1 /*- 2 * Copyright (c) 2005-2006 Robert N. M. Watson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sysctl.h> 31 32 #define LIBMEMSTAT /* Cause vm_page.h not to include opt_vmpage.h */ 33 #include <vm/vm.h> 34 #include <vm/vm_page.h> 35 36 #include <vm/uma.h> 37 #include <vm/uma_int.h> 38 39 #include <err.h> 40 #include <errno.h> 41 #include <kvm.h> 42 #include <nlist.h> 43 #include <stddef.h> 44 #include <stdio.h> 45 #include <stdlib.h> 46 #include <string.h> 47 48 #include "memstat.h" 49 #include "memstat_internal.h" 50 51 static struct nlist namelist[] = { 52 #define X_UMA_KEGS 0 53 { .n_name = "_uma_kegs" }, 54 #define X_MP_MAXID 1 55 { .n_name = "_mp_maxid" }, 56 #define X_ALL_CPUS 2 57 { .n_name = "_all_cpus" }, 58 { .n_name = "" }, 59 }; 60 61 /* 62 * Extract uma(9) statistics from the running kernel, and store all memory 63 * type information in the passed list. For each type, check the list for an 64 * existing entry with the right name/allocator -- if present, update that 65 * entry. Otherwise, add a new entry. On error, the entire list will be 66 * cleared, as entries will be in an inconsistent state. 67 * 68 * To reduce the level of work for a list that starts empty, we keep around a 69 * hint as to whether it was empty when we began, so we can avoid searching 70 * the list for entries to update. Updates are O(n^2) due to searching for 71 * each entry before adding it. 72 */ 73 int 74 memstat_sysctl_uma(struct memory_type_list *list, int flags) 75 { 76 struct uma_stream_header *ushp; 77 struct uma_type_header *uthp; 78 struct uma_percpu_stat *upsp; 79 struct memory_type *mtp; 80 int count, hint_dontsearch, i, j, maxcpus; 81 char *buffer, *p; 82 size_t size; 83 84 hint_dontsearch = LIST_EMPTY(&list->mtl_list); 85 86 /* 87 * Query the number of CPUs, number of malloc types so that we can 88 * guess an initial buffer size. We loop until we succeed or really 89 * fail. Note that the value of maxcpus we query using sysctl is not 90 * the version we use when processing the real data -- that is read 91 * from the header. 92 */ 93 retry: 94 size = sizeof(maxcpus); 95 if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) { 96 if (errno == EACCES || errno == EPERM) 97 list->mtl_error = MEMSTAT_ERROR_PERMISSION; 98 else 99 list->mtl_error = MEMSTAT_ERROR_DATAERROR; 100 return (-1); 101 } 102 if (size != sizeof(maxcpus)) { 103 list->mtl_error = MEMSTAT_ERROR_DATAERROR; 104 return (-1); 105 } 106 107 if (maxcpus > MEMSTAT_MAXCPU) { 108 list->mtl_error = MEMSTAT_ERROR_TOOMANYCPUS; 109 return (-1); 110 } 111 112 size = sizeof(count); 113 if (sysctlbyname("vm.zone_count", &count, &size, NULL, 0) < 0) { 114 if (errno == EACCES || errno == EPERM) 115 list->mtl_error = MEMSTAT_ERROR_PERMISSION; 116 else 117 list->mtl_error = MEMSTAT_ERROR_VERSION; 118 return (-1); 119 } 120 if (size != sizeof(count)) { 121 list->mtl_error = MEMSTAT_ERROR_DATAERROR; 122 return (-1); 123 } 124 125 size = sizeof(*uthp) + count * (sizeof(*uthp) + sizeof(*upsp) * 126 maxcpus); 127 128 buffer = malloc(size); 129 if (buffer == NULL) { 130 list->mtl_error = MEMSTAT_ERROR_NOMEMORY; 131 return (-1); 132 } 133 134 if (sysctlbyname("vm.zone_stats", buffer, &size, NULL, 0) < 0) { 135 /* 136 * XXXRW: ENOMEM is an ambiguous return, we should bound the 137 * number of loops, perhaps. 