1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $FreeBSD$ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #if defined(LIBC_SCCS) && !defined(lint) 44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 45 #endif /* LIBC_SCCS and not lint */ 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #include <sys/user.h> 56 #include <sys/proc.h> 57 #include <sys/exec.h> 58 #include <sys/stat.h> 59 #include <sys/ioctl.h> 60 #include <sys/tty.h> 61 #include <sys/file.h> 62 #include <stdio.h> 63 #include <stdlib.h> 64 #include <unistd.h> 65 #include <nlist.h> 66 #include <kvm.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_param.h> 70 #include <vm/swap_pager.h> 71 72 #include <sys/sysctl.h> 73 74 #include <limits.h> 75 #include <memory.h> 76 #include <paths.h> 77 78 #include "kvm_private.h" 79 80 #if used 81 static char * 82 kvm_readswap(kd, p, va, cnt) 83 kvm_t *kd; 84 const struct proc *p; 85 u_long va; 86 u_long *cnt; 87 { 88 #ifdef __FreeBSD__ 89 /* XXX Stubbed out, our vm system is differnet */ 90 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 91 return(0); 92 #endif /* __FreeBSD__ */ 93 } 94 #endif 95 96 #define KREAD(kd, addr, obj) \ 97 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 98 99 /* 100 * Read proc's from memory file into buffer bp, which has space to hold 101 * at most maxcnt procs. 102 */ 103 static int 104 kvm_proclist(kd, what, arg, p, bp, maxcnt) 105 kvm_t *kd; 106 int what, arg; 107 struct proc *p; 108 struct kinfo_proc *bp; 109 int maxcnt; 110 { 111 int cnt = 0; 112 struct kinfo_proc kinfo_proc, *kp; 113 struct pgrp pgrp; 114 struct session sess; 115 struct tty tty; 116 struct vmspace vmspace; 117 struct procsig procsig; 118 struct pstats pstats; 119 struct ucred ucred; 120 struct thread mainthread; 121 struct proc proc; 122 struct proc pproc; 123 struct timeval tv; 124 125 kp = &kinfo_proc; 126 kp->ki_structsize = sizeof(kinfo_proc); 127 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 128 memset(kp, 0, sizeof *kp); 129 if (KREAD(kd, (u_long)p, &proc)) { 130 _kvm_err(kd, kd->program, "can't read proc at %x", p); 131 return (-1); 132 } 133 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 134 &mainthread)) { 135 _kvm_err(kd, kd->program, "can't read thread at %x", 136 TAILQ_FIRST(&proc.p_threads)); 137 return (-1); 138 } 139 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 140 kp->ki_ruid = ucred.cr_ruid; 141 kp->ki_svuid = ucred.cr_svuid; 142 kp->ki_rgid = ucred.cr_rgid; 143 kp->ki_svgid = ucred.cr_svgid; 144 kp->ki_ngroups = ucred.cr_ngroups; 145 bcopy(ucred.cr_groups, kp->ki_groups, 146 NGROUPS * sizeof(gid_t)); 147 kp->ki_uid = ucred.cr_uid; 148 } 149 150 switch(what) { 151 152 case KERN_PROC_PID: 153 if (proc.p_pid != (pid_t)arg) 154 continue; 155 break; 156 157 case KERN_PROC_UID: 158 if (kp->ki_uid != (uid_t)arg) 159 continue; 160 break; 161 162 case KERN_PROC_RUID: 163 if (kp->ki_ruid != (uid_t)arg) 164 continue; 165 break; 166 } 167 /* 168 * We're going to add another proc to the set. If this 169 * will overflow the buffer, assume the reason is because 170 * nprocs (or the proc list) is corrupt and declare an error. 171 */ 172 if (cnt >= maxcnt) { 173 _kvm_err(kd, kd->program, "nprocs corrupt"); 174 return (-1); 175 } 176 /* 177 * gather kinfo_proc 178 */ 179 kp->ki_paddr = p; 180 kp->ki_addr = proc.p_uarea; 181 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 182 kp->ki_args = proc.p_args; 183 kp->ki_tracep = proc.p_tracep; 184 kp->ki_textvp = proc.p_textvp; 185 kp->ki_fd = proc.p_fd; 186 kp->ki_vmspace = proc.p_vmspace; 187 if (proc.p_procsig != NULL) { 188 if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) { 189 _kvm_err(kd, kd->program, 190 "can't read procsig at %x", proc.p_procsig); 191 return (-1); 192 } 193 kp->ki_sigignore = procsig.ps_sigignore; 194 kp->ki_sigcatch = procsig.ps_sigcatch; 195 } 196 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 