1 /*- 2 * Copyright (c) 2005 Robert N. M. Watson 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 29 #include <sys/param.h> 30 #include <sys/sysctl.h> 31 32 #include <err.h> 33 #include <errno.h> 34 #include <stdio.h> 35 #include <stdlib.h> 36 #include <string.h> 37 38 #include "memstat.h" 39 #include "memstat_internal.h" 40 41 const char * 42 memstat_strerror(int error) 43 { 44 45 switch (error) { 46 case MEMSTAT_ERROR_NOMEMORY: 47 return ("Cannot allocate memory"); 48 case MEMSTAT_ERROR_VERSION: 49 return ("Version mismatch"); 50 case MEMSTAT_ERROR_PERMISSION: 51 return ("Permission denied"); 52 case MEMSTAT_ERROR_TOOMANYCPUS: 53 return ("Too many CPUs"); 54 case MEMSTAT_ERROR_DATAERROR: 55 return ("Data format error"); 56 case MEMSTAT_ERROR_KVM: 57 return ("KVM error"); 58 case MEMSTAT_ERROR_KVM_NOSYMBOL: 59 return ("KVM unable to find symbol"); 60 case MEMSTAT_ERROR_KVM_SHORTREAD: 61 return ("KVM short read"); 62 case MEMSTAT_ERROR_UNDEFINED: 63 default: 64 return ("Unknown error"); 65 } 66 } 67 68 struct memory_type_list * 69 memstat_mtl_alloc(void) 70 { 71 struct memory_type_list *mtlp; 72 73 mtlp = malloc(sizeof(*mtlp)); 74 if (mtlp == NULL) 75 return (NULL); 76 77 LIST_INIT(&mtlp->mtl_list); 78 mtlp->mtl_error = MEMSTAT_ERROR_UNDEFINED; 79 return (mtlp); 80 } 81 82 struct memory_type * 83 memstat_mtl_first(struct memory_type_list *list) 84 { 85 86 return (LIST_FIRST(&list->mtl_list)); 87 } 88 89 struct memory_type * 90 memstat_mtl_next(struct memory_type *mtp) 91 { 92 93 return (LIST_NEXT(mtp, mt_list)); 94 } 95 96 void 97 _memstat_mtl_empty(struct memory_type_list *list) 98 { 99 struct memory_type *mtp; 100 101 while ((mtp = LIST_FIRST(&list->mtl_list))) { 102 LIST_REMOVE(mtp, mt_list); 103 free(mtp); 104 } 105 } 106 107 void 108 memstat_mtl_free(struct memory_type_list *list) 109 { 110 111 _memstat_mtl_empty(list); 112 free(list); 113 } 114 115 int 116 memstat_mtl_geterror(struct memory_type_list *list) 117 { 118 119 return (list->mtl_error); 120 } 121 122 /* 123 * Look for an existing memory_type entry in a memory_type list, based on the 124 * allocator and name of the type. If not found, return NULL. No errno or 125 * memstat error. 126 */ 127 struct memory_type * 128 memstat_mtl_find(struct memory_type_list *list, int allocator, 129 const char *name) 130 { 131 struct memory_type *mtp; 132 133 LIST_FOREACH(mtp, &list->mtl_list, mt_list) { 134 if ((mtp->mt_allocator == allocator || 135 allocator == ALLOCATOR_ANY) && 136 strcmp(mtp->mt_name, name) == 0) 137 return (mtp); 138 } 139 return (NULL); 140 } 141 142 /* 143 * Allocate a new memory_type with the specificed allocator type and name, 144 * then insert into the list. The structure will be zero'd. 145 * 146 * libmemstat(3) internal function. 147 */ 148 struct memory_type * 149 _memstat_mt_allocate(struct memory_type_list *list, int allocator, 150 const char *name) 151 { 152 struct memory_type *mtp; 153 154 mtp = malloc(sizeof(*mtp)); 155 if (mtp == NULL) 156 return (NULL); 157 158 bzero(mtp, sizeof(*mtp)); 159 160 mtp->mt_allocator = allocator; 161 strlcpy(mtp->mt_name, name, MEMTYPE_MAXNAME); 162 LIST_INSERT_HEAD(&list->mtl_list, mtp, mt_list); 163 return (mtp); 164 } 165 166 /* 167 * Reset any libmemstat(3)-owned statistics in a memory_type record so that 168 * it can be reused without incremental addition problems. Caller-owned 169 * memory is left "as-is", and must be updated by the caller if desired. 170 * 171 * libmemstat(3) internal function. 172 */ 173 void 174 _memstat_mt_reset_stats(struct memory_type *mtp) 175 { 176 int i; 177 178 mtp->mt_countlimit = 0; 179 mtp->mt_byteslimit = 0; 180 mtp->mt_sizemask = 0; 181 mtp->mt_size = 0; 182 183 mtp->mt_memalloced = 0; 184 mtp->mt_memfreed = 0; 185 mtp->mt_numallocs = 0; 186 mtp->mt_numfrees = 0; 187 mtp->mt_bytes = 0; 188 mtp->mt_count = 0; 189 mtp->mt_free = 0; 190 mtp->mt_failures = 0; 191 192 mtp->mt_zonefree = 0; 193 mtp->mt_kegfree = 0; 194 195 for (i = 0; i < MEMSTAT_MAXCPU; i++) { 196 mtp->mt_percpu_alloc[i].mtp_memalloced = 0; 197 mtp->mt_percpu_alloc[i].mtp_memfreed = 0; 198 mtp->mt_percpu_alloc[i].mtp_numallocs = 0; 199 mtp->mt_percpu_alloc[i].mtp_numfrees = 0; 200 mtp->mt_percpu_alloc[i].mtp_sizemask = 0; 201 mtp->mt_percpu_cache[i].mtp_free = 0; 202 } 203 } 204 205 /* 206 * Accessor methods for struct memory_type. Avoids encoding the structure 207 * ABI into the application. 