1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2005-2007 Joseph Koshy 5 * Copyright (c) 2007 The FreeBSD Foundation 6 * All rights reserved. 7 * 8 * Portions of this software were developed by A. Joseph Koshy under 9 * sponsorship from the FreeBSD Foundation and Google, Inc. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include <sys/param.h> 37 #include <sys/pmc.h> 38 #include <sys/pmclog.h> 39 40 #include <assert.h> 41 #include <errno.h> 42 #include <pmc.h> 43 #include <pmclog.h> 44 #include <stddef.h> 45 #include <stdlib.h> 46 #include <string.h> 47 #include <strings.h> 48 #include <unistd.h> 49 #include <stdio.h> 50 51 #include <machine/pmc_mdep.h> 52 53 #include "libpmcinternal.h" 54 55 #define PMCLOG_BUFFER_SIZE 512*1024 56 57 /* 58 * API NOTES 59 * 60 * The pmclog(3) API is oriented towards parsing an event stream in 61 * "realtime", i.e., from an data source that may or may not preserve 62 * record boundaries -- for example when the data source is elsewhere 63 * on a network. The API allows data to be fed into the parser zero 64 * or more bytes at a time. 65 * 66 * The state for a log file parser is maintained in a 'struct 67 * pmclog_parse_state'. Parser invocations are done by calling 68 * 'pmclog_read()'; this function will inform the caller when a 69 * complete event is parsed. 70 * 71 * The parser first assembles a complete log file event in an internal 72 * work area (see "ps_saved" below). Once a complete log file event 73 * is read, the parser then parses it and converts it to an event 74 * descriptor usable by the client. We could possibly avoid this two 75 * step process by directly parsing the input log to set fields in the 76 * event record. However the parser's state machine would get 77 * insanely complicated, and this code is unlikely to be used in 78 * performance critical paths. 79 */ 80 81 #define PMCLOG_HEADER_FROM_SAVED_STATE(PS) \ 82 (* ((uint32_t *) &(PS)->ps_saved)) 83 84 #define PMCLOG_INITIALIZE_READER(LE,A) LE = (uint32_t *) &(A) 85 #define PMCLOG_READ32(LE,V) do { \ 86 (V) = *(LE)++; \ 87 } while (0) 88 #define PMCLOG_READ64(LE,V) do { \ 89 uint64_t _v; \ 90 _v = (uint64_t) *(LE)++; \ 91 _v |= ((uint64_t) *(LE)++) << 32; \ 92 (V) = _v; \ 93 } while (0) 94 95 #define PMCLOG_READSTRING(LE,DST,LEN) strlcpy((DST), (char *) (LE), (LEN)) 96 97 /* 98 * Assemble a log record from '*len' octets starting from address '*data'. 99 * Update 'data' and 'len' to reflect the number of bytes consumed. 100 * 101 * '*data' is potentially an unaligned address and '*len' octets may 102 * not be enough to complete a event record. 