197 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 198 _kvm_err(kd, kd->program, 199 "can't read stats at %x", proc.p_stats); 200 return (-1); 201 } 202 kp->ki_start = pstats.p_start; 203 kp->ki_rusage = pstats.p_ru; 204 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + 205 pstats.p_cru.ru_stime.tv_sec; 206 kp->ki_childtime.tv_usec = 207 pstats.p_cru.ru_utime.tv_usec + 208 pstats.p_cru.ru_stime.tv_usec; 209 } 210 if (proc.p_oppid) 211 kp->ki_ppid = proc.p_oppid; 212 else if (proc.p_pptr) { 213 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 214 _kvm_err(kd, kd->program, 215 "can't read pproc at %x", proc.p_pptr); 216 return (-1); 217 } 218 kp->ki_ppid = pproc.p_pid; 219 } else 220 kp->ki_ppid = 0; 221 if (proc.p_pgrp == NULL) 222 goto nopgrp; 223 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 224 _kvm_err(kd, kd->program, "can't read pgrp at %x", 225 proc.p_pgrp); 226 return (-1); 227 } 228 kp->ki_pgid = pgrp.pg_id; 229 kp->ki_jobc = pgrp.pg_jobc; 230 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 231 _kvm_err(kd, kd->program, "can't read session at %x", 232 pgrp.pg_session); 233 return (-1); 234 } 235 kp->ki_sid = sess.s_sid; 236 (void)memcpy(kp->ki_login, sess.s_login, 237 sizeof(kp->ki_login)); 238 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 239 if (sess.s_leader == p) 240 kp->ki_kiflag |= KI_SLEADER; 241 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 242 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 243 _kvm_err(kd, kd->program, 244 "can't read tty at %x", sess.s_ttyp); 245 return (-1); 246 } 247 kp->ki_tdev = tty.t_dev; 248 if (tty.t_pgrp != NULL) { 249 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 250 _kvm_err(kd, kd->program, 251 "can't read tpgrp at &x", 252 tty.t_pgrp); 253 return (-1); 254 } 255 kp->ki_tpgid = pgrp.pg_id; 256 } else 257 kp->ki_tpgid = -1; 258 if (tty.t_session != NULL) { 259 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 260 _kvm_err(kd, kd->program, 261 "can't read session at %x", 262 tty.t_session); 263 return (-1); 264 } 265 kp->ki_tsid = sess.s_sid; 266 } 267 } else { 268 nopgrp: 269 kp->ki_tdev = NODEV; 270 } 271 if (mainthread.td_wmesg) /* XXXKSE */ 272 (void)kvm_read(kd, (u_long)mainthread.td_wmesg, 273 kp->ki_wmesg, WMESGLEN); 274 275 #ifdef sparc 276 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 277 (char *)&kp->ki_rssize, 278 sizeof(kp->ki_rssize)); 279 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 280 (char *)&kp->ki_tsize, 281 3 * sizeof(kp->ki_rssize)); /* XXX */ 282 #else 283 (void)kvm_read(kd, (u_long)proc.p_vmspace, 284 (char *)&vmspace, sizeof(vmspace)); 285 kp->ki_size = vmspace.vm_map.size; 286 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 287 kp->ki_swrss = vmspace.vm_swrss; 288 kp->ki_tsize = vmspace.vm_tsize; 289 kp->ki_dsize = vmspace.vm_dsize; 290 kp->ki_ssize = vmspace.vm_ssize; 291 #endif 292 293 switch (what) { 294 295 case KERN_PROC_PGRP: 296 if (kp->ki_pgid != (pid_t)arg) 297 continue; 298 break; 299 300 case KERN_PROC_TTY: 301 if ((proc.p_flag & P_CONTROLT) == 0 || 302 kp->ki_tdev != (dev_t)arg) 303 continue; 304 break; 305 } 306 if (proc.p_comm[0] != 0) { 307 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 308 kp->ki_comm[MAXCOMLEN] = 0; 309 } 310 if (mainthread.td_blocked != 0) { /* XXXKSE */ 311 kp->ki_kiflag |= KI_MTXBLOCK; 312 if (mainthread.td_mtxname) /* XXXKSE */ 313 (void)kvm_read(kd, (u_long)mainthread.td_mtxname, 314 kp->ki_mtxname, MTXNAMELEN); 315 kp->ki_mtxname[MTXNAMELEN] = 0; 316 } 317 bintime2timeval(&proc.p_runtime, &tv); 318 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 319 kp->ki_pid = proc.p_pid; 320 kp->ki_siglist = proc.p_siglist; 321 kp->ki_sigmask = proc.p_sigmask; 322 kp->ki_xstat = proc.p_xstat; 323 kp->ki_acflag = proc.p_acflag; 324 kp->ki_pctcpu = proc.p_kse.ke_pctcpu; /* XXXKSE */ 325 kp->ki_estcpu = proc.p_ksegrp.kg_estcpu; /* XXXKSE */ 326 kp->ki_slptime = proc.p_kse.ke_slptime; /* XXXKSE */ 327 kp->ki_swtime = proc.p_swtime; 328 kp->ki_flag = proc.p_flag; 329 kp->ki_sflag = proc.p_sflag; 330 kp->ki_wchan = mainthread.td_wchan; /* XXXKSE */ 331 kp->ki_traceflag = proc.p_traceflag; 332 kp->ki_stat = proc.p_stat; 333 kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class; /* XXXKSE */ 334 kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri; /* XXXKSE */ 335 kp->ki_pri.pri_level = mainthread.td_priority; /* XXXKSE */ 336 kp->ki_pri.pri_native = mainthread.td_base_pri; /* XXXKSE */ 337 kp->ki_nice = proc.p_ksegrp.kg_nice; /* XXXKSE */ 338 kp->ki_lock = proc.p_lock; 339 kp->ki_rqindex = proc.p_kse.ke_rqindex; /* XXXKSE */ 340 kp->ki_oncpu = proc.p_kse.ke_oncpu; /* XXXKSE */ 341 kp->ki_lastcpu = mainthread.td_lastcpu; /* XXXKSE */ 342 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 343 ++bp; 344 ++cnt; 345 } 346 return (cnt); 347 } 348 349 /* 350 * Build proc info array by reading in proc list from a crash dump. 351 * Return number of procs read. maxcnt is the max we will read. 352 */ 353 static int 354 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 355 kvm_t *kd; 356 int what, arg; 357 u_long a_allproc; 358 u_long a_zombproc; 359 int maxcnt; 360 { 361 struct kinfo_proc *bp = kd->procbase; 362 int acnt, zcnt; 363 struct proc *p; 364 365 if (KREAD(kd, a_allproc, &p)) { 366 _kvm_err(kd, kd->program, "cannot read allproc"); 367 return (-1); 368 } 369 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 370 if (acnt < 0) 371 return (acnt); 372 373 if (KREAD(kd, a_zombproc, &p)) { 374 _kvm_err(kd, kd->program, "cannot read zombproc"); 375 return (-1); 376 } 377 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 378 if (zcnt < 0) 379 zcnt = 0; 380 381 return (acnt + zcnt); 382 } 383 384 struct kinfo_proc * 385 kvm_getprocs(kd, op, arg, cnt) 386 kvm_t *kd; 387 int op, arg; 388 int *cnt; 389 { 390 int mib[4], st, nprocs; 391 size_t size; 392 393 if (kd->procbase != 0) { 394 free((void *)kd->procbase); 395 /* 396 * Clear this pointer in case this call fails. Otherwise, 397 * kvm_close() will free it again. 398 */ 399 kd->procbase = 0; 400 } 401 if (ISALIVE(kd)) { 402 size = 0; 403 mib[0] = CTL_KERN; 404 mib[1] = KERN_PROC; 405 mib[2] = op; 406 mib[3] = arg; 407 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 408 if (st == -1) { 409 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 410 return (0); 411 } 412 /* 413 * We can't continue with a size of 0 because we pass 414 * it to realloc() (via _kvm_realloc()), and passing 0 415 * to realloc() results in undefined behavior. 416 */ 417 if (size == 0) { 418 /* 419 * XXX: We should probably return an invalid, 420 * but non-NULL, pointer here so any client 421 * program trying to dereference it will 422 * crash. However, _kvm_freeprocs() calls 423 * free() on kd->procbase if it isn't NULL, 424 * and free()'ing a junk pointer isn't good. 425 * Then again, _kvm_freeprocs() isn't used 426 * anywhere . . . 427 */ 428 kd->procbase = _kvm_malloc(kd, 1); 429 goto liveout; 430 } 431 do { 432 size += size / 10; 433 kd->procbase = (struct kinfo_proc *) 434 _kvm_realloc(kd, kd->procbase, size); 435 if (kd->procbase == 0) 436 return (0); 437 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 438 kd->procbase, &size, NULL, 0); 439 } while (st == -1 && errno == ENOMEM); 440 if (st == -1) { 441 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 442 return (0); 443 } 444 /* 445 * We have to check the size again because sysctl() 446 * may "round up" oldlenp if oldp is NULL; hence it 447 * might've told us that there was data to get when 448 * there really isn't any. 449 */ 450 if (size > 0 && 451 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 452 _kvm_err(kd, kd->program, 453 "kinfo_proc size mismatch (expected %d, got %d)", 454 sizeof(struct kinfo_proc), 455 