1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if 0 39 #if defined(LIBC_SCCS) && !defined(lint) 40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 41 #endif /* LIBC_SCCS and not lint */ 42 #endif 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 56 #include <sys/ucred.h> 57 #include <sys/user.h> 58 #include <sys/proc.h> 59 #include <sys/exec.h> 60 #include <sys/stat.h> 61 #include <sys/sysent.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <sys/file.h> 65 #include <stdio.h> 66 #include <stdlib.h> 67 #include <unistd.h> 68 #include <nlist.h> 69 #include <kvm.h> 70 71 #include <vm/vm.h> 72 #include <vm/vm_param.h> 73 74 #include <sys/sysctl.h> 75 76 #include <limits.h> 77 #include <memory.h> 78 #include <paths.h> 79 80 #include "kvm_private.h" 81 82 #define KREAD(kd, addr, obj) \ 83 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 84 85 /* 86 * Read proc's from memory file into buffer bp, which has space to hold 87 * at most maxcnt procs. 88 */ 89 static int 90 kvm_proclist(kd, what, arg, p, bp, maxcnt) 91 kvm_t *kd; 92 int what, arg; 93 struct proc *p; 94 struct kinfo_proc *bp; 95 int maxcnt; 96 { 97 int cnt = 0; 98 struct kinfo_proc kinfo_proc, *kp; 99 struct pgrp pgrp; 100 struct session sess; 101 struct tty tty; 102 struct vmspace vmspace; 103 struct sigacts sigacts; 104 struct pstats pstats; 105 struct ucred ucred; 106 struct thread mtd; 107 struct kse mke; 108 struct ksegrp mkg; 109 struct proc proc; 110 struct proc pproc; 111 struct timeval tv; 112 struct sysentvec sysent; 113 char svname[KI_EMULNAMELEN]; 114 115 kp = &kinfo_proc; 116 kp->ki_structsize = sizeof(kinfo_proc); 117 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 118 memset(kp, 0, sizeof *kp); 119 if (KREAD(kd, (u_long)p, &proc)) { 120 _kvm_err(kd, kd->program, "can't read proc at %x", p); 121 return (-1); 122 } 123 if (proc.p_state != PRS_ZOMBIE) { 124 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 125 &mtd)) { 126 _kvm_err(kd, kd->program, 127 "can't read thread at %x", 128 TAILQ_FIRST(&proc.p_threads)); 129 return (-1); 130 } 131 if ((proc.p_flag & P_SA) == 0) { 132 if (KREAD(kd, 133 (u_long)TAILQ_FIRST(&proc.p_ksegrps), 134 &mkg)) { 135 _kvm_err(kd, kd->program, 136 "can't read ksegrp at %x", 137 TAILQ_FIRST(&proc.p_ksegrps)); 138 return (-1); 139 } 140 if (KREAD(kd, 141 (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) { 142 _kvm_err(kd, kd->program, 143 "can't read kse at %x", 144 TAILQ_FIRST(&mkg.kg_kseq)); 145 return (-1); 146 } 147 } 148 } 149 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 150 kp->ki_ruid = ucred.cr_ruid; 151 kp->ki_svuid = ucred.cr_svuid; 152 kp->ki_rgid = ucred.cr_rgid; 153 kp->ki_svgid = ucred.cr_svgid; 154 kp->ki_ngroups = ucred.cr_ngroups; 155 bcopy(ucred.cr_groups, kp->ki_groups, 156 NGROUPS * sizeof(gid_t)); 157 kp->ki_uid = ucred.cr_uid; 158 } 159 160 switch(what & ~KERN_PROC_INC_THREAD) { 161 162 case KERN_PROC_GID: 163 if (kp->ki_groups[0] != (gid_t)arg) 164 continue; 165 break; 166 167 case KERN_PROC_PID: 168 if (proc.p_pid != (pid_t)arg) 169 continue; 170 break; 171 172 case KERN_PROC_RGID: 173 if (kp->ki_rgid != (gid_t)arg) 174 continue; 175 break; 176 177 case KERN_PROC_UID: 178 if (kp->ki_uid != (uid_t)arg) 179 continue; 180 break; 181 182 case KERN_PROC_RUID: 183 if (kp->ki_ruid != (uid_t)arg) 184 continue; 185 break; 186 } 187 /* 188 * We're going to add another proc to the set. If this 189 * will overflow the buffer, assume the reason is because 190 * nprocs (or the proc list) is corrupt and declare an error. 