138 */ 139 if (errno == ENOMEM) { 140 free(buffer); 141 goto retry; 142 } 143 if (errno == EACCES || errno == EPERM) 144 list->mtl_error = MEMSTAT_ERROR_PERMISSION; 145 else 146 list->mtl_error = MEMSTAT_ERROR_VERSION; 147 free(buffer); 148 return (-1); 149 } 150 151 if (size == 0) { 152 free(buffer); 153 return (0); 154 } 155 156 if (size < sizeof(*ushp)) { 157 list->mtl_error = MEMSTAT_ERROR_VERSION; 158 free(buffer); 159 return (-1); 160 } 161 p = buffer; 162 ushp = (struct uma_stream_header *)p; 163 p += sizeof(*ushp); 164 165 if (ushp->ush_version != UMA_STREAM_VERSION) { 166 list->mtl_error = MEMSTAT_ERROR_VERSION; 167 free(buffer); 168 return (-1); 169 } 170 171 if (ushp->ush_maxcpus > MEMSTAT_MAXCPU) { 172 list->mtl_error = MEMSTAT_ERROR_TOOMANYCPUS; 173 free(buffer); 174 return (-1); 175 } 176 177 /* 178 * For the remainder of this function, we are quite trusting about 179 * the layout of structures and sizes, since we've determined we have 180 * a matching version and acceptable CPU count. 181 */ 182 maxcpus = ushp->ush_maxcpus; 183 count = ushp->ush_count; 184 for (i = 0; i < count; i++) { 185 uthp = (struct uma_type_header *)p; 186 p += sizeof(*uthp); 187 188 if (hint_dontsearch == 0) { 189 mtp = memstat_mtl_find(list, ALLOCATOR_UMA, 190 uthp->uth_name); 191 } else 192 mtp = NULL; 193 if (mtp == NULL) 194 mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA, 195 uthp->uth_name); 196 if (mtp == NULL) { 197 _memstat_mtl_empty(list); 198 free(buffer); 199 list->mtl_error = MEMSTAT_ERROR_NOMEMORY; 200 return (-1); 201 } 202 203 /* 204 * Reset the statistics on a current node. 205 */ 206 _memstat_mt_reset_stats(mtp); 207 208 mtp->mt_numallocs = uthp->uth_allocs; 209 mtp->mt_numfrees = uthp->uth_frees; 210 mtp->mt_failures = uthp->uth_fails; 211 212 for (j = 0; j < maxcpus; j++) { 213 upsp = (struct uma_percpu_stat *)p; 214 p += sizeof(*upsp); 215 216 mtp->mt_percpu_cache[j].mtp_free = 217 upsp->ups_cache_free; 218 mtp->mt_free += upsp->ups_cache_free; 219 mtp->mt_numallocs += upsp->ups_allocs; 220 mtp->mt_numfrees += upsp->ups_frees; 221 } 222 223 mtp->mt_size = uthp->uth_size; 224 mtp->mt_memalloced = mtp->mt_numallocs * uthp->uth_size; 225 mtp->mt_memfreed = mtp->mt_numfrees * uthp->uth_size; 226 mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; 227 mtp->mt_countlimit = uthp->uth_limit; 228 mtp->mt_byteslimit = uthp->uth_limit * uthp->uth_size; 229 230 mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; 231 mtp->mt_zonefree = uthp->uth_zone_free; 232 233 /* 234 * UMA secondary zones share a keg with the primary zone. To 235 * avoid double-reporting of free items, report keg free 236 * items only in the primary zone. 237 */ 238 if (!