
1963
1964 static gid_t *
procstat_getgroups_kvm(kvm_t * kd,struct kinfo_proc * kp,unsigned int * cntp)1965 procstat_getgroups_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned int *cntp)
1966 {
1967 struct proc proc;
1968 struct ucred ucred;
1969 gid_t *groups;
1970 size_t len;
1971
1972 assert(kd != NULL);
1973 assert(kp != NULL);
1974 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
1975 sizeof(proc))) {
1976 warnx("can't read proc struct at %p for pid %d",
1977 kp->ki_paddr, kp->ki_pid);
1978 return (NULL);
1979 }
1980 if (proc.p_ucred == NOCRED)
1981 return (NULL);
1982 if (!kvm_read_all(kd, (unsigned long)proc.p_ucred, &ucred,
1983 sizeof(ucred))) {
1984 warnx("can't read ucred struct at %p for pid %d",
1985 proc.p_ucred, kp->ki_pid);
1986 return (NULL);
1987 }
1988 len = ucred.cr_ngroups * sizeof(gid_t);
1989 groups = malloc(len);
1990 if (groups == NULL) {
1991 warn("malloc(%zu)", len);
1992 return (NULL);
1993 }
1994 if (!kvm_read_all(kd, (unsigned long)ucred.cr_groups, groups, len)) {
1995 warnx("can't read groups at %p for pid %d",
1996 ucred.cr_groups, kp->ki_pid);
1997 free(groups);
1998 return (NULL);
1999 }
2000 *cntp = ucred.cr_ngroups;
2001 return (groups);
2002 }
2003
2004 static gid_t *
procstat_getgroups_sysctl(pid_t pid,unsigned int * cntp)2005 procstat_getgroups_sysctl(pid_t pid, unsigned int *cntp)
2006 {
2007 int mib[4];
2008 size_t len;
2009 gid_t *groups;
2010
2011 mib[0] = CTL_KERN;
2012 mib[1] = KERN_PROC;
2013 mib[2] = KERN_PROC_GROUPS;
2014 mib[3] = pid;
2015 len = (sysconf(_SC_NGROUPS_MAX) + 1) * sizeof(gid_t);
2016 groups = malloc(len);
2017 if (groups == NULL) {
2018 warn("malloc(%zu)", len);
2019 return (NULL);
2020 }
2021 if (sysctl(mib, nitems(mib), groups, &len, NULL, 0) == -1) {
2022 warn("sysctl: kern.proc.groups: %d", pid);
2023 free(groups);
2024 return (NULL);
2025 }
2026 *cntp = len / sizeof(gid_t);
2027 return (groups);
2028 }
2029
2030 static gid_t *
procstat_getgroups_core(struct procstat_core * core,unsigned int * cntp)2031 procstat_getgroups_core(struct procstat_core *core, unsigned int *cntp)
2032 {
2033 size_t len;
2034 gid_t *groups;
2035
2036 groups = procstat_core_get(core, PSC_TYPE_GROUPS, NULL, &len);
2037 if (groups == NULL)
2038 return (NULL);
2039 *cntp = len / sizeof(gid_t);
2040 return (groups);
2041 }
2042
2043 gid_t *
procstat_getgroups(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2044 procstat_getgroups(struct procstat *procstat, struct kinfo_proc *kp,
2045 unsigned int *cntp)
2046 {
2047 switch (procstat->type) {
2048 case PROCSTAT_KVM:
2049 return (procstat_getgroups_kvm(procstat->kd, kp, cntp));
2050 case PROCSTAT_SYSCTL:
2051 return (procstat_getgroups_sysctl(kp->ki_pid, cntp));
2052 case PROCSTAT_CORE:
2053 return (procstat_getgroups_core(procstat->core, cntp));
2054 default:
2055 warnx("unknown access method: %d", procstat->type);
2056 return (NULL);
2057 }
2058 }
2059
2060 void
procstat_freegroups(struct procstat * procstat __unused,gid_t * groups)2061 procstat_freegroups(struct procstat *procstat __unused, gid_t *groups)
2062 {
2063
2064 free(groups);
2065 }
2066
2067 static int