191 */ 192 if (cnt >= maxcnt) { 193 _kvm_err(kd, kd->program, "nprocs corrupt"); 194 return (-1); 195 } 196 /* 197 * gather kinfo_proc 198 */ 199 kp->ki_paddr = p; 200 kp->ki_addr = proc.p_uarea; 201 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 202 kp->ki_args = proc.p_args; 203 kp->ki_tracep = proc.p_tracevp; 204 kp->ki_textvp = proc.p_textvp; 205 kp->ki_fd = proc.p_fd; 206 kp->ki_vmspace = proc.p_vmspace; 207 if (proc.p_sigacts != NULL) { 208 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 209 _kvm_err(kd, kd->program, 210 "can't read sigacts at %x", proc.p_sigacts); 211 return (-1); 212 } 213 kp->ki_sigignore = sigacts.ps_sigignore; 214 kp->ki_sigcatch = sigacts.ps_sigcatch; 215 } 216 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 217 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 218 _kvm_err(kd, kd->program, 219 "can't read stats at %x", proc.p_stats); 220 return (-1); 221 } 222 kp->ki_start = pstats.p_start; 223 kp->ki_rusage = pstats.p_ru; 224 kp->ki_childstime = pstats.p_cru.ru_stime; 225 kp->ki_childutime = pstats.p_cru.ru_utime; 226 /* Some callers want child-times in a single value */ 227 timeradd(&kp->ki_childstime, &kp->ki_childutime, 228 &kp->ki_childtime); 229 } 230 if (proc.p_oppid) 231 kp->ki_ppid = proc.p_oppid; 232 else if (proc.p_pptr) { 233 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 234 _kvm_err(kd, kd->program, 235 "can't read pproc at %x", proc.p_pptr); 236 return (-1); 237 } 238 kp->ki_ppid = pproc.p_pid; 239 } else 240 kp->ki_ppid = 0; 241 if (proc.p_pgrp == NULL) 242 goto nopgrp; 243 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 244 _kvm_err(kd, kd->program, "can't read pgrp at %x", 245 proc.p_pgrp); 246 return (-1); 247 } 248 kp->ki_pgid = pgrp.pg_id; 249 kp->ki_jobc = pgrp.pg_jobc; 250 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 251 _kvm_err(kd, kd->program, "can't read session at %x", 252 pgrp.pg_session); 253 return (-1); 254 } 255 kp->ki_sid = sess.s_sid; 256 (void)memcpy(kp->ki_login, sess.s_login, 257 sizeof(kp->ki_login)); 258 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 259 if (sess.s_leader == p) 260 kp->ki_kiflag |= KI_SLEADER; 261 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 262 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 263 _kvm_err(kd, kd->program, 264 "can't read tty at %x", sess.s_ttyp); 265 return (-1); 266 } 267 kp->ki_tdev = tty.t_dev; /* XXX: wrong */ 268 if (tty.t_pgrp != NULL) { 269 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 270 _kvm_err(kd, kd->program, 271 "can't read tpgrp at %x", 272 tty.t_pgrp); 273 return (-1); 274 } 275 kp->ki_tpgid = pgrp.pg_id; 276 } else 277 kp->ki_tpgid = -1; 278 if (tty.t_session != NULL) { 279 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 280 _kvm_err(kd, kd->program, 281 "can't read session at %x", 282 tty.t_session); 283 return (-1); 284 } 285 kp->ki_tsid = sess.s_sid; 286 } 287 } else { 288 nopgrp: 289 kp->ki_tdev = NODEV; 290 } 291 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 292 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 293 kp->ki_wmesg, WMESGLEN); 294 295 #ifdef sparc 296 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 297 (char *)&kp->ki_rssize, 298 sizeof(kp->ki_rssize)); 299 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 300 (char *)&kp->ki_tsize, 301 3 * sizeof(kp->ki_rssize)); /* XXX */ 302 #else 303 (void)kvm_read(kd, (u_long)proc.p_vmspace, 304 (char *)&vmspace, sizeof(vmspace)); 305 kp->ki_size = vmspace.vm_map.size; 