(uthp->uth_zone_flags & UTH_ZONE_SECONDARY)) { 239 mtp->mt_kegfree = uthp->uth_keg_free; 240 mtp->mt_free += mtp->mt_kegfree; 241 } 242 mtp->mt_free += mtp->mt_zonefree; 243 } 244 245 free(buffer); 246 247 return (0); 248 } 249 250 static int 251 kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size, 252 size_t offset) 253 { 254 ssize_t ret; 255 256 ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address, 257 size); 258 if (ret < 0) 259 return (MEMSTAT_ERROR_KVM); 260 if ((size_t)ret != size) 261 return (MEMSTAT_ERROR_KVM_SHORTREAD); 262 return (0); 263 } 264 265 static int 266 kread_string(kvm_t *kvm, void *kvm_pointer, char *buffer, int buflen) 267 { 268 ssize_t ret; 269 int i; 270 271 for (i = 0; i < buflen; i++) { 272 ret = kvm_read(kvm, (unsigned long)kvm_pointer + i, 273 &(buffer[i]), sizeof(char)); 274 if (ret < 0) 275 return (MEMSTAT_ERROR_KVM); 276 if ((size_t)ret != sizeof(char)) 277 return (MEMSTAT_ERROR_KVM_SHORTREAD); 278 if (buffer[i] == '\0') 279 return (0); 280 } 281 /* Truncate. */ 282 buffer[i-1] = '\0'; 283 return (0); 284 } 285 286 static int 287 kread_symbol(kvm_t *kvm, int index, void *address, size_t size, 288 size_t offset) 289 { 290 ssize_t ret; 291 292 ret = kvm_read(kvm, namelist[index].n_value + offset, address, size); 293 if (ret < 0) 294 return (MEMSTAT_ERROR_KVM); 295 if ((size_t)ret != size) 296 return (MEMSTAT_ERROR_KVM_SHORTREAD); 297 return (0); 298 } 299 300 /* 301 * memstat_kvm_uma() is similar to memstat_sysctl_uma(), only it extracts 302 * UMA(9) statistics from a kernel core/memory file. 303 */ 304 int 305 memstat_kvm_uma(struct memory_type_list *list, void *kvm_handle) 306 { 307 LIST_HEAD(, uma_keg) uma_kegs; 308 struct memory_type *mtp; 309 struct uma_bucket *ubp, ub; 310 struct uma_cache *ucp, *ucp_array; 311 struct uma_zone *uzp, uz; 312 struct uma_keg *kzp, kz; 313 int hint_dontsearch, i, mp_maxid, ret; 314 char name[MEMTYPE_MAXNAME]; 315 __cpumask_t all_cpus; 316 kvm_t *kvm; 317 318 kvm = (kvm_t *)kvm_handle; 319 hint_dontsearch = LIST_EMPTY(&list->mtl_list); 320 if (kvm_nlist(kvm, namelist) != 0) { 321 list->mtl_error = MEMSTAT_ERROR_KVM; 322 return (-1); 323 } 324 if (namelist[X_UMA_KEGS].n_type == 0 || 325 namelist[X_UMA_KEGS].n_value == 0) { 326 list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL; 327 return (-1); 328 } 329 ret = kread_symbol(kvm, X_MP_MAXID, &mp_maxid, sizeof(mp_maxid), 0); 330 if (ret != 0) { 331 list->mtl_error = ret; 332 return (-1); 333 } 334 ret = kread_symbol(kvm, X_UMA_KEGS, &uma_kegs, sizeof(uma_kegs), 0); 335 if (ret != 0) { 336 list->mtl_error = ret; 337 return (-1); 338 } 339 ret = kread_symbol(kvm, X_ALL_CPUS, &all_cpus, sizeof(all_cpus), 0); 340 if (ret != 0) { 341 list->mtl_error = ret; 342 return (-1); 343 } 344 ucp_array = malloc(sizeof(struct uma_cache) * (mp_maxid + 1)); 345 if (ucp_array == NULL) { 346 list->mtl_error = MEMSTAT_ERROR_NOMEMORY; 347 return (-1); 348 } 349 for (kzp = LIST_FIRST(&uma_kegs); kzp != NULL; kzp = 350 LIST_NEXT(&kz, uk_link)) { 351 ret = kread(kvm, kzp, &kz, sizeof(kz), 0); 352 if (ret != 0) { 353 free(ucp_array); 354 _memstat_mtl_empty(list); 