103 */ 104 105 static enum pmclog_parser_state 106 pmclog_get_record(struct pmclog_parse_state *ps, char **data, ssize_t *len) 107 { 108 int avail, copylen, recordsize, used; 109 uint32_t h; 110 const int HEADERSIZE = sizeof(uint32_t); 111 char *src, *dst; 112 113 if ((avail = *len) <= 0) 114 return (ps->ps_state = PL_STATE_ERROR); 115 116 src = *data; 117 used = 0; 118 119 if (ps->ps_state == PL_STATE_NEW_RECORD) 120 ps->ps_svcount = 0; 121 122 dst = (char *) &ps->ps_saved + ps->ps_svcount; 123 124 switch (ps->ps_state) { 125 case PL_STATE_NEW_RECORD: 126 127 /* 128 * Transitions: 129 * 130 * Case A: avail < headersize 131 * -> 'expecting header' 132 * 133 * Case B: avail >= headersize 134 * B.1: avail < recordsize 135 * -> 'partial record' 136 * B.2: avail >= recordsize 137 * -> 'new record' 138 */ 139 140 copylen = avail < HEADERSIZE ? avail : HEADERSIZE; 141 bcopy(src, dst, copylen); 142 ps->ps_svcount = used = copylen; 143 144 if (copylen < HEADERSIZE) { 145 ps->ps_state = PL_STATE_EXPECTING_HEADER; 146 goto done; 147 } 148 149 src += copylen; 150 dst += copylen; 151 152 h = PMCLOG_HEADER_FROM_SAVED_STATE(ps); 153 recordsize = PMCLOG_HEADER_TO_LENGTH(h); 154 155 if (recordsize <= 0) 156 goto error; 157 158 if (recordsize <= avail) { /* full record available */ 159 bcopy(src, dst, recordsize - copylen); 160 ps->ps_svcount = used = recordsize; 161 goto done; 162 } 163 164 /* header + a partial record is available */ 165 bcopy(src, dst, avail - copylen); 166 ps->ps_svcount = used = avail; 167 ps->ps_state = PL_STATE_PARTIAL_RECORD; 168 169 break; 170 171 case PL_STATE_EXPECTING_HEADER: 172 173 /* 174 * Transitions: 175 * 176 * Case C: avail+saved < headersize 177 * -> 'expecting header' 178 * 179 * Case D: avail+saved >= headersize 180 * D.1: avail+saved < recordsize 181 * -> 'partial record' 182 * D.2: avail+saved >= recordsize 183 * -> 'new record' 184 * (see PARTIAL_RECORD handling below) 185 */ 186 187 if (avail + ps->ps_svcount < HEADERSIZE) { 188 bcopy(src, dst, avail); 189 ps->ps_svcount += avail; 190 used = avail; 191 break; 192 } 193 194 used = copylen = HEADERSIZE - ps->ps_svcount; 195 bcopy(src, dst, copylen); 196 src += copylen; 197 dst += copylen; 198 avail -= copylen; 199 ps->ps_svcount += copylen; 200 201 /*FALLTHROUGH*/ 202 203 case PL_STATE_PARTIAL_RECORD: 204 205 /* 206 * Transitions: 207 * 208 * Case E: avail+saved < recordsize 209 * -> 'partial record' 210 * 211 * Case F: avail+saved >= recordsize 212 * -> 'new record' 213 */ 214 215 h = PMCLOG_HEADER_FROM_SAVED_STATE(ps); 216 recordsize = PMCLOG_HEADER_TO_LENGTH(h); 217 218 if (recordsize <= 0) 219 goto error; 220 221 if (avail + ps->ps_svcount < recordsize) { 222 copylen = avail; 223 ps->ps_state = PL_STATE_PARTIAL_RECORD; 224 } else { 225 copylen = recordsize - ps->ps_svcount; 226 ps->ps_state = PL_STATE_NEW_RECORD; 227 } 228 229 bcopy(src, dst, copylen); 