procstat_getumask_kvm(kvm_t * kd,struct kinfo_proc * kp,unsigned short * maskp)2068 procstat_getumask_kvm(kvm_t *kd, struct kinfo_proc *kp, unsigned short *maskp)
2069 {
2070 struct pwddesc pd;
2071
2072 assert(kd != NULL);
2073 assert(kp != NULL);
2074 if (kp->ki_pd == NULL)
2075 return (-1);
2076 if (!kvm_read_all(kd, (unsigned long)kp->ki_pd, &pd, sizeof(pd))) {
2077 warnx("can't read pwddesc at %p for pid %d", kp->ki_pd,
2078 kp->ki_pid);
2079 return (-1);
2080 }
2081 *maskp = pd.pd_cmask;
2082 return (0);
2083 }
2084
2085 static int
procstat_getumask_sysctl(pid_t pid,unsigned short * maskp)2086 procstat_getumask_sysctl(pid_t pid, unsigned short *maskp)
2087 {
2088 int error;
2089 int mib[4];
2090 size_t len;
2091
2092 mib[0] = CTL_KERN;
2093 mib[1] = KERN_PROC;
2094 mib[2] = KERN_PROC_UMASK;
2095 mib[3] = pid;
2096 len = sizeof(*maskp);
2097 error = sysctl(mib, nitems(mib), maskp, &len, NULL, 0);
2098 if (error != 0 && errno != ESRCH && errno != EPERM)
2099 warn("sysctl: kern.proc.umask: %d", pid);
2100 return (error);
2101 }
2102
2103 static int
procstat_getumask_core(struct procstat_core * core,unsigned short * maskp)2104 procstat_getumask_core(struct procstat_core *core, unsigned short *maskp)
2105 {
2106 size_t len;
2107 unsigned short *buf;
2108
2109 buf = procstat_core_get(core, PSC_TYPE_UMASK, NULL, &len);
2110 if (buf == NULL)
2111 return (-1);
2112 if (len < sizeof(*maskp)) {
2113 free(buf);
2114 return (-1);
2115 }
2116 *maskp = *buf;
2117 free(buf);
2118 return (0);
2119 }
2120
2121 int
procstat_getumask(struct procstat * procstat,struct kinfo_proc * kp,unsigned short * maskp)2122 procstat_getumask(struct procstat *procstat, struct kinfo_proc *kp,
2123 unsigned short *maskp)
2124 {
2125 switch (procstat->type) {
2126 case PROCSTAT_KVM:
2127 return (procstat_getumask_kvm(procstat->kd, kp, maskp));
2128 case PROCSTAT_SYSCTL:
2129 return (procstat_getumask_sysctl(kp->ki_pid, maskp));
2130 case PROCSTAT_CORE:
2131 return (procstat_getumask_core(procstat->core, maskp));
2132 default:
2133 warnx("unknown access method: %d", procstat->type);
2134 return (-1);
2135 }
2136 }
2137
2138 static int
procstat_getrlimit_kvm(kvm_t * kd,struct kinfo_proc * kp,int which,struct rlimit * rlimit)2139 procstat_getrlimit_kvm(kvm_t *kd, struct kinfo_proc *kp, int which,
2140 struct rlimit* rlimit)
2141 {
2142 struct proc proc;
2143 unsigned long offset;
2144
2145 assert(kd != NULL);
2146 assert(kp != NULL);
2147 assert(which >= 0 && which < RLIM_NLIMITS);
2148 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2149 sizeof(proc))) {
2150 warnx("can't read proc struct at %p for pid %d",
2151 kp->ki_paddr, kp->ki_pid);
2152 return (-1);
2153 }
2154 if (proc.p_limit == NULL)
2155 return (-1);
2156 offset = (unsigned long)proc.p_limit + sizeof(struct rlimit) * which;
2157 if (!kvm_read_all(kd, offset, rlimit, sizeof(*rlimit))) {
2158 warnx("can't read rlimit struct at %p for pid %d",
2159 (void *)offset, kp->ki_pid);
2160 return (-1);
2161 }
2162 return (0);
2163 }
2164
2165 static int
procstat_getrlimit_sysctl(pid_t pid,int which,struct rlimit * rlimit)2166 procstat_getrlimit_sysctl(pid_t pid, int which, struct rlimit* rlimit)
