xref: /freebsd/lib/libmemstat/memstat_uma.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2005-2006 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30 
31 #include <sys/param.h>
32 #include <sys/cpuset.h>
33 #include <sys/sysctl.h>
34 
35 #include <vm/uma.h>
36 #include <vm/uma_int.h>
37 
38 #include <err.h>
39 #include <errno.h>
40 #include <kvm.h>
41 #include <nlist.h>
42 #include <stddef.h>
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <string.h>
46 #include <unistd.h>
47 
48 #include "memstat.h"
49 #include "memstat_internal.h"
50 
51 static struct nlist namelist[] = {
52 #define	X_UMA_KEGS	0
53 	{ .n_name = "_uma_kegs" },
54 #define	X_MP_MAXID	1
55 	{ .n_name = "_mp_maxid" },
56 #define	X_ALL_CPUS	2
57 	{ .n_name = "_all_cpus" },
58 #define	X_VM_NDOMAINS	3
59 	{ .n_name = "_vm_ndomains" },
60 	{ .n_name = "" },
61 };
62 
63 /*
64  * Extract uma(9) statistics from the running kernel, and store all memory
65  * type information in the passed list.  For each type, check the list for an
66  * existing entry with the right name/allocator -- if present, update that
67  * entry.  Otherwise, add a new entry.  On error, the entire list will be
68  * cleared, as entries will be in an inconsistent state.
69  *
70  * To reduce the level of work for a list that starts empty, we keep around a
71  * hint as to whether it was empty when we began, so we can avoid searching
72  * the list for entries to update.  Updates are O(n^2) due to searching for
73  * each entry before adding it.
74  */
75 int
76 memstat_sysctl_uma(struct memory_type_list *list, int flags)
77 {
78 	struct uma_stream_header *ushp;
79 	struct uma_type_header *uthp;
80 	struct uma_percpu_stat *upsp;
81 	struct memory_type *mtp;
82 	int count, hint_dontsearch, i, j, maxcpus, maxid;
83 	char *buffer, *p;
84 	size_t size;
85 
86 	hint_dontsearch = LIST_EMPTY(&list->mtl_list);
87 
88 	/*
89 	 * Query the number of CPUs, number of malloc types so that we can
90 	 * guess an initial buffer size.  We loop until we succeed or really
91 	 * fail.  Note that the value of maxcpus we query using sysctl is not
92 	 * the version we use when processing the real data -- that is read
93 	 * from the header.
94 	 */
95 retry:
96 	size = sizeof(maxid);
97 	if (sysctlbyname("kern.smp.maxid", &maxid, &size, NULL, 0) < 0) {
98 		if (errno == EACCES || errno == EPERM)
99 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
100 		else
101 			list->mtl_error = MEMSTAT_ERROR_DATAERROR;
102 		return (-1);
103 	}
104 	if (size != sizeof(maxid)) {
105 		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
106 		return (-1);
107 	}
108 
109 	size = sizeof(count);
110 	if (sysctlbyname("vm.zone_count", &count, &size, NULL, 0) < 0) {
111 		if (errno == EACCES || errno == EPERM)
112 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
113 		else
114 			list->mtl_error = MEMSTAT_ERROR_VERSION;
115 		return (-1);
116 	}
117 	if (size != sizeof(count)) {
118 		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
119 		return (-1);
120 	}
121 
122 	size = sizeof(*uthp) + count * (sizeof(*uthp) + sizeof(*upsp) *
123 	    (maxid + 1));
124 
125 	buffer = malloc(size);
126 	if (buffer == NULL) {
127 		list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
128 		return (-1);
129 	}
130 
131 	if (sysctlbyname("vm.zone_stats", buffer, &size, NULL, 0) < 0) {
132 		/*
133 		 * XXXRW: ENOMEM is an ambiguous return, we should bound the
134 		 * number of loops, perhaps.