230 ps->ps_svcount += copylen; 231 used += copylen; 232 break; 233 234 default: 235 goto error; 236 } 237 238 done: 239 *data += used; 240 *len -= used; 241 return ps->ps_state; 242 243 error: 244 ps->ps_state = PL_STATE_ERROR; 245 return ps->ps_state; 246 } 247 248 /* 249 * Get an event from the stream pointed to by '*data'. '*len' 250 * indicates the number of bytes available to parse. Arguments 251 * '*data' and '*len' are updated to indicate the number of bytes 252 * consumed. 253 */ 254 255 static int 256 pmclog_get_event(void *cookie, char **data, ssize_t *len, 257 struct pmclog_ev *ev) 258 { 259 int evlen, pathlen; 260 uint32_t h, *le, npc, noop; 261 enum pmclog_parser_state e; 262 struct pmclog_parse_state *ps; 263 struct pmclog_header *ph; 264 265 ps = (struct pmclog_parse_state *) cookie; 266 267 assert(ps->ps_state != PL_STATE_ERROR); 268 269 if ((e = pmclog_get_record(ps,data,len)) == PL_STATE_ERROR) { 270 ev->pl_state = PMCLOG_ERROR; 271 printf("state error\n"); 272 return -1; 273 } 274 275 if (e != PL_STATE_NEW_RECORD) { 276 ev->pl_state = PMCLOG_REQUIRE_DATA; 277 return -1; 278 } 279 280 PMCLOG_INITIALIZE_READER(le, ps->ps_saved); 281 ev->pl_data = le; 282 ph = (struct pmclog_header *)(uintptr_t)le; 283 284 h = ph->pl_header; 285 if (!PMCLOG_HEADER_CHECK_MAGIC(h)) { 286 printf("bad magic\n"); 287 ps->ps_state = PL_STATE_ERROR; 288 ev->pl_state = PMCLOG_ERROR; 289 return -1; 290 } 291 292 /* copy out the time stamp */ 293 ev->pl_ts.tv_sec = ph->pl_tsc; 294 le += sizeof(*ph)/4; 295 296 evlen = PMCLOG_HEADER_TO_LENGTH(h); 297 298 #define PMCLOG_GET_PATHLEN(P,E,TYPE) do { \ 299 (P) = (E) - offsetof(struct TYPE, pl_pathname); \ 300 if ((P) > PATH_MAX || (P) < 0) \ 301 goto error; \ 302 } while (0) 303 304 #define PMCLOG_GET_CALLCHAIN_SIZE(SZ,E) do { \ 305 (SZ) = ((E) - offsetof(struct pmclog_callchain, pl_pc)) \ 306 / sizeof(uintfptr_t); \ 307 } while (0); 308 309 switch (ev->pl_type = PMCLOG_HEADER_TO_TYPE(h)) { 310 case PMCLOG_TYPE_CALLCHAIN: 311 PMCLOG_READ32(le,ev->pl_u.pl_cc.pl_pid); 312 PMCLOG_READ32(le,ev->pl_u.pl_cc.pl_tid); 313 PMCLOG_READ32(le,ev->pl_u.pl_cc.pl_pmcid); 314 PMCLOG_READ32(le,ev->pl_u.pl_cc.pl_cpuflags); 315 PMCLOG_GET_CALLCHAIN_SIZE(ev->pl_u.pl_cc.pl_npc,evlen); 316 for (npc = 0; npc < ev->pl_u.pl_cc.pl_npc; npc++) 317 PMCLOG_READADDR(le,ev->pl_u.pl_cc.pl_pc[npc]); 318 for (;npc < PMC_CALLCHAIN_DEPTH_MAX; npc++) 319 ev->pl_u.pl_cc.pl_pc[npc] = (uintfptr_t) 0; 320 break; 321 case PMCLOG_TYPE_CLOSELOG: 322 ev->pl_state = PMCLOG_EOF; 323 return (-1); 324 case PMCLOG_TYPE_DROPNOTIFY: 325 /* nothing to do */ 326 break; 327 case PMCLOG_TYPE_INITIALIZE: 328 PMCLOG_READ32(le,ev->pl_u.pl_i.pl_version); 329 PMCLOG_READ32(le,ev->pl_u.pl_i.pl_arch); 330 