306 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 307 kp->ki_swrss = vmspace.vm_swrss; 308 kp->ki_tsize = vmspace.vm_tsize; 309 kp->ki_dsize = vmspace.vm_dsize; 310 kp->ki_ssize = vmspace.vm_ssize; 311 #endif 312 313 switch (what & ~KERN_PROC_INC_THREAD) { 314 315 case KERN_PROC_PGRP: 316 if (kp->ki_pgid != (pid_t)arg) 317 continue; 318 break; 319 320 case KERN_PROC_SESSION: 321 if (kp->ki_sid != (pid_t)arg) 322 continue; 323 break; 324 325 case KERN_PROC_TTY: 326 if ((proc.p_flag & P_CONTROLT) == 0 || 327 kp->ki_tdev != (dev_t)arg) 328 continue; 329 break; 330 } 331 if (proc.p_comm[0] != 0) 332 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 333 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 334 sizeof(sysent)); 335 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 336 sizeof(svname)); 337 if (svname[0] != 0) 338 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 339 if ((proc.p_state != PRS_ZOMBIE) && 340 (mtd.td_blocked != 0)) { 341 kp->ki_kiflag |= KI_LOCKBLOCK; 342 if (mtd.td_lockname) 343 (void)kvm_read(kd, 344 (u_long)mtd.td_lockname, 345 kp->ki_lockname, LOCKNAMELEN); 346 kp->ki_lockname[LOCKNAMELEN] = 0; 347 } 348 bintime2timeval(&proc.p_runtime, &tv); 349 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 350 kp->ki_pid = proc.p_pid; 351 kp->ki_siglist = proc.p_siglist; 352 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 353 kp->ki_sigmask = mtd.td_sigmask; 354 kp->ki_xstat = proc.p_xstat; 355 kp->ki_acflag = proc.p_acflag; 356 kp->ki_lock = proc.p_lock; 357 if (proc.p_state != PRS_ZOMBIE) { 358 kp->ki_swtime = proc.p_swtime; 359 kp->ki_flag = proc.p_flag; 360 kp->ki_sflag = proc.p_sflag; 361 kp->ki_nice = proc.p_nice; 362 kp->ki_traceflag = proc.p_traceflag; 363 if (proc.p_state == PRS_NORMAL) { 364 if (TD_ON_RUNQ(&mtd) || 365 TD_CAN_RUN(&mtd) || 366 TD_IS_RUNNING(&mtd)) { 367 kp->ki_stat = SRUN; 368 } else if (mtd.td_state == 369 TDS_INHIBITED) { 370 if (P_SHOULDSTOP(&proc)) { 371 kp->ki_stat = SSTOP; 372 } else if ( 373 TD_IS_SLEEPING(&mtd)) { 374 kp->ki_stat = SSLEEP; 375 } else if (TD_ON_LOCK(&mtd)) { 376 kp->ki_stat = SLOCK; 377 } else { 378 kp->ki_stat = SWAIT; 379 } 380 } 381 } else { 382 kp->ki_stat = SIDL; 383 } 384 /* Stuff from the thread */ 385 kp->ki_pri.pri_level = mtd.td_priority; 386 kp->ki_pri.pri_native = mtd.td_base_pri; 387 kp->ki_lastcpu = mtd.td_lastcpu; 388 kp->ki_wchan = mtd.td_wchan; 389 kp->ki_oncpu = mtd.td_oncpu; 390 391 if (!(proc.p_flag & P_SA)) { 392 /* stuff from the ksegrp */ 393 kp->ki_slptime = mkg.kg_slptime; 394 kp->ki_pri.pri_class = mkg.kg_pri_class; 395 kp->ki_pri.pri_user = mkg.kg_user_pri; 396 kp->ki_estcpu = mkg.kg_estcpu; 397 398 /* Stuff from the kse */ 399 kp->ki_pctcpu = mke.ke_pctcpu; 400 kp->ki_rqindex = mke.ke_rqindex; 401 } else { 402 kp->ki_tdflags = -1; 403 /* All the rest are 0 for now */ 404 } 405 } else { 406 kp->ki_stat = SZOMB; 407 } 408 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 409 ++bp; 410 ++cnt; 411 } 412 return (cnt); 413 } 414 415 /* 416 * Build proc info array by reading in proc list from a crash dump. 417 * Return number of procs read. maxcnt is the max we will read. 418 */ 419 static int 420 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 421 kvm_t *kd; 422 int what, arg; 423 u_long a_allproc; 424 u_long a_zombproc; 425 int maxcnt; 426 { 427 struct kinfo_proc *bp = kd->procbase; 428 int acnt, zcnt; 429 struct proc *p; 430 431 if (KREAD(kd, a_allproc, &p)) { 432 _kvm_err(kd, kd->program, "cannot read allproc"); 433 return (-1); 434 } 435 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 436 if (acnt < 0) 437 return (acnt); 438 439 if (KREAD(kd, a_zombproc, &p)) { 440 _kvm_err(kd, kd->program, "cannot read zombproc"); 441 return (-1); 442 } 443 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 444 if (zcnt < 0) 445 zcnt = 0; 446 447 return (acnt + zcnt); 448 } 449 450 struct kinfo_proc * 451 kvm_getprocs(kd, op, arg, cnt) 452 kvm_t *kd; 453 int op, arg; 454 int *cnt; 455 { 456 int mib[4], st, nprocs; 457 size_t size; 458 int temp_op; 459 460 if (kd->procbase != 0) { 461 free((void *)kd->procbase); 462 /* 463 * Clear this pointer in case this call fails. Otherwise, 464 * kvm_close() will free it again. 465 */ 466 kd->procbase = 0; 467 } 468 if (ISALIVE(kd)) { 469 size = 0; 470 mib[0] = CTL_KERN; 471 mib[1] = KERN_PROC; 472 mib[2] = op; 473 mib[3] = arg; 474 temp_op = op & ~KERN_PROC_INC_THREAD; 475 st = sysctl(mib, 476 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 477 3 : 4, NULL, &size, NULL, 0); 478 if (st == -1) { 479 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 480 return (0); 481 } 482 /* 483 * We can't continue with a size of 0 because we pass 484 * it to realloc() (via _kvm_realloc()), and passing 0 485 * to realloc() results in undefined behavior. 486 */ 487 if (size == 0) { 488 /* 489 * XXX: We should probably return an invalid, 490 * but non-NULL, pointer here so any client 491 * program trying to dereference it will 492 * crash. However, _kvm_freeprocs() calls 493 * free() on kd->procbase if it isn't NULL, 494 * and free()'ing a junk pointer isn't good. 495 * Then again, _kvm_freeprocs() isn't used 496 * anywhere . . . 497 */ 498 kd->procbase = _kvm_malloc(kd, 1); 499 goto liveout; 500 } 501 do { 502 size += size / 10; 503 kd->procbase = (struct kinfo_proc *) 504 _kvm_realloc(kd, kd->procbase, size); 505 if (kd->procbase == 0) 506 return (0); 507 st = sysctl(mib, temp_op == KERN_PROC_ALL || 508 temp_op == KERN_PROC_PROC ? 3 : 4, 509 kd->procbase, &size, NULL, 0); 510 } while (st == -1 && errno == ENOMEM); 511 if (st == -1) { 512 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 513 return (0); 514 } 515 /* 516 * We have to check the size again because sysctl() 517 * may "round up" oldlenp if oldp is NULL; hence it 518 * might've told us that there was data to get when 519 * there really isn't any. 520 */ 521 if (size > 0 && 522 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 523 _kvm_err(kd, kd->program, 524 "kinfo_proc size mismatch (expected %d, got %d)", 525 sizeof(struct kinfo_proc), 526 kd->procbase->ki_structsize); 527 return (0); 528 } 529 liveout: 530 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 531 } else { 532 struct nlist nl[4], *p; 533 534 nl[0].n_name = "_nprocs"; 535 nl[1].n_name = "_allproc"; 536 nl[2].n_name = "_zombproc"; 537 nl[3].n_name = 0; 538 539 if (kvm_nlist(kd, nl) != 0) { 540 for (p = nl; p->n_type != 0; ++p) 541 ; 542 _kvm_err(kd, kd->program, 543 "%s: no such symbol", p->n_name); 544 return (0); 545 } 546 if (KREAD(kd, nl[0].n_value, &nprocs)) { 547 _kvm_err(kd, kd->program, "can't read nprocs"); 548 return (0); 549 } 550 size = nprocs * sizeof(struct kinfo_proc); 551 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 552 if (kd->procbase == 0) 553 return (0); 554 555 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 556 nl[2].n_value, nprocs); 557 #ifdef notdef 558 size = nprocs * sizeof(struct kinfo_proc); 559 (void)realloc(kd->procbase, size); 560 #endif 561 } 562 *cnt = nprocs; 