xref: /freebsd/lib/libmemstat/memstat_malloc.c (revision 8d20be1e22095c27faf8fe8b2f0d089739cc742e)
1 /*-
2  * Copyright (c) 2005 Robert N. M. Watson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28 
29 #include <sys/cdefs.h>
30 #include <sys/param.h>
31 #include <sys/malloc.h>
32 #include <sys/sysctl.h>
33 
34 #include <err.h>
35 #include <errno.h>
36 #include <kvm.h>
37 #include <nlist.h>
38 #include <stdio.h>
39 #include <stdlib.h>
40 #include <string.h>
41 
42 #include "memstat.h"
43 #include "memstat_internal.h"
44 
45 static struct nlist namelist[] = {
46 #define	X_KMEMSTATISTICS	0
47 	{ .n_name = "_kmemstatistics" },
48 #define	X_MP_MAXCPUS		1
49 	{ .n_name = "_mp_maxcpus" },
50 	{ .n_name = "" },
51 };
52 
53 /*
54  * Extract malloc(9) statistics from the running kernel, and store all memory
55  * type information in the passed list.  For each type, check the list for an
56  * existing entry with the right name/allocator -- if present, update that
57  * entry.  Otherwise, add a new entry.  On error, the entire list will be
58  * cleared, as entries will be in an inconsistent state.
59  *
60  * To reduce the level of work for a list that starts empty, we keep around a
61  * hint as to whether it was empty when we began, so we can avoid searching
62  * the list for entries to update.  Updates are O(n^2) due to searching for
63  * each entry before adding it.
64  */
65 int
66 memstat_sysctl_malloc(struct memory_type_list *list, int flags)
67 {
68 	struct malloc_type_stream_header *mtshp;
69 	struct malloc_type_header *mthp;
70 	struct malloc_type_stats *mtsp;
71 	struct memory_type *mtp;
72 	int count, hint_dontsearch, i, j, maxcpus;
73 	char *buffer, *p;
74 	size_t size;
75 
76 	hint_dontsearch = LIST_EMPTY(&list->mtl_list);
77 
78 	/*
79 	 * Query the number of CPUs, number of malloc types so that we can
80 	 * guess an initial buffer size.  We loop until we succeed or really
81 	 * fail.  Note that the value of maxcpus we query using sysctl is not
82 	 * the version we use when processing the real data -- that is read
83 	 * from the header.
84 	 */
85 retry:
86 	size = sizeof(maxcpus);
87 	if (sysctlbyname("kern.smp.maxcpus", &maxcpus, &size, NULL, 0) < 0) {
88 		if (errno == EACCES || errno == EPERM)
89 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
90 		else
91 			list->mtl_error = MEMSTAT_ERROR_DATAERROR;
92 		return (-1);
93 	}
94 	if (size != sizeof(maxcpus)) {
95 		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
96 		return (-1);
97 	}
98 
99 	size = sizeof(count);
100 	if (sysctlbyname("kern.malloc_count", &count, &size, NULL, 0) < 0) {
101 		if (errno == EACCES || errno == EPERM)
102 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
103 		else
104 			list->mtl_error = MEMSTAT_ERROR_VERSION;
105 		return (-1);
106 	}
107 	if (size != sizeof(count)) {
108 		list->mtl_error = MEMSTAT_ERROR_DATAERROR;
109 		return (-1);
110 	}
111 
112 	size = sizeof(*mthp) + count * (sizeof(*mthp) + sizeof(*mtsp) *
113 	    maxcpus);
114 
115 	buffer = malloc(size);
116 	if (buffer == NULL) {
117 		list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
118 		return (-1);
119 	}
120 
121 	if (sysctlbyname("kern.malloc_stats", buffer, &size, NULL, 0) < 0) {
122 		/*
123 		 * XXXRW: ENOMEM is an ambiguous return, we should bound the
124 		 * number of loops, perhaps.
125 		 */
126 		if (errno == ENOMEM) {
127 			free(buffer);
128 			goto retry;
129 		}
130 		if (errno == EACCES || errno == EPERM)
131 			list->mtl_error = MEMSTAT_ERROR_PERMISSION;
132 		else
133 			list->mtl_error = MEMSTAT_ERROR_VERSION;
134 		free(buffer);
135 		return (-1);
136 	}
137 
138 	if (size == 0) {
139 		free(buffer);
140 		return (0);
141 	}
142 
143 	if (size < sizeof(*mtshp)) {
144 		list->mtl_error = MEMSTAT_ERROR_VERSION;
145 		free(buffer);
146 		return (-1);
147 	}
148 	p = buffer;
149 	mtshp = (struct malloc_type_stream_header *)p;
150 	p += sizeof(*mtshp);
151 
152 	if (mtshp->mtsh_version != MALLOC_TYPE_STREAM_VERSION) {
153 		list->mtl_error = MEMSTAT_ERROR_VERSION;
154 		free(buffer);
155 		return (-1);
156 	}
157 
158 	/*
159 	 * For the remainder of this function, we are quite trusting about
160 	 * the layout of structures and sizes, since we've determined we have
161 	 * a matching version and acceptable CPU count.