PMCLOG_READ64(le,ev->pl_u.pl_i.pl_tsc_freq); 331 memcpy(&ev->pl_u.pl_i.pl_ts, le, sizeof(struct timespec)); 332 le += sizeof(struct timespec)/4; 333 PMCLOG_READSTRING(le, ev->pl_u.pl_i.pl_cpuid, PMC_CPUID_LEN); 334 memcpy(ev->pl_u.pl_i.pl_cpuid, le, PMC_CPUID_LEN); 335 ps->ps_cpuid = strdup(ev->pl_u.pl_i.pl_cpuid); 336 ps->ps_version = ev->pl_u.pl_i.pl_version; 337 ps->ps_arch = ev->pl_u.pl_i.pl_arch; 338 ps->ps_initialized = 1; 339 break; 340 case PMCLOG_TYPE_MAP_IN: 341 PMCLOG_GET_PATHLEN(pathlen,evlen,pmclog_map_in); 342 PMCLOG_READ32(le,ev->pl_u.pl_mi.pl_pid); 343 PMCLOG_READ32(le,noop); 344 PMCLOG_READADDR(le,ev->pl_u.pl_mi.pl_start); 345 PMCLOG_READSTRING(le, ev->pl_u.pl_mi.pl_pathname, pathlen); 346 break; 347 case PMCLOG_TYPE_MAP_OUT: 348 PMCLOG_READ32(le,ev->pl_u.pl_mo.pl_pid); 349 PMCLOG_READ32(le,noop); 350 PMCLOG_READADDR(le,ev->pl_u.pl_mo.pl_start); 351 PMCLOG_READADDR(le,ev->pl_u.pl_mo.pl_end); 352 break; 353 case PMCLOG_TYPE_PMCALLOCATE: 354 PMCLOG_READ32(le,ev->pl_u.pl_a.pl_pmcid); 355 PMCLOG_READ32(le,ev->pl_u.pl_a.pl_event); 356 PMCLOG_READ32(le,ev->pl_u.pl_a.pl_flags); 357 PMCLOG_READ32(le,noop); 358 PMCLOG_READ64(le,ev->pl_u.pl_a.pl_rate); 359 360 /* 361 * Could be either a PMC event code or a PMU event index; 362 * assume that their encodings don't overlap (i.e. no PMU event 363 * table is more than 0x1000 entries) to distinguish them here. 364 * Otherwise pmc_pmu_event_get_by_idx will go out of bounds if 365 * given a PMC event code when it knows about that CPU. 366 * 367 * XXX: Ideally we'd have user flags to give us that context. 368 */ 369 if (ev->pl_u.pl_a.pl_event < PMC_EVENT_FIRST) 370 ev->pl_u.pl_a.pl_evname = 371 pmc_pmu_event_get_by_idx(ps->ps_cpuid, 372 ev->pl_u.pl_a.pl_event); 373 else if (ev->pl_u.pl_a.pl_event <= PMC_EVENT_LAST) 374 ev->pl_u.pl_a.pl_evname = 375 _pmc_name_of_event(ev->pl_u.pl_a.pl_event, 376 ps->ps_arch); 377 else 378 ev->pl_u.pl_a.pl_evname = NULL; 379 if (ev->pl_u.pl_a.pl_evname == NULL) { 380 printf("unknown event\n"); 381 goto error; 382 } 383 break; 384 case PMCLOG_TYPE_PMCALLOCATEDYN: 385 PMCLOG_READ32(le,ev->pl_u.pl_ad.pl_pmcid); 386 PMCLOG_READ32(le,ev->pl_u.pl_ad.pl_event); 387 PMCLOG_READ32(le,ev->pl_u.pl_ad.pl_flags); 388 PMCLOG_READ32(le,noop); 389 PMCLOG_READSTRING(le,ev->pl_u.pl_ad.pl_evname,PMC_NAME_MAX); 390 break; 391 case PMCLOG_TYPE_PMCATTACH: 392 PMCLOG_GET_PATHLEN(pathlen,evlen,pmclog_pmcattach); 393 PMCLOG_READ32(le,ev->pl_u.pl_t.pl_pmcid); 394 PMCLOG_READ32(le,ev->pl_u.pl_t.pl_pid); 395 PMCLOG_READSTRING(le,ev->pl_u.pl_t.pl_pathname,pathlen); 396 break; 397 case PMCLOG_TYPE_PMCDETACH: 398 PMCLOG_READ32(le,ev->pl_u.pl_d.pl_pmcid); 399 PMCLOG_READ32(le,ev->pl_u.pl_d.pl_pid); 400 break; 401 case PMCLOG_TYPE_PROCCSW: 402 