563 return (kd->procbase); 564 } 565 566 void 567 _kvm_freeprocs(kd) 568 kvm_t *kd; 569 { 570 if (kd->procbase) { 571 free(kd->procbase); 572 kd->procbase = 0; 573 } 574 } 575 576 void * 577 _kvm_realloc(kd, p, n) 578 kvm_t *kd; 579 void *p; 580 size_t n; 581 { 582 void *np = (void *)realloc(p, n); 583 584 if (np == 0) { 585 free(p); 586 _kvm_err(kd, kd->program, "out of memory"); 587 } 588 return (np); 589 } 590 591 #ifndef MAX 592 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 593 #endif 594 595 /* 596 * Read in an argument vector from the user address space of process kp. 597 * addr if the user-space base address of narg null-terminated contiguous 598 * strings. This is used to read in both the command arguments and 599 * environment strings. Read at most maxcnt characters of strings. 600 */ 601 static char ** 602 kvm_argv(kd, kp, addr, narg, maxcnt) 603 kvm_t *kd; 604 struct kinfo_proc *kp; 605 u_long addr; 606 int narg; 607 int maxcnt; 608 { 609 char *np, *cp, *ep, *ap; 610 u_long oaddr = -1; 611 int len, cc; 612 char **argv; 613 614 /* 615 * Check that there aren't an unreasonable number of agruments, 616 * and that the address is in user space. 617 */ 618 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 619 return (0); 620 621 /* 622 * kd->argv : work space for fetching the strings from the target 623 * process's space, and is converted for returning to caller 624 */ 625 if (kd->argv == 0) { 626 /* 627 * Try to avoid reallocs. 628 */ 629 kd->argc = MAX(narg + 1, 32); 630 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 631 sizeof(*kd->argv)); 632 if (kd->argv == 0) 633 return (0); 634 } else if (narg + 1 > kd->argc) { 635 kd->argc = MAX(2 * kd->argc, narg + 1); 636 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 637 sizeof(*kd->argv)); 638 if (kd->argv == 0) 639 return (0); 640 } 641 /* 642 * kd->argspc : returned to user, this is where the kd->argv 643 * arrays are left pointing to the collected strings. 644 */ 645 if (kd->argspc == 0) { 646 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 647 if (kd->argspc == 0) 648 return (0); 649 kd->arglen = PAGE_SIZE; 650 } 651 /* 652 * kd->argbuf : used to pull in pages from the target process. 653 * the strings are copied out of here. 654 */ 655 if (kd->argbuf == 0) { 656 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 657 if (kd->argbuf == 0) 658 return (0); 659 } 660 661 /* Pull in the target process'es argv vector */ 662 cc = sizeof(char *) * narg; 663 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 664 return (0); 665 /* 666 * ap : saved start address of string we're working on in kd->argspc 667 * np : pointer to next place to write in kd->argspc 668 * len: length of data in kd->argspc 669 * argv: pointer to the argv vector that we are hunting around the 670 * target process space for, and converting to addresses in 671 * our address space (kd->argspc). 672 */ 673 ap = np = kd->argspc; 674 argv = kd->argv; 675 len = 0; 676 /* 677 * Loop over pages, filling in the argument vector. 678 * Note that the argv strings could be pointing *anywhere* in 679 * the user address space and are no longer contiguous. 680 * Note that *argv is modified when we are going to fetch a string 681 * that crosses a page boundary. We copy the next part of the string 682 * into to "np" and eventually convert the pointer. 