208 */ 209 const char * 210 memstat_get_name(const struct memory_type *mtp) 211 { 212 213 return (mtp->mt_name); 214 } 215 216 int 217 memstat_get_allocator(const struct memory_type *mtp) 218 { 219 220 return (mtp->mt_allocator); 221 } 222 223 uint64_t 224 memstat_get_countlimit(const struct memory_type *mtp) 225 { 226 227 return (mtp->mt_countlimit); 228 } 229 230 uint64_t 231 memstat_get_byteslimit(const struct memory_type *mtp) 232 { 233 234 return (mtp->mt_byteslimit); 235 } 236 237 uint64_t 238 memstat_get_sizemask(const struct memory_type *mtp) 239 { 240 241 return (mtp->mt_sizemask); 242 } 243 244 uint64_t 245 memstat_get_size(const struct memory_type *mtp) 246 { 247 248 return (mtp->mt_size); 249 } 250 251 uint64_t 252 memstat_get_memalloced(const struct memory_type *mtp) 253 { 254 255 return (mtp->mt_memalloced); 256 } 257 258 uint64_t 259 memstat_get_memfreed(const struct memory_type *mtp) 260 { 261 262 return (mtp->mt_memfreed); 263 } 264 265 uint64_t 266 memstat_get_numallocs(const struct memory_type *mtp) 267 { 268 269 return (mtp->mt_numallocs); 270 } 271 272 uint64_t 273 memstat_get_numfrees(const struct memory_type *mtp) 274 { 275 276 return (mtp->mt_numfrees); 277 } 278 279 uint64_t 280 memstat_get_bytes(const struct memory_type *mtp) 281 { 282 283 return (mtp->mt_bytes); 284 } 285 286 uint64_t 287 memstat_get_count(const struct memory_type *mtp) 288 { 289 290 return (mtp->mt_count); 291 } 292 293 uint64_t 294 memstat_get_free(const struct memory_type *mtp) 295 { 296 297 return (mtp->mt_free); 298 } 299 300 uint64_t 301 memstat_get_failures(const struct memory_type *mtp) 302 { 303 304 return (mtp->mt_failures); 305 } 306 307 void * 308 memstat_get_caller_pointer(const struct memory_type *mtp, int index) 309 { 310 311 return (mtp->mt_caller_pointer[index]); 312 } 313 314 void 315 memstat_set_caller_pointer(struct memory_type *mtp, int index, void *value) 316 { 317 318 mtp->mt_caller_pointer[index] = value; 319 } 320 321 uint64_t 322 memstat_get_caller_uint64(const struct memory_type *mtp, int index) 323 { 324 325 return (mtp->mt_caller_uint64[index]); 326 } 327 328 void 329 memstat_set_caller_uint64(struct memory_type *mtp, int index, uint64_t value) 330 { 331 332 mtp->mt_caller_uint64[index] = value; 333 } 334 335 uint64_t 336 memstat_get_zonefree(const struct memory_type *mtp) 337 { 338 339 return (mtp->mt_zonefree); 340 } 341 342 uint64_t 343 memstat_get_kegfree(const struct memory_type *mtp) 344 { 345 346 return (mtp->mt_kegfree); 347 } 348 349 uint64_t 350 memstat_get_percpu_memalloced(const struct memory_type *mtp, int cpu) 351 { 352 353 return (mtp->mt_percpu_alloc[cpu].mtp_memalloced); 354 } 355 356 uint64_t 357 memstat_get_percpu_memfreed(const struct memory_type *mtp, int cpu) 358 { 359 360 return (mtp->mt_percpu_alloc[cpu].mtp_memfreed); 361 } 362 363 uint64_t 364 memstat_get_percpu_numallocs(const struct memory_type *mtp, int cpu) 365 { 366 367 return (mtp->mt_percpu_alloc[cpu].mtp_numallocs); 368 } 369 370 uint64_t 371 memstat_get_percpu_numfrees(const struct memory_type *mtp, int cpu) 372 { 373 374 return (mtp->mt_percpu_alloc[cpu].mtp_numfrees); 375 } 376 377 uint64_t 378 memstat_get_percpu_sizemask(const struct memory_type *mtp, int cpu) 379 { 380 381 return (mtp->mt_percpu_alloc[cpu].mtp_sizemask); 382 } 383 384 void * 385 memstat_get_percpu_caller_pointer(const struct memory_type *mtp, int cpu, 386 int index) 387 { 388 389 return (mtp->mt_percpu_alloc[cpu].mtp_caller_pointer[index]); 390 } 391 392 void 393 memstat_set_percpu_caller_pointer(struct memory_type *mtp, int cpu, 394 int index, void *value) 395 { 396 397 mtp->mt_percpu_alloc[cpu].mtp_caller_pointer[index] = value; 398 } 399 400 uint64_t 401 memstat_get_percpu_caller_uint64(const struct memory_type *mtp, int cpu, 402 int index) 403 { 404 405 return (mtp->mt_percpu_alloc[cpu].mtp_caller_uint64[index]); 406 } 407 408 void 409 memstat_set_percpu_caller_uint64(struct memory_type *mtp, int cpu, int index, 410 uint64_t value) 411 { 412 413 mtp->mt_percpu_alloc[cpu].mtp_caller_uint64[index] = value; 414 } 415 416 uint64_t 417 memstat_get_percpu_free(const struct memory_type *mtp, int cpu) 418 { 419 420 return (mtp->mt_percpu_cache[cpu].mtp_free); 421 } 422