1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if 0 39 #if defined(LIBC_SCCS) && !defined(lint) 40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 41 #endif /* LIBC_SCCS and not lint */ 42 #endif 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 56 #include <sys/ucred.h> 57 #include <sys/queue.h> 58 #include <sys/_lock.h> 59 #include <sys/_mutex.h> 60 #include <sys/_task.h> 61 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 62 #include <sys/jail.h> 63 #include <sys/user.h> 64 #include <sys/proc.h> 65 #include <sys/exec.h> 66 #include <sys/stat.h> 67 #include <sys/sysent.h> 68 #include <sys/ioctl.h> 69 #include <sys/tty.h> 70 #include <sys/file.h> 71 #include <sys/conf.h> 72 #include <stdio.h> 73 #include <stdlib.h> 74 #include <unistd.h> 75 #include <nlist.h> 76 #include <kvm.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_param.h> 80 81 #include <sys/sysctl.h> 82 83 #include <limits.h> 84 #include <memory.h> 85 #include <paths.h> 86 87 #include "kvm_private.h" 88 89 #define KREAD(kd, addr, obj) \ 90 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 91 92 /* 93 * Read proc's from memory file into buffer bp, which has space to hold 94 * at most maxcnt procs. 95 */ 96 static int 97 kvm_proclist(kd, what, arg, p, bp, maxcnt) 98 kvm_t *kd; 99 int what, arg; 100 struct proc *p; 101 struct kinfo_proc *bp; 102 int maxcnt; 103 { 104 int cnt = 0; 105 struct kinfo_proc kinfo_proc, *kp; 106 struct pgrp pgrp; 107 struct session sess; 108 struct cdev t_cdev; 109 struct tty tty; 110 struct vmspace vmspace; 111 struct sigacts sigacts; 112 struct pstats pstats; 113 struct ucred ucred; 114 struct prison pr; 115 struct thread mtd; 116 struct proc proc; 117 struct proc pproc; 118 struct timeval tv; 119 struct sysentvec sysent; 120 char svname[KI_EMULNAMELEN]; 121 122 kp = &kinfo_proc; 123 kp->ki_structsize = sizeof(kinfo_proc); 124 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 125 memset(kp, 0, sizeof *kp); 126 if (KREAD(kd, (u_long)p, &proc)) { 127 _kvm_err(kd, kd->program, "can't read proc at %x", p); 128 return (-1); 129 } 130 if (proc.p_state != PRS_ZOMBIE) { 131 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 132 &mtd)) { 133 _kvm_err(kd, kd->program, 134 "can't read thread at %x", 135 TAILQ_FIRST(&proc.p_threads)); 136 return (-1); 137 } 138 } 139 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 140 kp->ki_ruid = ucred.cr_ruid; 141 kp->ki_svuid = ucred.cr_svuid; 142 kp->ki_rgid = ucred.cr_rgid; 143 kp->ki_svgid = ucred.cr_svgid; 144 kp->ki_ngroups = ucred.cr_ngroups; 145 bcopy(ucred.cr_groups, kp->ki_groups, 146 NGROUPS * sizeof(gid_t)); 147 kp->ki_uid = ucred.cr_uid; 148 if (ucred.cr_prison != NULL) { 149 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 150 _kvm_err(kd, kd->program, 151 "can't read prison at %x", 152 ucred.cr_prison); 153 return (-1); 154 } 155 kp->ki_jid = pr.pr_id; 156 } 157 } 158 159 switch(what & ~KERN_PROC_INC_THREAD) { 160 161 case KERN_PROC_GID: 162 if (kp->ki_groups[0] != (gid_t)arg) 163 continue; 164 break; 165 166 case KERN_PROC_PID: 167 if (proc.p_pid != (pid_t)arg) 168 continue; 169 break; 170 171 case KERN_PROC_RGID: 172 if (kp->ki_rgid != (gid_t)arg) 173 continue; 174 break; 175 176 case KERN_PROC_UID: 177 if (kp->ki_uid != (uid_t)arg) 178 continue; 179 break; 180 181 case KERN_PROC_RUID: 182 if (kp->ki_ruid != (uid_t)arg) 183 continue; 184 break; 185 } 186 /* 187 * We're going to add another proc to the set. If this 188 * will overflow the buffer, assume the reason is because 189 * nprocs (or the proc list) is corrupt and declare an error. 