2167 {
2168 int error, name[5];
2169 size_t len;
2170
2171 name[0] = CTL_KERN;
2172 name[1] = KERN_PROC;
2173 name[2] = KERN_PROC_RLIMIT;
2174 name[3] = pid;
2175 name[4] = which;
2176 len = sizeof(struct rlimit);
2177 error = sysctl(name, nitems(name), rlimit, &len, NULL, 0);
2178 if (error < 0 && errno != ESRCH) {
2179 warn("sysctl: kern.proc.rlimit: %d", pid);
2180 return (-1);
2181 }
2182 if (error < 0 || len != sizeof(struct rlimit))
2183 return (-1);
2184 return (0);
2185 }
2186
2187 static int
procstat_getrlimit_core(struct procstat_core * core,int which,struct rlimit * rlimit)2188 procstat_getrlimit_core(struct procstat_core *core, int which,
2189 struct rlimit* rlimit)
2190 {
2191 size_t len;
2192 struct rlimit* rlimits;
2193
2194 if (which < 0 || which >= RLIM_NLIMITS) {
2195 errno = EINVAL;
2196 warn("getrlimit: which");
2197 return (-1);
2198 }
2199 rlimits = procstat_core_get(core, PSC_TYPE_RLIMIT, NULL, &len);
2200 if (rlimits == NULL)
2201 return (-1);
2202 if (len < sizeof(struct rlimit) * RLIM_NLIMITS) {
2203 free(rlimits);
2204 return (-1);
2205 }
2206 *rlimit = rlimits[which];
2207 free(rlimits);
2208 return (0);
2209 }
2210
2211 int
procstat_getrlimit(struct procstat * procstat,struct kinfo_proc * kp,int which,struct rlimit * rlimit)2212 procstat_getrlimit(struct procstat *procstat, struct kinfo_proc *kp, int which,
2213 struct rlimit* rlimit)
2214 {
2215 switch (procstat->type) {
2216 case PROCSTAT_KVM:
2217 return (procstat_getrlimit_kvm(procstat->kd, kp, which,
2218 rlimit));
2219 case PROCSTAT_SYSCTL:
2220 return (procstat_getrlimit_sysctl(kp->ki_pid, which, rlimit));
2221 case PROCSTAT_CORE:
2222 return (procstat_getrlimit_core(procstat->core, which, rlimit));
2223 default:
2224 warnx("unknown access method: %d", procstat->type);
2225 return (-1);
2226 }
2227 }
2228
2229 static int
procstat_getpathname_sysctl(pid_t pid,char * pathname,size_t maxlen)2230 procstat_getpathname_sysctl(pid_t pid, char *pathname, size_t maxlen)
2231 {
2232 int error, name[4];
2233 size_t len;
2234
2235 name[0] = CTL_KERN;
2236 name[1] = KERN_PROC;
2237 name[2] = KERN_PROC_PATHNAME;
2238 name[3] = pid;
2239 len = maxlen;
2240 error = sysctl(name, nitems(name), pathname, &len, NULL, 0);
2241 if (error != 0 && errno != ESRCH)
2242 warn("sysctl: kern.proc.pathname: %d", pid);
2243 if (len == 0)
2244 pathname[0] = '\0';
2245 return (error);
2246 }
2247
2248 static int
procstat_getpathname_core(struct procstat_core * core,char * pathname,size_t maxlen)2249 procstat_getpathname_core(struct procstat_core *core, char *pathname,
2250 size_t maxlen)
2251 {
2252 struct kinfo_file *files;
2253 int cnt, i, result;
2254
2255 files = kinfo_getfile_core(core, &cnt);
2256 if (files == NULL)
2257 return (-1);
2258 result = -1;
2259 for (i = 0; i < cnt; i++) {
2260 if (files[i].kf_fd != KF_FD_TYPE_TEXT)
2261 continue;
2262 strncpy(pathname, files[i].kf_path, maxlen);
2263 result = 0;
2264 break;
2265 }
2266 free(files);
2267 return (result);
2268 }
2269
2270 int