135 		 */
136 		if (errno == ENOMEM) {
137 			free(buffer);
138 			goto retry;
139 		}
140 		if (errno == EACCES || errno == EPERM)
141 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
142 		else
143 			list->mtl_error = MEMSTAT_ERROR_VERSION;
144 		free(buffer);
145 		return (-1);
146 	}
147 
148 	if (size == 0) {
149 		free(buffer);
150 		return (0);
151 	}
152 
153 	if (size < sizeof(*ushp)) {
154 		list->mtl_error = MEMSTAT_ERROR_VERSION;
155 		free(buffer);
156 		return (-1);
157 	}
158 	p = buffer;
159 	ushp = (struct uma_stream_header *)p;
160 	p += sizeof(*ushp);
161 
162 	if (ushp->ush_version != UMA_STREAM_VERSION) {
163 		list->mtl_error = MEMSTAT_ERROR_VERSION;
164 		free(buffer);
165 		return (-1);
166 	}
167 
168 	/*
169 	 * For the remainder of this function, we are quite trusting about
170 	 * the layout of structures and sizes, since we've determined we have
171 	 * a matching version and acceptable CPU count.
172 	 */
173 	maxcpus = ushp->ush_maxcpus;
174 	count = ushp->ush_count;
175 	for (i = 0; i < count; i++) {
176 		uthp = (struct uma_type_header *)p;
177 		p += sizeof(*uthp);
178 
179 		if (hint_dontsearch == 0) {
180 			mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
181 			    uthp->uth_name);
182 		} else
183 			mtp = NULL;
184 		if (mtp == NULL)
185 			mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
186 			    uthp->uth_name, maxid + 1);
187 		if (mtp == NULL) {
188 			_memstat_mtl_empty(list);
189 			free(buffer);
190 			list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
191 			return (-1);
192 		}
193 
194 		/*
195 		 * Reset the statistics on a current node.
196 		 */
197 		_memstat_mt_reset_stats(mtp, maxid + 1);
198 
199 		mtp->mt_numallocs = uthp->uth_allocs;
200 		mtp->mt_numfrees = uthp->uth_frees;
201 		mtp->mt_failures = uthp->uth_fails;
202 		mtp->mt_sleeps = uthp->uth_sleeps;
203 
204 		for (j = 0; j < maxcpus; j++) {
205 			upsp = (struct uma_percpu_stat *)p;
206 			p += sizeof(*upsp);
207 
208 			mtp->mt_percpu_cache[j].mtp_free =
209 			    upsp->ups_cache_free;
210 			mtp->mt_free += upsp->ups_cache_free;
211 			mtp->mt_numallocs += upsp->ups_allocs;
212 			mtp->mt_numfrees += upsp->ups_frees;
213 		}
214 
215 		mtp->mt_size = uthp->uth_size;
216 		mtp->mt_rsize = uthp->uth_rsize;
217 		mtp->mt_memalloced = mtp->mt_numallocs * uthp->uth_size;
218 		mtp->mt_memfreed = mtp->mt_numfrees * uthp->uth_size;
219 		mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
220 		mtp->mt_countlimit = uthp->uth_limit;
221 		mtp->mt_byteslimit = uthp->uth_limit * uthp->uth_size;
222 
223 		mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
224 		mtp->mt_zonefree = uthp->uth_zone_free;
225 
226 		/*
227 		 * UMA secondary zones share a keg with the primary zone.  To
228 		 * avoid double-reporting of free items, report keg free
229 		 * items only in the primary zone.
230 		 */
231 		if (!(uthp->uth_zone_flags & UTH_ZONE_SECONDARY)) {
232 			mtp->mt_kegfree = uthp->uth_keg_free;
233 			mtp->mt_free += mtp->mt_kegfree;
234 		}
235 		mtp->mt_free += mtp->mt_zonefree;
236 	}
237 
238 	free(buffer);
239 
240 	return (0);
241 }
242 
243 static int
244 kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
245     size_t offset)
246 {
247 	ssize_t ret;
248 
249 	ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
250 	    size);
251 	if (ret < 0)
252 		return (MEMSTAT_ERROR_KVM);
253 	if ((size_t)ret != size)
254 		return (MEMSTAT_ERROR_KVM_SHORTREAD);
255 	return (0);
256 }
257 
258 static int
259 kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
260 {
261 	ssize_t ret;
262 	int i;
263 
264 	for (i = 0; i < buflen; i++) {
265 		ret = kvm_read(kvm, (unsigned long)kvm_pointer + i,
266 		    &(buffer[i]), sizeof(char));
267 		if (ret < 0)
268 			return (MEMSTAT_ERROR_KVM);
269 		if ((size_t)ret != sizeof(char))
270 			return (MEMSTAT_ERROR_KVM_SHORTREAD);
271 		if (buffer[i] == '\0')
272 			return (0);
273 	}
274 	/* Truncate. */
275 	buffer[i-1] = '\0';
276 	return (0);
277 }
278 
279 static int
280 kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
281     size_t offset)
282 {
283 	ssize_t ret;
284 
285 	ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
286 	if (ret < 0)
287 		return (MEMSTAT_ERROR_KVM);
288 	if ((size_t)ret != size)
289 		return (MEMSTAT_ERROR_KVM_SHORTREAD);
290 	return (0);
291 }
292 
293 /*
294  * memstat_kvm_uma() is similar to memstat_sysctl_uma(), only it extracts
295  * UMA(9) statistics from a kernel core/memory file.