190 */ 191 if (cnt >= maxcnt) { 192 _kvm_err(kd, kd->program, "nprocs corrupt"); 193 return (-1); 194 } 195 /* 196 * gather kinfo_proc 197 */ 198 kp->ki_paddr = p; 199 kp->ki_addr = 0; /* XXX uarea */ 200 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 201 kp->ki_args = proc.p_args; 202 kp->ki_tracep = proc.p_tracevp; 203 kp->ki_textvp = proc.p_textvp; 204 kp->ki_fd = proc.p_fd; 205 kp->ki_vmspace = proc.p_vmspace; 206 if (proc.p_sigacts != NULL) { 207 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 208 _kvm_err(kd, kd->program, 209 "can't read sigacts at %x", proc.p_sigacts); 210 return (-1); 211 } 212 kp->ki_sigignore = sigacts.ps_sigignore; 213 kp->ki_sigcatch = sigacts.ps_sigcatch; 214 } 215 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 216 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 217 _kvm_err(kd, kd->program, 218 "can't read stats at %x", proc.p_stats); 219 return (-1); 220 } 221 kp->ki_start = pstats.p_start; 222 223 /* 224 * XXX: The times here are probably zero and need 225 * to be calculated from the raw data in p_rux and 226 * p_crux. 227 */ 228 kp->ki_rusage = pstats.p_ru; 229 kp->ki_childstime = pstats.p_cru.ru_stime; 230 kp->ki_childutime = pstats.p_cru.ru_utime; 231 /* Some callers want child-times in a single value */ 232 timeradd(&kp->ki_childstime, &kp->ki_childutime, 233 &kp->ki_childtime); 234 } 235 if (proc.p_oppid) 236 kp->ki_ppid = proc.p_oppid; 237 else if (proc.p_pptr) { 238 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 239 _kvm_err(kd, kd->program, 240 "can't read pproc at %x", proc.p_pptr); 241 return (-1); 242 } 243 kp->ki_ppid = pproc.p_pid; 244 } else 245 kp->ki_ppid = 0; 246 if (proc.p_pgrp == NULL) 247 goto nopgrp; 248 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 249 _kvm_err(kd, kd->program, "can't read pgrp at %x", 250 proc.p_pgrp); 251 return (-1); 252 } 253 kp->ki_pgid = pgrp.pg_id; 254 kp->ki_jobc = pgrp.pg_jobc; 255 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 256 _kvm_err(kd, kd->program, "can't read session at %x", 257 pgrp.pg_session); 258 return (-1); 259 } 260 kp->ki_sid = sess.s_sid; 261 (void)memcpy(kp->ki_login, sess.s_login, 262 sizeof(kp->ki_login)); 263 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 264 if (sess.s_leader == p) 265 kp->ki_kiflag |= KI_SLEADER; 266 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 267 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 268 _kvm_err(kd, kd->program, 269 "can't read tty at %x", sess.s_ttyp); 270 return (-1); 271 } 272 if (tty.t_dev != NULL) { 273 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 274 _kvm_err(kd, kd->program, 275 "can't read cdev at %x", 276 tty.t_dev); 277 return (-1); 278 } 279 #if 0 280 kp->ki_tdev = t_cdev.si_udev; 281 #else 282 kp->ki_tdev = NODEV; 283 #endif 284 } 285 if (tty.t_pgrp != NULL) { 286 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 287 _kvm_err(kd, kd->program, 288 "can't read tpgrp at %x", 289 tty.t_pgrp); 290 return (-1); 291 } 292 kp->ki_tpgid = pgrp.pg_id; 293 } else 294 kp->ki_tpgid = -1; 295 if (tty.t_session != NULL) { 296 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 297 _kvm_err(kd, kd->program, 298 "can't read session at %x", 299 tty.t_session); 300 return (-1); 301 } 302 kp->ki_tsid = sess.s_sid; 303 } 304 } else { 305 nopgrp: 306 kp->ki_tdev = NODEV; 307 } 308 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 309 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 310 kp->ki_wmesg, WMESGLEN); 311 312 (void)kvm_read(kd, (u_long)proc.p_vmspace, 313 (char *)&vmspace, sizeof(vmspace)); 314 kp->ki_size = vmspace.vm_map.size; 315 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 316 kp->ki_swrss = vmspace.vm_swrss; 317 kp->ki_tsize = vmspace.vm_tsize; 318 kp->ki_dsize = vmspace.vm_dsize; 319 kp->ki_ssize = vmspace.vm_ssize; 320 321 switch (what & ~KERN_PROC_INC_THREAD) { 322 323 case KERN_PROC_PGRP: 324 if (kp->ki_pgid != (pid_t)arg) 325 continue; 326 break; 327 328 case KERN_PROC_SESSION: 329 if (kp->ki_sid != (pid_t)arg) 330 continue; 331 break; 332 333 case KERN_PROC_TTY: 334 if ((proc.p_flag & P_CONTROLT) == 0 || 335 kp->ki_tdev != (dev_t)arg) 336 continue; 337 break; 338 } 339 if (proc.p_comm[0] != 0) 340 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 341 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 342 sizeof(sysent)); 343 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 344 sizeof(svname)); 345 if (svname[0] != 0) 346 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 347 if ((proc.p_state != PRS_ZOMBIE) && 348 (mtd.td_blocked != 0)) { 349 kp->ki_kiflag |= KI_LOCKBLOCK; 350 if (mtd.td_lockname) 351 (void)kvm_read(kd, 352 (u_long)mtd.td_lockname, 353 kp->ki_lockname, LOCKNAMELEN); 354 kp->ki_lockname[LOCKNAMELEN] = 0; 355 } 356 /* 357 * XXX: This is plain wrong, rux_runtime has nothing 358 * to do with struct bintime, rux_runtime is just a 64-bit 359 * integer counter of cputicks. What we need here is a way 360 * to convert cputicks to usecs. The kernel does it in 361 * kern/kern_tc.c, but the function can't be just copied. 362 */ 363 bintime2timeval(&proc.p_rux.rux_runtime, &tv); 364 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 365 kp->ki_pid = proc.p_pid; 366 kp->ki_siglist = proc.p_siglist; 367 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 368 kp->ki_sigmask = mtd.td_sigmask; 369 kp->ki_xstat = proc.p_xstat; 370 kp->ki_acflag = proc.p_acflag; 371 kp->ki_lock = proc.p_lock; 372 if (proc.p_state != PRS_ZOMBIE) { 373 kp->ki_swtime = proc.p_swtime; 374 kp->ki_flag = proc.p_flag; 375 kp->ki_sflag = proc.p_sflag; 376 kp->ki_nice = proc.p_nice; 377 kp->ki_traceflag = proc.p_traceflag; 378 if (proc.p_state == PRS_NORMAL) { 379 if (TD_ON_RUNQ(&mtd) || 380 TD_CAN_RUN(&mtd) || 381 TD_IS_RUNNING(&mtd)) { 382 kp->ki_stat = SRUN; 383 } else if (mtd.td_state == 384 TDS_INHIBITED) { 385 if (P_SHOULDSTOP(&proc)) { 386 kp->ki_stat = SSTOP; 387 } else if ( 388 TD_IS_SLEEPING(&mtd)) { 389 kp->ki_stat = SSLEEP; 390 } else if (TD_ON_LOCK(&mtd)) { 391 kp->ki_stat = SLOCK; 392 } else { 393 kp->ki_stat = SWAIT; 394 } 395 } 396 } else { 397 kp->ki_stat = SIDL; 398 } 399 /* Stuff from the thread */ 400 kp->ki_pri.pri_level = mtd.td_priority; 401 kp->ki_pri.pri_native = mtd.td_base_pri; 402 kp->ki_lastcpu = mtd.td_lastcpu; 403 kp->ki_wchan = mtd.td_wchan; 404 kp->ki_oncpu = mtd.td_oncpu; 405 406 if (!(proc.p_flag & P_SA)) { 407 kp->ki_pctcpu = 0; 408 kp->ki_rqindex = 0; 409 } else { 410 kp->ki_tdflags = -1; 411 /* All the rest are 0 for now */ 412 } 413 } else { 414 kp->ki_stat = SZOMB; 415 } 416 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 417 ++bp; 418 ++cnt; 419 } 420 return (cnt); 421 } 422 423 /* 424 * Build proc info array by reading in proc list from a crash dump. 425 * Return number of procs read. maxcnt is the max we will read. 426 */ 427 static int 428 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 429 kvm_t *kd; 430 int what, arg; 431 u_long a_allproc; 432 u_long a_zombproc; 433 int maxcnt; 434 { 435 struct kinfo_proc *bp = kd->procbase; 436 int