683 */ 684 while (argv < kd->argv + narg && *argv != 0) { 685 686 /* get the address that the current argv string is on */ 687 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 688 689 /* is it the same page as the last one? */ 690 if (addr != oaddr) { 691 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 692 PAGE_SIZE) 693 return (0); 694 oaddr = addr; 695 } 696 697 /* offset within the page... kd->argbuf */ 698 addr = (u_long)*argv & (PAGE_SIZE - 1); 699 700 /* cp = start of string, cc = count of chars in this chunk */ 701 cp = kd->argbuf + addr; 702 cc = PAGE_SIZE - addr; 703 704 /* dont get more than asked for by user process */ 705 if (maxcnt > 0 && cc > maxcnt - len) 706 cc = maxcnt - len; 707 708 /* pointer to end of string if we found it in this page */ 709 ep = memchr(cp, '\0', cc); 710 if (ep != 0) 711 cc = ep - cp + 1; 712 /* 713 * at this point, cc is the count of the chars that we are 714 * going to retrieve this time. we may or may not have found 715 * the end of it. (ep points to the null if the end is known) 716 */ 717 718 /* will we exceed the malloc/realloced buffer? */ 719 if (len + cc > kd->arglen) { 720 int off; 721 char **pp; 722 char *op = kd->argspc; 723 724 kd->arglen *= 2; 725 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 726 kd->arglen); 727 if (kd->argspc == 0) 728 return (0); 729 /* 730 * Adjust argv pointers in case realloc moved 731 * the string space. 732 */ 733 off = kd->argspc - op; 734 for (pp = kd->argv; pp < argv; pp++) 735 *pp += off; 736 ap += off; 737 np += off; 738 } 739 /* np = where to put the next part of the string in kd->argspc*/ 740 /* np is kinda redundant.. could use "kd->argspc + len" */ 741 memcpy(np, cp, cc); 742 np += cc; /* inc counters */ 743 len += cc; 744 745 /* 746 * if end of string found, set the *argv pointer to the 747 * saved beginning of string, and advance. argv points to 748 * somewhere in kd->argv.. This is initially relative 749 * to the target process, but when we close it off, we set 750 * it to point in our address space. 751 */ 752 if (ep != 0) { 753 *argv++ = ap; 754 ap = np; 755 } else { 756 /* update the address relative to the target process */ 757 *argv += cc; 758 } 759 760 if (maxcnt > 0 && len >= maxcnt) { 761 /* 762 * We're stopping prematurely. Terminate the 763 * current string. 764 */ 765 if (ep == 0) { 766 *np = '\0'; 767 *argv++ = ap; 768 } 769 break; 770 } 771 } 772 /* Make sure argv is terminated. */ 773 *argv = 0; 774 return (kd->argv); 775 } 776 777 static void 778 ps_str_a(p, addr, n) 779 struct ps_strings *p; 780 u_long *addr; 781 int *n; 782 { 783 *addr = (u_long)p->ps_argvstr; 784 *n = p->ps_nargvstr; 785 } 786 787 static void 788 ps_str_e(p, addr, n) 789 struct ps_strings *p; 790 u_long *addr; 791 int *n; 792 { 793 *addr = (u_long)p->ps_envstr; 794 *n = p->ps_nenvstr; 795 } 796 797 /* 798 * Determine if the proc indicated by p is still active. 799 * This test is not 100% foolproof in theory, but chances of 800 * being wrong are very low. 801 */ 802 static int 803 proc_verify(curkp) 804 struct kinfo_proc *curkp; 805 { 806 struct kinfo_proc newkp; 807 int mib[4]; 808 size_t len; 809 810 mib[0] = CTL_KERN; 811 mib[1] = KERN_PROC; 812 mib[2] = KERN_PROC_PID; 813 mib[3] = curkp->ki_pid; 814 len = sizeof(newkp); 815 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 816 return (0); 817 return (curkp->ki_pid == newkp.ki_pid && 818 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 819 } 820 821 static char ** 822 kvm_doargv(kd, kp, nchr, info) 823 kvm_t *kd; 824 struct kinfo_proc *kp; 825 int nchr; 826 void (*info)(struct ps_strings *, u_long *, int *); 827 { 828 char **ap; 829 u_long addr; 830 int cnt; 831 static struct ps_strings arginfo; 832 static u_long ps_strings; 833 size_t len; 834 835 if (ps_strings == 0) { 836 len = sizeof(ps_strings); 837 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 838 0) == -1) 839 ps_strings = PS_STRINGS; 840 } 841 842 /* 843 * Pointers are stored at the top of the user stack. 