PMCLOG_READ64(le,ev->pl_u.pl_c.pl_value); 403 PMCLOG_READ32(le,ev->pl_u.pl_c.pl_pmcid); 404 PMCLOG_READ32(le,ev->pl_u.pl_c.pl_pid); 405 PMCLOG_READ32(le,ev->pl_u.pl_c.pl_tid); 406 break; 407 case PMCLOG_TYPE_PROCEXEC: 408 PMCLOG_GET_PATHLEN(pathlen,evlen,pmclog_procexec); 409 PMCLOG_READ32(le,ev->pl_u.pl_x.pl_pid); 410 PMCLOG_READ32(le,ev->pl_u.pl_x.pl_pmcid); 411 PMCLOG_READADDR(le,ev->pl_u.pl_x.pl_baseaddr); 412 PMCLOG_READADDR(le,ev->pl_u.pl_x.pl_dynaddr); 413 PMCLOG_READSTRING(le,ev->pl_u.pl_x.pl_pathname,pathlen); 414 break; 415 case PMCLOG_TYPE_PROCEXIT: 416 PMCLOG_READ32(le,ev->pl_u.pl_e.pl_pmcid); 417 PMCLOG_READ32(le,ev->pl_u.pl_e.pl_pid); 418 PMCLOG_READ64(le,ev->pl_u.pl_e.pl_value); 419 break; 420 case PMCLOG_TYPE_PROCFORK: 421 PMCLOG_READ32(le,ev->pl_u.pl_f.pl_oldpid); 422 PMCLOG_READ32(le,ev->pl_u.pl_f.pl_newpid); 423 break; 424 case PMCLOG_TYPE_SYSEXIT: 425 PMCLOG_READ32(le,ev->pl_u.pl_se.pl_pid); 426 break; 427 case PMCLOG_TYPE_USERDATA: 428 PMCLOG_READ32(le,ev->pl_u.pl_u.pl_userdata); 429 break; 430 case PMCLOG_TYPE_THR_CREATE: 431 PMCLOG_READ32(le,ev->pl_u.pl_tc.pl_tid); 432 PMCLOG_READ32(le,ev->pl_u.pl_tc.pl_pid); 433 PMCLOG_READ32(le,ev->pl_u.pl_tc.pl_flags); 434 PMCLOG_READ32(le,noop); 435 memcpy(ev->pl_u.pl_tc.pl_tdname, le, MAXCOMLEN+1); 436 break; 437 case PMCLOG_TYPE_THR_EXIT: 438 PMCLOG_READ32(le,ev->pl_u.pl_te.pl_tid); 439 break; 440 case PMCLOG_TYPE_PROC_CREATE: 441 PMCLOG_READ32(le,ev->pl_u.pl_pc.pl_pid); 442 PMCLOG_READ32(le,ev->pl_u.pl_pc.pl_flags); 443 memcpy(ev->pl_u.pl_pc.pl_pcomm, le, MAXCOMLEN+1); 444 break; 445 default: /* unknown record type */ 446 ps->ps_state = PL_STATE_ERROR; 447 ev->pl_state = PMCLOG_ERROR; 448 return (-1); 449 } 450 451 ev->pl_offset = (ps->ps_offset += evlen); 452 ev->pl_count = (ps->ps_count += 1); 453 ev->pl_len = evlen; 454 ev->pl_state = PMCLOG_OK; 455 return 0; 456 457 error: 458 ev->pl_state = PMCLOG_ERROR; 459 ps->ps_state = PL_STATE_ERROR; 460 return -1; 461 } 462 463 /* 464 * Extract and return the next event from the byte stream. 465 * 466 * Returns 0 and sets the event's state to PMCLOG_OK in case an event 467 * was successfully parsed. Otherwise this function returns -1 and 468 * sets the event's state to one of PMCLOG_REQUIRE_DATA (if more data 469 * is needed) or PMCLOG_EOF (if an EOF was seen) or PMCLOG_ERROR if 470 * a parse error was encountered. 