procstat_getpathname(struct procstat * procstat,struct kinfo_proc * kp,char * pathname,size_t maxlen)2271 procstat_getpathname(struct procstat *procstat, struct kinfo_proc *kp,
2272 char *pathname, size_t maxlen)
2273 {
2274 switch (procstat->type) {
2275 case PROCSTAT_KVM:
2276 /* XXX: Return empty string. */
2277 if (maxlen > 0)
2278 pathname[0] = '\0';
2279 return (0);
2280 case PROCSTAT_SYSCTL:
2281 return (procstat_getpathname_sysctl(kp->ki_pid, pathname,
2282 maxlen));
2283 case PROCSTAT_CORE:
2284 return (procstat_getpathname_core(procstat->core, pathname,
2285 maxlen));
2286 default:
2287 warnx("unknown access method: %d", procstat->type);
2288 return (-1);
2289 }
2290 }
2291
2292 static int
procstat_getosrel_kvm(kvm_t * kd,struct kinfo_proc * kp,int * osrelp)2293 procstat_getosrel_kvm(kvm_t *kd, struct kinfo_proc *kp, int *osrelp)
2294 {
2295 struct proc proc;
2296
2297 assert(kd != NULL);
2298 assert(kp != NULL);
2299 if (!kvm_read_all(kd, (unsigned long)kp->ki_paddr, &proc,
2300 sizeof(proc))) {
2301 warnx("can't read proc struct at %p for pid %d",
2302 kp->ki_paddr, kp->ki_pid);
2303 return (-1);
2304 }
2305 *osrelp = proc.p_osrel;
2306 return (0);
2307 }
2308
2309 static int
procstat_getosrel_sysctl(pid_t pid,int * osrelp)2310 procstat_getosrel_sysctl(pid_t pid, int *osrelp)
2311 {
2312 int error, name[4];
2313 size_t len;
2314
2315 name[0] = CTL_KERN;
2316 name[1] = KERN_PROC;
2317 name[2] = KERN_PROC_OSREL;
2318 name[3] = pid;
2319 len = sizeof(*osrelp);
2320 error = sysctl(name, nitems(name), osrelp, &len, NULL, 0);
2321 if (error != 0 && errno != ESRCH)
2322 warn("sysctl: kern.proc.osrel: %d", pid);
2323 return (error);
2324 }
2325
2326 static int
procstat_getosrel_core(struct procstat_core * core,int * osrelp)2327 procstat_getosrel_core(struct procstat_core *core, int *osrelp)
2328 {
2329 size_t len;
2330 int *buf;
2331
2332 buf = procstat_core_get(core, PSC_TYPE_OSREL, NULL, &len);
2333 if (buf == NULL)
2334 return (-1);
2335 if (len < sizeof(*osrelp)) {
2336 free(buf);
2337 return (-1);
2338 }
2339 *osrelp = *buf;
2340 free(buf);
2341 return (0);
2342 }
2343
2344 int
procstat_getosrel(struct procstat * procstat,struct kinfo_proc * kp,int * osrelp)2345 procstat_getosrel(struct procstat *procstat, struct kinfo_proc *kp, int *osrelp)
2346 {
2347 switch (procstat->type) {
2348 case PROCSTAT_KVM:
2349 return (procstat_getosrel_kvm(procstat->kd, kp, osrelp));
2350 case PROCSTAT_SYSCTL:
2351 return (procstat_getosrel_sysctl(kp->ki_pid, osrelp));
2352 case PROCSTAT_CORE:
2353 return (procstat_getosrel_core(procstat->core, osrelp));
2354 default:
2355 warnx("unknown access method: %d", procstat->type);
2356 return (-1);
2357 }
2358 }
2359
2360 #define PROC_AUXV_MAX 256
2361
2362 #ifdef PS_ARCH_HAS_FREEBSD32
2363 static const char *elf32_sv_names[] = {
2364 "Linux ELF32",
2365 "FreeBSD ELF32",
2366 };
2367
2368 static int
is_elf32_sysctl(pid_t pid)2369 is_elf32_sysctl(pid_t pid)
2370 {
2371 int error, name[4];
2372 size_t len, i;
2373 char sv_name[32];
2374
2375 name[0] = CTL_KERN;
2376 name[1] = KERN_PROC;
2377 name[2] = KERN_PROC_SV_NAME;
2378 name[3] = pid;
2379 len = sizeof(sv_name);