162 	 */
163 	maxcpus = mtshp->mtsh_maxcpus;
164 	count = mtshp->mtsh_count;
165 	for (i = 0; i < count; i++) {
166 		mthp = (struct malloc_type_header *)p;
167 		p += sizeof(*mthp);
168 
169 		if (hint_dontsearch == 0) {
170 			mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC,
171 			    mthp->mth_name);
172 		} else
173 			mtp = NULL;
174 		if (mtp == NULL)
175 			mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
176 			    mthp->mth_name, maxcpus);
177 		if (mtp == NULL) {
178 			_memstat_mtl_empty(list);
179 			free(buffer);
180 			list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
181 			return (-1);
182 		}
183 
184 		/*
185 		 * Reset the statistics on a current node.
186 		 */
187 		_memstat_mt_reset_stats(mtp, maxcpus);
188 
189 		for (j = 0; j < maxcpus; j++) {
190 			mtsp = (struct malloc_type_stats *)p;
191 			p += sizeof(*mtsp);
192 
193 			/*
194 			 * Sumarize raw statistics across CPUs into coalesced
195 			 * statistics.
196 			 */
197 			mtp->mt_memalloced += mtsp->mts_memalloced;
198 			mtp->mt_memfreed += mtsp->mts_memfreed;
199 			mtp->mt_numallocs += mtsp->mts_numallocs;
200 			mtp->mt_numfrees += mtsp->mts_numfrees;
201 			mtp->mt_sizemask |= mtsp->mts_size;
202 
203 			/*
204 			 * Copies of per-CPU statistics.
205 			 */
206 			mtp->mt_percpu_alloc[j].mtp_memalloced =
207 			    mtsp->mts_memalloced;
208 			mtp->mt_percpu_alloc[j].mtp_memfreed =
209 			    mtsp->mts_memfreed;
210 			mtp->mt_percpu_alloc[j].mtp_numallocs =
211 			    mtsp->mts_numallocs;
212 			mtp->mt_percpu_alloc[j].mtp_numfrees =
213 			    mtsp->mts_numfrees;
214 			mtp->mt_percpu_alloc[j].mtp_sizemask =
215 			    mtsp->mts_size;
216 		}
217 
218 		/*
219 		 * Derived cross-CPU statistics.
220 		 */
221 		mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
222 		mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
223 	}
224 
225 	free(buffer);
226 
227 	return (0);
228 }
229 
230 static int
231 kread(kvm_t *kvm, void *kvm_pointer, void *address, size_t size,
232     size_t offset)
233 {
234 	ssize_t ret;
235 
236 	ret = kvm_read(kvm, (unsigned long)kvm_pointer + offset, address,
237 	    size);
238 	if (ret < 0)
239 		return (MEMSTAT_ERROR_KVM);
240 	if ((size_t)ret != size)
241 		return (MEMSTAT_ERROR_KVM_SHORTREAD);
242 	return (0);
243 }
244 
245 static int
246 kread_string(kvm_t *kvm, const void *kvm_pointer, char *buffer, int buflen)
247 {
248 	ssize_t ret;
249 	int i;
250 
251 	for (i = 0; i < buflen; i++) {
252 		ret = kvm_read(kvm, __DECONST(unsigned long, kvm_pointer) +
253 		    i, &(buffer[i]), sizeof(char));
254 		if (ret < 0)
255 			return (MEMSTAT_ERROR_KVM);
256 		if ((size_t)ret != sizeof(char))
257 			return (MEMSTAT_ERROR_KVM_SHORTREAD);
258 		if (buffer[i] == '\0')
259 			return (0);
260 	}
261 	/* Truncate. */
262 	buffer[i-1] = '\0';
263 	return (0);
264 }
265 
266 static int
267 kread_symbol(kvm_t *kvm, int index, void *address, size_t size,
268     size_t offset)
269 {
270 	ssize_t ret;
271 
272 	ret = kvm_read(kvm, namelist[index].n_value + offset, address, size);
273 	if (ret < 0)
274 		return (MEMSTAT_ERROR_KVM);
275 	if ((size_t)ret != size)
276 		return (MEMSTAT_ERROR_KVM_SHORTREAD);
277 	return (0);
278 }
279 
280 int
281 memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle)
282 {
283 	struct memory_type *mtp;
284 	void *kmemstatistics;
285 	int hint_dontsearch, j, mp_maxcpus, ret;