296  */
297 int
298 memstat_kvm_uma(struct memory_type_list *list, void *kvm_handle)
299 {
300 	LIST_HEAD(, uma_keg) uma_kegs;
301 	struct memory_type *mtp;
302 	struct uma_zone_domain uzd;
303 	struct uma_bucket *ubp, ub;
304 	struct uma_cache *ucp, *ucp_array;
305 	struct uma_zone *uzp, uz;
306 	struct uma_keg *kzp, kz;
307 	int hint_dontsearch, i, mp_maxid, ndomains, ret;
308 	char name[MEMTYPE_MAXNAME];
309 	cpuset_t all_cpus;
310 	long cpusetsize;
311 	kvm_t *kvm;
312 
313 	kvm = (kvm_t *)kvm_handle;
314 	hint_dontsearch = LIST_EMPTY(&list->mtl_list);
315 	if (kvm_nlist(kvm, namelist) != 0) {
316 		list->mtl_error = MEMSTAT_ERROR_KVM;
317 		return (-1);
318 	}
319 	if (namelist[X_UMA_KEGS].n_type == 0 ||
320 	    namelist[X_UMA_KEGS].n_value == 0) {
321 		list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
322 		return (-1);
323 	}
324 	ret = kread_symbol(kvm, X_MP_MAXID, &mp_maxid, sizeof(mp_maxid), 0);
325 	if (ret != 0) {
326 		list->mtl_error = ret;
327 		return (-1);
328 	}
329 	ret = kread_symbol(kvm, X_VM_NDOMAINS, &ndomains,
330 	    sizeof(ndomains), 0);
331 	if (ret != 0) {
332 		list->mtl_error = ret;
333 		return (-1);
334 	}
335 	ret = kread_symbol(kvm, X_UMA_KEGS, &uma_kegs, sizeof(uma_kegs), 0);
336 	if (ret != 0) {
337 		list->mtl_error = ret;
338 		return (-1);
339 	}
340 	cpusetsize = sysconf(_SC_CPUSET_SIZE);
341 	if (cpusetsize == -1 || (u_long)cpusetsize > sizeof(cpuset_t)) {
342 		list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
343 		return (-1);
344 	}
345 	CPU_ZERO(&all_cpus);
346 	ret = kread_symbol(kvm, X_ALL_CPUS, &all_cpus, cpusetsize, 0);
347 	if (ret != 0) {
348 		list->mtl_error = ret;
349 		return (-1);
350 	}
351 	ucp_array = malloc(sizeof(struct uma_cache) * (mp_maxid + 1));
352 	if (ucp_array == NULL) {
353 		list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
354 		return (-1);
355 	}
356 	for (kzp = LIST_FIRST(&uma_kegs); kzp != NULL; kzp =
357 	    LIST_NEXT(&kz, uk_link)) {
358 		ret = kread(kvm, kzp, &kz, sizeof(kz), 0);
359 		if (ret != 0) {
360 			free(ucp_array);
361 			_memstat_mtl_empty(list);
362 			list->mtl_error = ret;
363 			return (-1);
364 		}
365 		for (uzp = LIST_FIRST(&kz.uk_zones); uzp != NULL; uzp =
366 		    LIST_NEXT(&uz, uz_link)) {
367 			ret = kread(kvm, uzp, &uz, sizeof(uz), 0);
368 			if (ret != 0) {
369 				free(ucp_array);
370 				_memstat_mtl_empty(list);
371 				list->mtl_error = ret;
372 				return (-1);
373 			}
374 			ret = kread(kvm, uzp, ucp_array,
375 			    sizeof(struct uma_cache) * (mp_maxid + 1),
376 			    offsetof(struct uma_zone, uz_cpu[0]));
377 			if (ret != 0) {
378 				free(ucp_array);
379 				_memstat_mtl_empty(list);
380 				list->mtl_error = ret;
381 				return (-1);
382 			}
383 			ret = kread_string(kvm, uz.uz_name, name,
384 			    MEMTYPE_MAXNAME);
385 			if (ret != 0) {
386 				free(ucp_array);
387 				_memstat_mtl_empty(list);
388 				list->mtl_error = ret;
389 				return (-1);
390 			}
391 			if (hint_dontsearch == 0) {
392 				mtp = memstat_mtl_find(list, ALLOCATOR_UMA,
393 				    name);
394 			} else
395 				mtp = NULL;
396 			if (mtp == NULL)
397 				mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA,
398 				    name, mp_maxid + 1);
399 			if (mtp == NULL) {
400 				free(ucp_array);
401 				_memstat_mtl_empty(list);
402 				list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
403 				return (-1);
404 			}
405 			/*
406 			 * Reset the statistics on a current node.