2380 error = sysctl(name, nitems(name), sv_name, &len, NULL, 0);
2381 if (error != 0 || len == 0)
2382 return (0);
2383 for (i = 0; i < sizeof(elf32_sv_names) / sizeof(*elf32_sv_names); i++) {
2384 if (strncmp(sv_name, elf32_sv_names[i], sizeof(sv_name)) == 0)
2385 return (1);
2386 }
2387 return (0);
2388 }
2389
2390 static Elf_Auxinfo *
procstat_getauxv32_sysctl(pid_t pid,unsigned int * cntp)2391 procstat_getauxv32_sysctl(pid_t pid, unsigned int *cntp)
2392 {
2393 Elf_Auxinfo *auxv;
2394 Elf32_Auxinfo *auxv32;
2395 size_t len;
2396 unsigned int i, count;
2397 int name[4];
2398
2399 name[0] = CTL_KERN;
2400 name[1] = KERN_PROC;
2401 name[2] = KERN_PROC_AUXV;
2402 name[3] = pid;
2403 len = PROC_AUXV_MAX * sizeof(Elf32_Auxinfo);
2404 auxv = NULL;
2405 auxv32 = malloc(len);
2406 if (auxv32 == NULL) {
2407 warn("malloc(%zu)", len);
2408 goto out;
2409 }
2410 if (sysctl(name, nitems(name), auxv32, &len, NULL, 0) == -1) {
2411 if (errno != ESRCH && errno != EPERM)
2412 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2413 goto out;
2414 }
2415 count = len / sizeof(Elf32_Auxinfo);
2416 auxv = malloc(count * sizeof(Elf_Auxinfo));
2417 if (auxv == NULL) {
2418 warn("malloc(%zu)", count * sizeof(Elf_Auxinfo));
2419 goto out;
2420 }
2421 for (i = 0; i < count; i++) {
2422 /*
2423 * XXX: We expect that values for a_type on a 32-bit platform
2424 * are directly mapped to values on 64-bit one, which is not
2425 * necessarily true.
2426 */
2427 auxv[i].a_type = auxv32[i].a_type;
2428 /*
2429 * Don't sign extend values. Existing entries are positive
2430 * integers or pointers. Under freebsd32, programs typically
2431 * have a full [0, 2^32) address space (perhaps minus the last
2432 * page) and treating this as a signed integer would be
2433 * confusing since these are not kernel pointers.
2434 *
2435 * XXX: A more complete translation would be ABI and
2436 * type-aware.
2437 */
2438 auxv[i].a_un.a_val = (uint32_t)auxv32[i].a_un.a_val;
2439 }
2440 *cntp = count;
2441 out:
2442 free(auxv32);
2443 return (auxv);
2444 }
2445 #endif /* PS_ARCH_HAS_FREEBSD32 */
2446
2447 static Elf_Auxinfo *
procstat_getauxv_sysctl(pid_t pid,unsigned int * cntp)2448 procstat_getauxv_sysctl(pid_t pid, unsigned int *cntp)
2449 {
2450 Elf_Auxinfo *auxv;
2451 int name[4];
2452 size_t len;
2453
2454 #ifdef PS_ARCH_HAS_FREEBSD32
2455 if (is_elf32_sysctl(pid))
2456 return (procstat_getauxv32_sysctl(pid, cntp));
2457 #endif
2458 name[0] = CTL_KERN;
2459 name[1] = KERN_PROC;
2460 name[2] = KERN_PROC_AUXV;
2461 name[3] = pid;
2462 len = PROC_AUXV_MAX * sizeof(Elf_Auxinfo);
2463 auxv = malloc(len);
2464 if (auxv == NULL) {
2465 warn("malloc(%zu)", len);
2466 return (NULL);
2467 }
2468 if (sysctl(name, nitems(name), auxv, &len, NULL, 0) == -1) {
2469 if (errno != ESRCH && errno != EPERM)
2470 warn("sysctl: kern.proc.auxv: %d: %d", pid, errno);
2471 free(auxv);
2472 return (NULL);
2473 }
2474 *cntp = len / sizeof(Elf_Auxinfo);
2475 return (auxv);
2476 }
2477
2478 static Elf_Auxinfo *
procstat_getauxv_core(struct procstat_core * core,unsigned int * cntp)2479 procstat_getauxv_core(struct procstat_core *core, unsigned int *cntp)
2480 {