acnt, zcnt; 437 struct proc *p; 438 439 if (KREAD(kd, a_allproc, &p)) { 440 _kvm_err(kd, kd->program, "cannot read allproc"); 441 return (-1); 442 } 443 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 444 if (acnt < 0) 445 return (acnt); 446 447 if (KREAD(kd, a_zombproc, &p)) { 448 _kvm_err(kd, kd->program, "cannot read zombproc"); 449 return (-1); 450 } 451 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 452 if (zcnt < 0) 453 zcnt = 0; 454 455 return (acnt + zcnt); 456 } 457 458 struct kinfo_proc * 459 kvm_getprocs(kd, op, arg, cnt) 460 kvm_t *kd; 461 int op, arg; 462 int *cnt; 463 { 464 int mib[4], st, nprocs; 465 size_t size; 466 int temp_op; 467 468 if (kd->procbase != 0) { 469 free((void *)kd->procbase); 470 /* 471 * Clear this pointer in case this call fails. Otherwise, 472 * kvm_close() will free it again. 473 */ 474 kd->procbase = 0; 475 } 476 if (ISALIVE(kd)) { 477 size = 0; 478 mib[0] = CTL_KERN; 479 mib[1] = KERN_PROC; 480 mib[2] = op; 481 mib[3] = arg; 482 temp_op = op & ~KERN_PROC_INC_THREAD; 483 st = sysctl(mib, 484 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 485 3 : 4, NULL, &size, NULL, 0); 486 if (st == -1) { 487 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 488 return (0); 489 } 490 /* 491 * We can't continue with a size of 0 because we pass 492 * it to realloc() (via _kvm_realloc()), and passing 0 493 * to realloc() results in undefined behavior. 494 */ 495 if (size == 0) { 496 /* 497 * XXX: We should probably return an invalid, 498 * but non-NULL, pointer here so any client 499 * program trying to dereference it will 500 * crash. However, _kvm_freeprocs() calls 501 * free() on kd->procbase if it isn't NULL, 502 * and free()'ing a junk pointer isn't good. 503 * Then again, _kvm_freeprocs() isn't used 504 * anywhere . . . 505 */ 506 kd->procbase = _kvm_malloc(kd, 1); 507 goto liveout; 508 } 509 do { 510 size += size / 10; 511 kd->procbase = (struct kinfo_proc *) 512 _kvm_realloc(kd, kd->procbase, size); 513 if (kd->procbase == 0) 514 return (0); 515 st = sysctl(mib, temp_op == KERN_PROC_ALL || 516 temp_op == KERN_PROC_PROC ? 3 : 4, 517 kd->procbase, &size, NULL, 0); 518 } while (st == -1 && errno == ENOMEM); 519 if (st == -1) { 520 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 521 return (0); 522 } 523 /* 524 * We have to check the size again because sysctl() 525 * may "round up" oldlenp if oldp is NULL; hence it 526 * might've told us that there was data to get when 527 * there really isn't any. 528 */ 529 if (size > 0 && 530 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 531 _kvm_err(kd, kd->program, 532 "kinfo_proc size mismatch (expected %d, got %d)", 533 sizeof(struct kinfo_proc), 534 kd->procbase->ki_structsize); 535 return (0); 536 } 537 liveout: 538 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 539 } else { 540 struct nlist nl[4], *p; 541 542 nl[0].n_name = "_nprocs"; 543 nl[1].n_name = "_allproc"; 544 nl[2].n_name = "_zombproc"; 545 nl[3].n_name = 0; 546 547 if (kvm_nlist(kd, nl) != 0) { 548 for (p = nl; p->n_type != 0; ++p) 549 ; 550 _kvm_err(kd, kd->program, 551 "%s: no such symbol", p->n_name); 552 return (0); 553 } 554 if (KREAD(kd, nl[0].n_value, &nprocs)) { 555 _kvm_err(kd, kd->program, "can't read nprocs"); 556 return (0); 557 } 558 size = nprocs * sizeof(struct kinfo_proc); 559 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 560 if (kd->procbase == 0) 561 return (0); 562 563 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 564 nl[2].n_value, nprocs); 565 #ifdef notdef 566 size = nprocs * sizeof(struct kinfo_proc); 567 (void)realloc(kd->procbase, size); 568 #endif 569 } 570 *cnt = nprocs; 571 return (kd->procbase); 572 } 573 574 void 575 _kvm_freeprocs(kd) 576 kvm_t *kd; 577 { 578 if (kd->procbase) { 579 free(kd->procbase); 580 kd->procbase = 0; 581 } 582 } 583 584 void * 585 _kvm_realloc(kd, p, n) 586 kvm_t *kd; 587 void *p; 588 size_t n; 589 { 590 void *np = (void *)realloc(p, n); 591 592 if (np == 0) { 593 free(p); 594 _kvm_err(kd, kd->program, "out of memory"); 595 } 596 return (np); 597 } 598 599 #ifndef MAX 600 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 601 #endif 602 603 /* 604 * Read in an argument vector from the user address space of process kp. 605 * addr if the user-space base address of narg null-terminated contiguous 606 * strings. This is used to read in both the command arguments and 607 * environment strings. Read at most maxcnt characters of strings. 608 */ 609 static char ** 610 kvm_argv(kd, kp, addr, narg, maxcnt) 611 kvm_t *kd; 612 struct kinfo_proc *kp; 613 u_long addr; 614 int narg; 615 int maxcnt; 616 { 617 char *np, *cp, *ep, *ap; 618 u_long oaddr = -1; 619 int len, cc; 620 char **argv; 621 622 /* 623 * Check that there aren't an unreasonable number of agruments, 624 * and that the address is in user space. 625 */ 626 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 627 return (0); 628 629 /* 630 * kd->argv : work space for fetching the strings from the target 631 * process's space, and is converted for returning to caller 632 */ 633 if (kd->argv == 0) { 634 /* 635 * Try to avoid reallocs. 636 */ 637 kd->argc = MAX(narg + 1, 32); 638 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 639 sizeof(*kd->argv)); 640 if (kd->argv == 0) 641 return (0); 642 } else if (narg + 1 > kd->argc) { 643 kd->argc = MAX(2 * kd->argc, narg + 1); 644 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 645 sizeof(*kd->argv)); 646 if (kd->argv == 0) 647 return (0); 648 } 649 /* 650 * kd->argspc : returned to user, this is where the kd->argv 651 * arrays are left pointing to the collected strings. 652 */ 653 if (kd->argspc == 0) { 654 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 655 if (kd->argspc == 0) 656 return (0); 657 kd->arglen = PAGE_SIZE; 658 } 659 /* 660 * kd->argbuf : used to pull in pages from the target process. 661 * the strings are copied out of here. 662 */ 663 if (kd->argbuf == 0) { 664 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 665 if (kd->argbuf == 0) 666 return (0); 667 } 668 669 /* Pull in the target process'es argv vector */ 670 cc = sizeof(char *) * narg; 671 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 672 return (0); 673 /* 674 * ap : saved start address of string we're working on in kd->argspc 675 * np : pointer to next place to write in kd->argspc 676 * len: length of data in kd->argspc 677 * argv: pointer to the argv vector that we are hunting around the 678 * target process space for, and converting to addresses in 679 * our address space (kd->argspc). 680 */ 681 ap = np = kd->argspc; 682 argv = kd->argv; 683 len = 0; 684 /* 685 * Loop over pages, filling in the argument vector. 686 * Note that the argv strings could be pointing *anywhere* in 687 * the user address space and are no longer contiguous. 688 * Note that *argv is modified when we are going to fetch a string 689 * that crosses a page boundary. We copy the next part of the string 690 * into to "np" and eventually convert the pointer. 