407 			 */
408 			_memstat_mt_reset_stats(mtp, mp_maxid + 1);
409 			mtp->mt_numallocs = uz.uz_allocs;
410 			mtp->mt_numfrees = uz.uz_frees;
411 			mtp->mt_failures = uz.uz_fails;
412 			mtp->mt_sleeps = uz.uz_sleeps;
413 			if (kz.uk_flags & UMA_ZFLAG_INTERNAL)
414 				goto skip_percpu;
415 			for (i = 0; i < mp_maxid + 1; i++) {
416 				if (!CPU_ISSET(i, &all_cpus))
417 					continue;
418 				ucp = &ucp_array[i];
419 				mtp->mt_numallocs += ucp->uc_allocs;
420 				mtp->mt_numfrees += ucp->uc_frees;
421 
422 				if (ucp->uc_allocbucket != NULL) {
423 					ret = kread(kvm, ucp->uc_allocbucket,
424 					    &ub, sizeof(ub), 0);
425 					if (ret != 0) {
426 						free(ucp_array);
427 						_memstat_mtl_empty(list);
428 						list->mtl_error = ret;
429 						return (-1);
430 					}
431 					mtp->mt_free += ub.ub_cnt;
432 				}
433 				if (ucp->uc_freebucket != NULL) {
434 					ret = kread(kvm, ucp->uc_freebucket,
435 					    &ub, sizeof(ub), 0);
436 					if (ret != 0) {
437 						free(ucp_array);
438 						_memstat_mtl_empty(list);
439 						list->mtl_error = ret;
440 						return (-1);
441 					}
442 					mtp->mt_free += ub.ub_cnt;
443 				}
444 			}
445 skip_percpu:
446 			mtp->mt_size = kz.uk_size;
447 			mtp->mt_rsize = kz.uk_rsize;
448 			mtp->mt_memalloced = mtp->mt_numallocs * mtp->mt_size;
449 			mtp->mt_memfreed = mtp->mt_numfrees * mtp->mt_size;
450 			mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
451 			if (kz.uk_ppera > 1)
452 				mtp->mt_countlimit = kz.uk_maxpages /
453 				    kz.uk_ipers;
454 			else
455 				mtp->mt_countlimit = kz.uk_maxpages *
456 				    kz.uk_ipers;
457 			mtp->mt_byteslimit = mtp->mt_countlimit * mtp->mt_size;
458 			mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
459 			for (i = 0; i < ndomains; i++) {
460 				ret = kread(kvm, &uz.uz_domain[i], &uzd,
461 				   sizeof(uzd), 0);
462 				for (ubp =
463 				    LIST_FIRST(&uzd.uzd_buckets);
464 				    ubp != NULL;
465 				    ubp = LIST_NEXT(&ub, ub_link)) {
466 					ret = kread(kvm, ubp, &ub,
467 					   sizeof(ub), 0);
468 					mtp->mt_zonefree += ub.ub_cnt;
469 				}
470 			}
471 			if (!((kz.uk_flags & UMA_ZONE_SECONDARY) &&
472 			    LIST_FIRST(&kz.uk_zones) != uzp)) {
473 				mtp->mt_kegfree = kz.uk_free;
474 				mtp->mt_free += mtp->mt_kegfree;
475 			}
476 			mtp->mt_free += mtp->mt_zonefree;
477 		}
478 	}
479 	free(ucp_array);
480 	return (0);
481 }
482