2481 Elf_Auxinfo *auxv;
2482 size_t len;
2483
2484 auxv = procstat_core_get(core, PSC_TYPE_AUXV, NULL, &len);
2485 if (auxv == NULL)
2486 return (NULL);
2487 *cntp = len / sizeof(Elf_Auxinfo);
2488 return (auxv);
2489 }
2490
2491 Elf_Auxinfo *
procstat_getauxv(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2492 procstat_getauxv(struct procstat *procstat, struct kinfo_proc *kp,
2493 unsigned int *cntp)
2494 {
2495 switch (procstat->type) {
2496 case PROCSTAT_KVM:
2497 warnx("kvm method is not supported");
2498 return (NULL);
2499 case PROCSTAT_SYSCTL:
2500 return (procstat_getauxv_sysctl(kp->ki_pid, cntp));
2501 case PROCSTAT_CORE:
2502 return (procstat_getauxv_core(procstat->core, cntp));
2503 default:
2504 warnx("unknown access method: %d", procstat->type);
2505 return (NULL);
2506 }
2507 }
2508
2509 void
procstat_freeauxv(struct procstat * procstat __unused,Elf_Auxinfo * auxv)2510 procstat_freeauxv(struct procstat *procstat __unused, Elf_Auxinfo *auxv)
2511 {
2512
2513 free(auxv);
2514 }
2515
2516 static struct ptrace_lwpinfo *
procstat_getptlwpinfo_core(struct procstat_core * core,unsigned int * cntp)2517 procstat_getptlwpinfo_core(struct procstat_core *core, unsigned int *cntp)
2518 {
2519 void *buf;
2520 struct ptrace_lwpinfo *pl;
2521 unsigned int cnt;
2522 size_t len;
2523
2524 cnt = procstat_core_note_count(core, PSC_TYPE_PTLWPINFO);
2525 if (cnt == 0)
2526 return (NULL);
2527
2528 len = cnt * sizeof(*pl);
2529 buf = calloc(1, len);
2530 pl = procstat_core_get(core, PSC_TYPE_PTLWPINFO, buf, &len);
2531 if (pl == NULL) {
2532 free(buf);
2533 return (NULL);
2534 }
2535 *cntp = len / sizeof(*pl);
2536 return (pl);
2537 }
2538
2539 struct ptrace_lwpinfo *
procstat_getptlwpinfo(struct procstat * procstat,unsigned int * cntp)2540 procstat_getptlwpinfo(struct procstat *procstat, unsigned int *cntp)
2541 {
2542 switch (procstat->type) {
2543 case PROCSTAT_KVM:
2544 warnx("kvm method is not supported");
2545 return (NULL);
2546 case PROCSTAT_SYSCTL:
2547 warnx("sysctl method is not supported");
2548 return (NULL);
2549 case PROCSTAT_CORE:
2550 return (procstat_getptlwpinfo_core(procstat->core, cntp));
2551 default:
2552 warnx("unknown access method: %d", procstat->type);
2553 return (NULL);
2554 }
2555 }
2556
2557 void
procstat_freeptlwpinfo(struct procstat * procstat __unused,struct ptrace_lwpinfo * pl)2558 procstat_freeptlwpinfo(struct procstat *procstat __unused,
2559 struct ptrace_lwpinfo *pl)
2560 {
2561 free(pl);
2562 }
2563
2564 static struct kinfo_kstack *
procstat_getkstack_sysctl(pid_t pid,int * cntp)2565 procstat_getkstack_sysctl(pid_t pid, int *cntp)
2566 {
2567 struct kinfo_kstack *kkstp;
2568 int error, name[4];
2569 size_t len;
2570
2571 name[0] = CTL_KERN;
2572 name[1] = KERN_PROC;
2573 name[2] = KERN_PROC_KSTACK;
2574 name[3] = pid;
2575
2576 len = 0;
2577 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2578 if (error < 0 && errno != ESRCH && errno != EPERM && errno != ENOENT) {
2579 warn("sysctl: kern.proc.kstack: %d", pid);
2580 return (NULL);
2581 }
2582 if (error == -1 && errno == ENOENT) {
2583 warnx("sysctl: kern.proc.kstack unavailable"