286 	char name[MEMTYPE_MAXNAME];
287 	struct malloc_type_stats *mts, *mtsp;
288 	struct malloc_type_internal *mtip;
289 	struct malloc_type type, *typep;
290 	kvm_t *kvm;
291 
292 	kvm = (kvm_t *)kvm_handle;
293 
294 	hint_dontsearch = LIST_EMPTY(&list->mtl_list);
295 
296 	if (kvm_nlist(kvm, namelist) != 0) {
297 		list->mtl_error = MEMSTAT_ERROR_KVM;
298 		return (-1);
299 	}
300 
301 	if (namelist[X_KMEMSTATISTICS].n_type == 0 ||
302 	    namelist[X_KMEMSTATISTICS].n_value == 0) {
303 		list->mtl_error = MEMSTAT_ERROR_KVM_NOSYMBOL;
304 		return (-1);
305 	}
306 
307 	ret = kread_symbol(kvm, X_MP_MAXCPUS, &mp_maxcpus,
308 	    sizeof(mp_maxcpus), 0);
309 	if (ret != 0) {
310 		list->mtl_error = ret;
311 		return (-1);
312 	}
313 
314 	ret = kread_symbol(kvm, X_KMEMSTATISTICS, &kmemstatistics,
315 	    sizeof(kmemstatistics), 0);
316 	if (ret != 0) {
317 		list->mtl_error = ret;
318 		return (-1);
319 	}
320 
321 	mts = malloc(sizeof(struct malloc_type_stats) * mp_maxcpus);
322 	if (mts == NULL) {
323 		list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
324 		return (-1);
325 	}
326 
327 	for (typep = kmemstatistics; typep != NULL; typep = type.ks_next) {
328 		ret = kread(kvm, typep, &type, sizeof(type), 0);
329 		if (ret != 0) {
330 			_memstat_mtl_empty(list);
331 			free(mts);
332 			list->mtl_error = ret;
333 			return (-1);
334 		}
335 		ret = kread_string(kvm, (void *)type.ks_shortdesc, name,
336 		    MEMTYPE_MAXNAME);
337 		if (ret != 0) {
338 			_memstat_mtl_empty(list);
339 			free(mts);
340 			list->mtl_error = ret;
341 			return (-1);
342 		}
343 
344 		/*
345 		 * Since our compile-time value for MAXCPU may differ from the
346 		 * kernel's, we populate our own array.
347 		 */
348 		mtip = type.ks_handle;
349 		ret = kread(kvm, mtip->mti_stats, mts, mp_maxcpus *
350 		    sizeof(struct malloc_type_stats), 0);
351 		if (ret != 0) {
352 			_memstat_mtl_empty(list);
353 			free(mts);
354 			list->mtl_error = ret;
355 			return (-1);
356 		}
357 
358 		if (hint_dontsearch == 0) {
359 			mtp = memstat_mtl_find(list, ALLOCATOR_MALLOC, name);
360 		} else
361 			mtp = NULL;
362 		if (mtp == NULL)
363 			mtp = _memstat_mt_allocate(list, ALLOCATOR_MALLOC,
364 			    name, mp_maxcpus);
365 		if (mtp == NULL) {
366 			_memstat_mtl_empty(list);
367 			free(mts);
368 			list->mtl_error = MEMSTAT_ERROR_NOMEMORY;
369 			return (-1);
370 		}
371 
372 		/*
373 		 * This logic is replicated from kern_malloc.c, and should
374 		 * be kept in sync.
375 		 */
376 		_memstat_mt_reset_stats(mtp, mp_maxcpus);
377 		for (j = 0; j < mp_maxcpus; j++) {
378 			mtsp = &mts[j];
379 			mtp->mt_memalloced += mtsp->mts_memalloced;
380 			mtp->mt_memfreed += mtsp->mts_memfreed;
381 			mtp->mt_numallocs += mtsp->mts_numallocs;
382 			mtp->mt_numfrees += mtsp->mts_numfrees;
383 			mtp->mt_sizemask |= mtsp->mts_size;
384 
385 			mtp->mt_percpu_alloc[j].mtp_memalloced =
386 			    mtsp->mts_memalloced;
387 			mtp->mt_percpu_alloc[j].mtp_memfreed =
388 			    mtsp->mts_memfreed;
389 			mtp->mt_percpu_alloc[j].mtp_numallocs =
390 			    mtsp->mts_numallocs;
391 			mtp->mt_percpu_alloc[j].mtp_numfrees =
392 			    mtsp->mts_numfrees;
393 			mtp->mt_percpu_alloc[j].mtp_sizemask =
394 			    mtsp->mts_size;
395 		}
396 
397 		mtp->mt_bytes = mtp->mt_memalloced - mtp->mt_memfreed;
398 		mtp->mt_count = mtp->mt_numallocs - mtp->mt_numfrees;
399 	}
400 
401 	return (0);
402 }
403