691 */ 692 while (argv < kd->argv + narg && *argv != 0) { 693 694 /* get the address that the current argv string is on */ 695 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 696 697 /* is it the same page as the last one? */ 698 if (addr != oaddr) { 699 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 700 PAGE_SIZE) 701 return (0); 702 oaddr = addr; 703 } 704 705 /* offset within the page... kd->argbuf */ 706 addr = (u_long)*argv & (PAGE_SIZE - 1); 707 708 /* cp = start of string, cc = count of chars in this chunk */ 709 cp = kd->argbuf + addr; 710 cc = PAGE_SIZE - addr; 711 712 /* dont get more than asked for by user process */ 713 if (maxcnt > 0 && cc > maxcnt - len) 714 cc = maxcnt - len; 715 716 /* pointer to end of string if we found it in this page */ 717 ep = memchr(cp, '\0', cc); 718 if (ep != 0) 719 cc = ep - cp + 1; 720 /* 721 * at this point, cc is the count of the chars that we are 722 * going to retrieve this time. we may or may not have found 723 * the end of it. (ep points to the null if the end is known) 724 */ 725 726 /* will we exceed the malloc/realloced buffer? */ 727 if (len + cc > kd->arglen) { 728 int off; 729 char **pp; 730 char *op = kd->argspc; 731 732 kd->arglen *= 2; 733 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 734 kd->arglen); 735 if (kd->argspc == 0) 736 return (0); 737 /* 738 * Adjust argv pointers in case realloc moved 739 * the string space. 740 */ 741 off = kd->argspc - op; 742 for (pp = kd->argv; pp < argv; pp++) 743 *pp += off; 744 ap += off; 745 np += off; 746 } 747 /* np = where to put the next part of the string in kd->argspc*/ 748 /* np is kinda redundant.. could use "kd->argspc + len" */ 749 memcpy(np, cp, cc); 750 np += cc; /* inc counters */ 751 len += cc; 752 753 /* 754 * if end of string found, set the *argv pointer to the 755 * saved beginning of string, and advance. argv points to 756 * somewhere in kd->argv.. This is initially relative 757 * to the target process, but when we close it off, we set 758 * it to point in our address space. 759 */ 760 if (ep != 0) { 761 *argv++ = ap; 762 ap = np; 763 } else { 764 /* update the address relative to the target process */ 765 *argv += cc; 766 } 767 768 if (maxcnt > 0 && len >= maxcnt) { 769 /* 770 * We're stopping prematurely. Terminate the 771 * current string. 772 */ 773 if (ep == 0) { 774 *np = '\0'; 775 *argv++ = ap; 776 } 777 break; 778 } 779 } 780 /* Make sure argv is terminated. */ 781 *argv = 0; 782 return (kd->argv); 783 } 784 785 static void 786 ps_str_a(p, addr, n) 787 struct ps_strings *p; 788 u_long *addr; 789 int *n; 790 { 791 *addr = (u_long)p->ps_argvstr; 792 *n = p->ps_nargvstr; 793 } 794 795 static void 796 ps_str_e(p, addr, n) 797 struct ps_strings *p; 798 u_long *addr; 799 int *n; 800 { 801 *addr = (u_long)p->ps_envstr; 802 *n = p->ps_nenvstr; 803 } 804 805 /* 806 * Determine if the proc indicated by p is still active. 807 * This test is not 100% foolproof in theory, but chances of 808 * being wrong are very low. 809 */ 810 static int 811 proc_verify(curkp) 812 struct kinfo_proc *curkp; 813 { 814 struct kinfo_proc newkp; 815 int mib[4]; 816 size_t len; 817 818 mib[0] = CTL_KERN; 819 mib[1] = KERN_PROC; 820 mib[2] = KERN_PROC_PID; 821 mib[3] = curkp->ki_pid; 822 len = sizeof(newkp); 823 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 824 return (0); 825 return (curkp->ki_pid == newkp.ki_pid && 826 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 827 } 828 829 static char ** 830 kvm_doargv(kd, kp, nchr, info) 831 kvm_t *kd; 832 struct kinfo_proc *kp; 833 int nchr; 834 void (*info)(struct ps_strings *, u_long *, int *); 835 { 836 char **ap; 837 u_long addr; 838 int cnt; 839 static struct ps_strings arginfo; 840 static u_long ps_strings; 841 size_t len; 842 843 if (ps_strings == 0) { 844 len = sizeof(ps_strings); 845 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 846 0) == -1) 847 ps_strings = PS_STRINGS; 848 } 849 850 /* 851 * Pointers are stored at the top of the user stack. 