355 list->mtl_error = ret; 356 return (-1); 357 } 358 for (uzp = LIST_FIRST(&kz.uk_zones); uzp != NULL; uzp = 359 LIST_NEXT(&uz, uz_link)) { 360 ret = kread(kvm, uzp, &uz, sizeof(uz), 0); 361 if (ret != 0) { 362 free(ucp_array); 363 _memstat_mtl_empty(list); 364 list->mtl_error = ret; 365 return (-1); 366 } 367 ret = kread(kvm, uzp, ucp_array, 368 sizeof(struct uma_cache) * (mp_maxid + 1), 369 offsetof(struct uma_zone, uz_cpu[0])); 370 if (ret != 0) { 371 free(ucp_array); 372 _memstat_mtl_empty(list); 373 list->mtl_error = ret; 374 return (-1); 375 } 376 ret = kread_string(kvm, uz.uz_name, name, 377 MEMTYPE_MAXNAME); 378 if (ret != 0) { 379 free(ucp_array); 380 _memstat_mtl_empty(list); 381 list->mtl_error = ret; 382 return (-1); 383 } 384 if (hint_dontsearch == 0) { 385 mtp = memstat_mtl_find(list, ALLOCATOR_UMA, 386 name); 387 } else 388 mtp = NULL; 389 if (mtp == NULL) 390 mtp = _memstat_mt_allocate(list, ALLOCATOR_UMA, 391 name); 392 if (mtp == NULL) { 393 free(ucp_array); 394 _memstat_mtl_empty(list); 395 list->mtl_error = MEMSTAT_ERROR_NOMEMORY; 396 return (-1); 397 } 398 /* 399 * Reset the statistics on a current node. 400 */ 401 _memstat_mt_reset_stats(mtp); 402 mtp->mt_numallocs = uz.uz_allocs; 403 mtp->mt_numfrees = uz.uz_frees; 404 mtp->mt_failures = uz.uz_fails; 405 if (kz.uk_flags & UMA_ZFLAG_INTERNAL) 406 goto skip_percpu; 407 for (i = 0; i < mp_maxid + 1; i++) { 408 if ((all_cpus & (1 << i)) == 0) 409 continue; 410 ucp = &ucp_array[i]; 411 mtp->mt_numallocs += ucp->uc_allocs; 412 mtp->mt_numfrees += ucp->uc_frees; 413 414 if (ucp->uc_allocbucket != NULL) { 415 ret = kread(kvm, ucp->uc_allocbucket, 416 &ub, sizeof(ub), 0); 417 if (ret != 0) { 418 free(ucp_array); 419 _memstat_mtl_empty(list); 420 list->mtl_error = ret; 421 return (-1); 422 } 423 mtp->mt_free += ub.ub_cnt; 424 } 425 if (ucp->uc_freebucket != NULL) { 426 ret = kread(kvm, ucp->uc_freebucket, 427 &ub, sizeof(ub), 0); 428 if (ret != 0) { 429 free(ucp_array); 430 _memstat_mtl_empty(list); 431 list->mtl_error = ret; 432 return (-1); 433 } 434 mtp->mt_free += ub.ub_cnt; 435 } 436 } 437 skip_percpu: 438 mtp->mt_size = kz.uk_size; 439 mtp->mt_memalloced = mtp->mt_numallocs * mtp->mt_size; 440 mtp->mt_memfreed = mtp->mt_numfrees * mtp->mt_size; 441 mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed; 442 if (kz.uk_ppera > 1) 443 mtp->mt_countlimit = kz.uk_maxpages / 444 kz.uk_ipers; 445 else 446 mtp->mt_countlimit = kz.uk_maxpages * 447 kz.uk_ipers; 448 mtp->mt_byteslimit = mtp->mt_countlimit * mtp->mt_size; 449 mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees; 450 for (ubp = LIST_FIRST(&uz.uz_full_bucket); ubp != 451 NULL; ubp = LIST_NEXT(&ub, ub_link)) { 452 ret = kread(kvm, ubp, &ub, sizeof(ub), 0); 453 mtp->mt_zonefree += ub.ub_cnt; 454 } 455 if (!((kz.uk_flags & UMA_ZONE_SECONDARY) && 456 LIST_FIRST(&kz.uk_zones) != uzp)) { 457 mtp->mt_kegfree = kz.uk_free; 458 mtp->mt_free += mtp->mt_kegfree; 459 } 460 mtp->mt_free += mtp->mt_zonefree; 461 } 462 } 463 free(ucp_array); 464 return (0); 465 } 466