2584 " (options DDB or options STACK required in kernel)");
2585 return (NULL);
2586 }
2587 if (error == -1)
2588 return (NULL);
2589 kkstp = malloc(len);
2590 if (kkstp == NULL) {
2591 warn("malloc(%zu)", len);
2592 return (NULL);
2593 }
2594 if (sysctl(name, nitems(name), kkstp, &len, NULL, 0) == -1 &&
2595 errno != ENOMEM) {
2596 warn("sysctl: kern.proc.pid: %d", pid);
2597 free(kkstp);
2598 return (NULL);
2599 }
2600 *cntp = len / sizeof(*kkstp);
2601
2602 return (kkstp);
2603 }
2604
2605 struct kinfo_kstack *
procstat_getkstack(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2606 procstat_getkstack(struct procstat *procstat, struct kinfo_proc *kp,
2607 unsigned int *cntp)
2608 {
2609 switch (procstat->type) {
2610 case PROCSTAT_KVM:
2611 warnx("kvm method is not supported");
2612 return (NULL);
2613 case PROCSTAT_SYSCTL:
2614 return (procstat_getkstack_sysctl(kp->ki_pid, cntp));
2615 case PROCSTAT_CORE:
2616 warnx("core method is not supported");
2617 return (NULL);
2618 default:
2619 warnx("unknown access method: %d", procstat->type);
2620 return (NULL);
2621 }
2622 }
2623
2624 void
procstat_freekstack(struct procstat * procstat __unused,struct kinfo_kstack * kkstp)2625 procstat_freekstack(struct procstat *procstat __unused,
2626 struct kinfo_kstack *kkstp)
2627 {
2628
2629 free(kkstp);
2630 }
2631
2632 static struct advlock_list *
procstat_getadvlock_sysctl(struct procstat * procstat __unused)2633 procstat_getadvlock_sysctl(struct procstat *procstat __unused)
2634 {
2635 struct advlock_list *res;
2636 struct advlock *a;
2637 void *buf;
2638 char *c;
2639 struct kinfo_lockf *kl;
2640 size_t buf_len;
2641 int error;
2642 static const int kl_name[] = { CTL_KERN, KERN_LOCKF };
2643
2644 res = malloc(sizeof(*res));
2645 if (res == NULL)
2646 return (NULL);
2647 STAILQ_INIT(res);
2648 buf = NULL;
2649
2650 buf_len = 0;
2651 error = sysctl(kl_name, nitems(kl_name), NULL, &buf_len, NULL, 0);
2652 if (error != 0) {
2653 warn("sysctl KERN_LOCKF size");
2654 goto fail;
2655 }
2656 buf_len *= 2;
2657 buf = malloc(buf_len);
2658 if (buf == NULL) {
2659 warn("malloc");
2660 goto fail;
2661 }
2662 error = sysctl(kl_name, nitems(kl_name), buf, &buf_len, NULL, 0);
2663 if (error != 0) {
2664 warn("sysctl KERN_LOCKF data");
2665 goto fail;
2666 }
2667
2668 for (c = buf; (char *)c < (char *)buf + buf_len;
2669 c += kl->kl_structsize) {
2670 kl = (struct kinfo_lockf *)(void *)c;
2671 if (sizeof(*kl) < (size_t)kl->kl_structsize) {
2672 warn("ABI broken");
2673 goto fail;
2674 }
2675 a = malloc(sizeof(*a));
2676 if (a == NULL) {
2677 warn("malloc advlock");
2678 goto fail;
2679 }
2680 switch (kl->kl_rw) {
2681 case KLOCKF_RW_READ:
2682 a->rw = PS_ADVLOCK_RO;
2683 break;
2684 case KLOCKF_RW_WRITE:
2685 a->rw = PS_ADVLOCK_RW;
2686 break;
2687 default:
2688 warn("ABI broken");
2689 free(a);
2690 goto fail;
2691 }
2692 switch (kl->kl_type) {
2693 case KLOCKF_TYPE_FLOCK:
2694 a->type = PS_ADVLOCK_TYPE_FLOCK;
2695 break;
2696 case KLOCKF_TYPE_PID:
2697 a->type = PS_ADVLOCK_TYPE_PID;
2698 break;
2699 case KLOCKF_TYPE_REMOTE:
2700 a->type = PS_ADVLOCK_TYPE_REMOTE;
2701 break;