852 */ 853 if (kp->ki_stat == SZOMB || 854 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 855 sizeof(arginfo)) != sizeof(arginfo)) 856 return (0); 857 858 (*info)(&arginfo, &addr, &cnt); 859 if (cnt == 0) 860 return (0); 861 ap = kvm_argv(kd, kp, addr, cnt, nchr); 862 /* 863 * For live kernels, make sure this process didn't go away. 864 */ 865 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 866 ap = 0; 867 return (ap); 868 } 869 870 /* 871 * Get the command args. This code is now machine independent. 872 */ 873 char ** 874 kvm_getargv(kd, kp, nchr) 875 kvm_t *kd; 876 const struct kinfo_proc *kp; 877 int nchr; 878 { 879 int oid[4]; 880 int i; 881 size_t bufsz; 882 static unsigned long buflen; 883 static char *buf, *p; 884 static char **bufp; 885 static int argc; 886 887 if (!ISALIVE(kd)) { 888 _kvm_err(kd, kd->program, 889 "cannot read user space from dead kernel"); 890 return (0); 891 } 892 893 if (!buflen) { 894 bufsz = sizeof(buflen); 895 i = sysctlbyname("kern.ps_arg_cache_limit", 896 &buflen, &bufsz, NULL, 0); 897 if (i == -1) { 898 buflen = 0; 899 } else { 900 buf = malloc(buflen); 901 if (buf == NULL) 902 buflen = 0; 903 argc = 32; 904 bufp = malloc(sizeof(char *) * argc); 905 } 906 } 907 if (buf != NULL) { 908 oid[0] = CTL_KERN; 909 oid[1] = KERN_PROC; 910 oid[2] = KERN_PROC_ARGS; 911 oid[3] = kp->ki_pid; 912 bufsz = buflen; 913 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 914 if (i == 0 && bufsz > 0) { 915 i = 0; 916 p = buf; 917 do { 918 bufp[i++] = p; 919 p += strlen(p) + 1; 920 if (i >= argc) { 921 argc += argc; 922 bufp = realloc(bufp, 923 sizeof(char *) * argc); 924 } 925 } while (p < buf + bufsz); 926 bufp[i++] = 0; 927 return (bufp); 928 } 929 } 930 if (kp->ki_flag & P_SYSTEM) 931 return (NULL); 932 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 933 } 934 935 char ** 936 kvm_getenvv(kd, kp, nchr) 937 kvm_t *kd; 938 const struct kinfo_proc *kp; 939 int nchr; 940 { 941 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 942 } 943 944 /* 945 * Read from user space. The user context is given by p. 946 */ 947 ssize_t 948 kvm_uread(kd, kp, uva, buf, len) 949 kvm_t *kd; 950 struct kinfo_proc *kp; 951 u_long uva; 952 char *buf; 953 size_t len; 954 { 955 char *cp; 956 char procfile[MAXPATHLEN]; 957 ssize_t amount; 958 int fd; 959 960 if (!ISALIVE(kd)) { 961 _kvm_err(kd, kd->program, 962 "cannot read user space from dead kernel"); 963 return (0); 964 } 965 966 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 967 fd = open(procfile, O_RDONLY, 0); 968 if (fd < 0) { 969 _kvm_err(kd, kd->program, "cannot open %s", procfile); 970 return (0); 971 } 972 973 cp = buf; 974 while (len > 0) { 975 errno = 0; 976 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 977 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 978 uva, procfile); 979 break; 980 } 981 amount = read(fd, cp, len); 982 if (amount < 0) { 983 _kvm_syserr(kd, kd->program, "error reading %s", 984 procfile); 985 break; 986 } 987 if (amount == 0) { 988 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 989 break; 990 } 991 cp += amount; 992 uva += amount; 993 len -= amount; 994 } 995 996 close(fd); 997 return ((ssize_t)(cp - buf)); 998 } 999