471 */ 472 473 int 474 pmclog_read(void *cookie, struct pmclog_ev *ev) 475 { 476 int retval; 477 ssize_t nread; 478 struct pmclog_parse_state *ps; 479 480 ps = (struct pmclog_parse_state *) cookie; 481 482 if (ps->ps_state == PL_STATE_ERROR) { 483 ev->pl_state = PMCLOG_ERROR; 484 return -1; 485 } 486 487 /* 488 * If there isn't enough data left for a new event try and get 489 * more data. 490 */ 491 if (ps->ps_len == 0) { 492 ev->pl_state = PMCLOG_REQUIRE_DATA; 493 494 /* 495 * If we have a valid file descriptor to read from, attempt 496 * to read from that. This read may return with an error, 497 * (which may be EAGAIN or other recoverable error), or 498 * can return EOF. 499 */ 500 if (ps->ps_fd != PMCLOG_FD_NONE) { 501 refill: 502 nread = read(ps->ps_fd, ps->ps_buffer, 503 PMCLOG_BUFFER_SIZE); 504 505 if (nread <= 0) { 506 if (nread == 0) 507 ev->pl_state = PMCLOG_EOF; 508 else if (errno != EAGAIN) /* not restartable */ 509 ev->pl_state = PMCLOG_ERROR; 510 return -1; 511 } 512 513 ps->ps_len = nread; 514 ps->ps_data = ps->ps_buffer; 515 } else { 516 return -1; 517 } 518 } 519 520 assert(ps->ps_len > 0); 521 522 523 /* Retrieve one event from the byte stream. */ 524 retval = pmclog_get_event(ps, &ps->ps_data, &ps->ps_len, ev); 525 /* 526 * If we need more data and we have a configured fd, try read 527 * from it. 528 */ 529 if (retval < 0 && ev->pl_state == PMCLOG_REQUIRE_DATA && 530 ps->ps_fd != -1) { 531 assert(ps->ps_len == 0); 532 goto refill; 533 } 534 535 return retval; 536 } 537 538 /* 539 * Feed data to a memory based parser. 540 * 541 * The memory area pointed to by 'data' needs to be valid till the 542 * next error return from pmclog_next_event(). 543 */ 544 545 int 546 pmclog_feed(void *cookie, char *data, int len) 547 { 548 struct pmclog_parse_state *ps; 549 550 ps = (struct pmclog_parse_state *) cookie; 551 552 if (len < 0 || /* invalid length */ 553 ps->ps_buffer || /* called for a file parser */ 554 ps->ps_len != 0) /* unnecessary call */ 555 return -1; 556 557 ps->ps_data = data; 558 ps->ps_len = len; 559 560 return 0; 561 } 562 563 /* 564 * Allocate and initialize parser state. 565 */ 566 567 void * 568 pmclog_open(int fd) 569 { 570 struct pmclog_parse_state *ps; 571 572 if ((ps = (struct pmclog_parse_state *) malloc(sizeof(*ps))) == NULL) 573 return NULL; 574 575 ps->ps_state = PL_STATE_NEW_RECORD; 576 ps->ps_arch = -1; 577 ps->ps_initialized = 0; 578 ps->ps_count = 0; 579 ps->ps_offset = (off_t) 0; 580 bzero(&ps->ps_saved, sizeof(ps->ps_saved)); 581 ps->ps_cpuid = NULL; 582 ps->ps_svcount = 0; 583 ps->ps_fd = fd; 584 ps->ps_data = NULL; 585 ps->ps_buffer = NULL; 586 ps->ps_len = 0; 587 588 /* allocate space for a work area */ 589 if (ps->ps_fd != PMCLOG_FD_NONE) { 590 if ((ps->ps_buffer = malloc(PMCLOG_BUFFER_SIZE)) == NULL) { 591 free(ps); 592 return NULL; 593 } 594 } 595 596 return ps; 597 } 598 599 600 /* 601 * Free up parser state. 602 */ 603 604 void 605 pmclog_close(void *cookie) 606 { 607 struct pmclog_parse_state *ps; 608 609 ps = (struct pmclog_parse_state *) cookie; 610 611 if (ps->ps_buffer) 612 free(ps->ps_buffer); 613 614 free(ps); 615 } 616