844 */ 845 if (kp->ki_stat == SZOMB || 846 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 847 sizeof(arginfo)) != sizeof(arginfo)) 848 return (0); 849 850 (*info)(&arginfo, &addr, &cnt); 851 if (cnt == 0) 852 return (0); 853 ap = kvm_argv(kd, kp, addr, cnt, nchr); 854 /* 855 * For live kernels, make sure this process didn't go away. 856 */ 857 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 858 ap = 0; 859 return (ap); 860 } 861 862 /* 863 * Get the command args. This code is now machine independent. 864 */ 865 char ** 866 kvm_getargv(kd, kp, nchr) 867 kvm_t *kd; 868 const struct kinfo_proc *kp; 869 int nchr; 870 { 871 int oid[4]; 872 int i; 873 size_t bufsz; 874 static unsigned long buflen; 875 static char *buf, *p; 876 static char **bufp; 877 static int argc; 878 879 if (!ISALIVE(kd)) { 880 _kvm_err(kd, kd->program, 881 "cannot read user space from dead kernel"); 882 return (0); 883 } 884 885 if (!buflen) { 886 bufsz = sizeof(buflen); 887 i = sysctlbyname("kern.ps_arg_cache_limit", 888 &buflen, &bufsz, NULL, 0); 889 if (i == -1) { 890 buflen = 0; 891 } else { 892 buf = malloc(buflen); 893 if (buf == NULL) 894 buflen = 0; 895 argc = 32; 896 bufp = malloc(sizeof(char *) * argc); 897 } 898 } 899 if (buf != NULL) { 900 oid[0] = CTL_KERN; 901 oid[1] = KERN_PROC; 902 oid[2] = KERN_PROC_ARGS; 903 oid[3] = kp->ki_pid; 904 bufsz = buflen; 905 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 906 if (i == 0 && bufsz > 0) { 907 i = 0; 908 p = buf; 909 do { 910 bufp[i++] = p; 911 p += strlen(p) + 1; 912 if (i >= argc) { 913 argc += argc; 914 bufp = realloc(bufp, 915 sizeof(char *) * argc); 916 } 917 } while (p < buf + bufsz); 918 bufp[i++] = 0; 919 return (bufp); 920 } 921 } 922 if (kp->ki_flag & P_SYSTEM) 923 return (NULL); 924 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 925 } 926 927 char ** 928 kvm_getenvv(kd, kp, nchr) 929 kvm_t *kd; 930 const struct kinfo_proc *kp; 931 int nchr; 932 { 933 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 934 } 935 936 /* 937 * Read from user space. The user context is given by p. 938 */ 939 ssize_t 940 kvm_uread(kd, kp, uva, buf, len) 941 kvm_t *kd; 942 struct kinfo_proc *kp; 943 u_long uva; 944 char *buf; 945 size_t len; 946 { 947 char *cp; 948 char procfile[MAXPATHLEN]; 949 ssize_t amount; 950 int fd; 951 952 if (!ISALIVE(kd)) { 953 _kvm_err(kd, kd->program, 954 "cannot read user space from dead kernel"); 955 return (0); 956 } 957 958 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 959 fd = open(procfile, O_RDONLY, 0); 960 if (fd < 0) { 961 _kvm_err(kd, kd->program, "cannot open %s", procfile); 962 close(fd); 963 return (0); 964 } 965 966 cp = buf; 967 while (len > 0) { 968 errno = 0; 969 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 970 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 971 uva, procfile); 972 break; 973 } 974 amount = read(fd, cp, len); 975 if (amount < 0) { 976 _kvm_syserr(kd, kd->program, "error reading %s", 977 procfile); 978 break; 979 } 980 if (amount == 0) { 981 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 982 break; 983 } 984 cp += amount; 985 uva += amount; 986 len -= amount; 987 } 988 989 close(fd); 990 return ((ssize_t)(cp - buf)); 991 } 992