2702 default:
2703 warn("ABI broken");
2704 free(a);
2705 goto fail;
2706 }
2707 a->pid = kl->kl_pid;
2708 a->sysid = kl->kl_sysid;
2709 a->file_fsid = kl->kl_file_fsid;
2710 a->file_rdev = kl->kl_file_rdev;
2711 a->file_fileid = kl->kl_file_fileid;
2712 a->start = kl->kl_start;
2713 a->len = kl->kl_len;
2714 if (kl->kl_path[0] != '\0') {
2715 a->path = strdup(kl->kl_path);
2716 if (a->path == NULL) {
2717 warn("malloc");
2718 free(a);
2719 goto fail;
2720 }
2721 } else
2722 a->path = NULL;
2723 STAILQ_INSERT_TAIL(res, a, next);
2724 }
2725
2726 free(buf);
2727 return (res);
2728
2729 fail:
2730 free(buf);
2731 procstat_freeadvlock(procstat, res);
2732 return (NULL);
2733 }
2734
2735 struct advlock_list *
procstat_getadvlock(struct procstat * procstat)2736 procstat_getadvlock(struct procstat *procstat)
2737 {
2738 switch (procstat->type) {
2739 case PROCSTAT_KVM:
2740 warnx("kvm method is not supported");
2741 return (NULL);
2742 case PROCSTAT_SYSCTL:
2743 return (procstat_getadvlock_sysctl(procstat));
2744 case PROCSTAT_CORE:
2745 warnx("core method is not supported");
2746 return (NULL);
2747 default:
2748 warnx("unknown access method: %d", procstat->type);
2749 return (NULL);
2750 }
2751 }
2752
2753 void
procstat_freeadvlock(struct procstat * procstat __unused,struct advlock_list * lst)2754 procstat_freeadvlock(struct procstat *procstat __unused,
2755 struct advlock_list *lst)
2756 {
2757 struct advlock *a, *a1;
2758
2759 STAILQ_FOREACH_SAFE(a, lst, next, a1) {
2760 free(__DECONST(char *, a->path));
2761 free(a);
2762 }
2763 free(lst);
2764 }
2765
2766 static rlim_t *
procstat_getrlimitusage_sysctl(pid_t pid,unsigned * cntp)2767 procstat_getrlimitusage_sysctl(pid_t pid, unsigned *cntp)
2768 {
2769 int error, name[4];
2770 rlim_t *val;
2771 size_t len;
2772
2773 name[0] = CTL_KERN;
2774 name[1] = KERN_PROC;
2775 name[2] = KERN_PROC_RLIMIT_USAGE;
2776 name[3] = pid;
2777
2778 len = 0;
2779 error = sysctl(name, nitems(name), NULL, &len, NULL, 0);
2780 if (error == -1)
2781 return (NULL);
2782 val = malloc(len);
2783 if (val == NULL)
2784 return (NULL);
2785
2786 error = sysctl(name, nitems(name), val, &len, NULL, 0);
2787 if (error == -1) {
2788 free(val);
2789 return (NULL);
2790 }
2791 *cntp = len / sizeof(rlim_t);
2792 return (val);
2793 }
2794
2795 rlim_t *
procstat_getrlimitusage(struct procstat * procstat,struct kinfo_proc * kp,unsigned int * cntp)2796 procstat_getrlimitusage(struct procstat *procstat, struct kinfo_proc *kp,
2797 unsigned int *cntp)
2798 {
2799 switch (procstat->type) {
2800 case PROCSTAT_KVM:
2801 warnx("kvm method is not supported");
2802 return (NULL);
2803 case PROCSTAT_SYSCTL:
2804 return (procstat_getrlimitusage_sysctl(kp->ki_pid, cntp));
2805 case PROCSTAT_CORE:
2806 warnx("core method is not supported");
2807 return (NULL);
2808 default:
2809 warnx("unknown access method: %d", procstat->type);
2810 return (NULL);
2811 }
2812 }
2813
2814 void
procstat_freerlimitusage(struct procstat * procstat __unused,rlim_t * resusage)2815 procstat_freerlimitusage(struct procstat *procstat __unused, rlim_t *resusage)
2816 {
2817 free(resusage);
2818 }
2819