kd->procbase->ki_structsize); 456 return (0); 457 } 458 liveout: 459 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 460 } else { 461 struct nlist nl[4], *p; 462 463 nl[0].n_name = "_nprocs"; 464 nl[1].n_name = "_allproc"; 465 nl[2].n_name = "_zombproc"; 466 nl[3].n_name = 0; 467 468 if (kvm_nlist(kd, nl) != 0) { 469 for (p = nl; p->n_type != 0; ++p) 470 ; 471 _kvm_err(kd, kd->program, 472 "%s: no such symbol", p->n_name); 473 return (0); 474 } 475 if (KREAD(kd, nl[0].n_value, &nprocs)) { 476 _kvm_err(kd, kd->program, "can't read nprocs"); 477 return (0); 478 } 479 size = nprocs * sizeof(struct kinfo_proc); 480 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 481 if (kd->procbase == 0) 482 return (0); 483 484 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 485 nl[2].n_value, nprocs); 486 #ifdef notdef 487 size = nprocs * sizeof(struct kinfo_proc); 488 (void)realloc(kd->procbase, size); 489 #endif 490 } 491 *cnt = nprocs; 492 return (kd->procbase); 493 } 494 495 void 496 _kvm_freeprocs(kd) 497 kvm_t *kd; 498 { 499 if (kd->procbase) { 500 free(kd->procbase); 501 kd->procbase = 0; 502 } 503 } 504 505 void * 506 _kvm_realloc(kd, p, n) 507 kvm_t *kd; 508 void *p; 509 size_t n; 510 { 511 void *np = (void *)realloc(p, n); 512 513 if (np == 0) { 514 free(p); 515 _kvm_err(kd, kd->program, "out of memory"); 516 } 517 return (np); 518 } 519 520 #ifndef MAX 521 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 522 #endif 523 524 /* 525 * Read in an argument vector from the user address space of process kp. 526 * addr if the user-space base address of narg null-terminated contiguous 527 * strings. This is used to read in both the command arguments and 528 * environment strings. Read at most maxcnt characters of strings. 529 */ 530 static char ** 531 kvm_argv(kd, kp, addr, narg, maxcnt) 532 kvm_t *kd; 533 struct kinfo_proc *kp; 534 u_long addr; 535 int narg; 536 int maxcnt; 537 { 538 char *np, *cp, *ep, *ap; 539 u_long oaddr = -1; 540 int len, cc; 541 char **argv; 542 543 /* 544 * Check that there aren't an unreasonable number of agruments, 545 * and that the address is in user space. 546 */ 547 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 548 return (0); 549 550 /* 551 * kd->argv : work space for fetching the strings from the target 552 * process's space, and is converted for returning to caller 553 */ 554 if (kd->argv == 0) { 555 /* 556 * Try to avoid reallocs. 557 */ 558 kd->argc = MAX(narg + 1, 32); 559 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 560 sizeof(*kd->argv)); 561 if (kd->argv == 0) 562 return (0); 563 } else if (narg + 1 > kd->argc) { 564 kd->argc = MAX(2 * kd->argc, narg + 1); 565 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 566 sizeof(*kd->argv)); 567 if (kd->argv == 0) 568 return (0); 569 } 570 /* 571 * kd->argspc : returned to user, this is where the kd->argv 572 * arrays are left pointing to the collected strings. 573 */ 574 if (kd->argspc == 0) { 575 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 576 if (kd->argspc == 0) 577 return (0); 578 kd->arglen = PAGE_SIZE; 579 } 580 /* 581 * kd->argbuf : used to pull in pages from the target process. 582 * the strings are copied out of here. 583 */ 584 if (kd->argbuf == 0) { 585 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 586 if (kd->argbuf == 0) 587 return (0); 588 } 589 590 /* Pull in the target process'es argv vector */ 591 cc = sizeof(char *) * narg; 592 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 593 return (0); 594 /* 595 * ap : saved start address of string we're working on in kd->argspc 596 * np : pointer to next place to write in kd->argspc 597 * len: length of data in kd->argspc 598 * argv: pointer to the argv vector that we are hunting around the 599 * target process space for, and converting to addresses in 600 * our address space (kd->argspc). 601 */ 602 ap = np = kd->argspc; 603 argv = kd->argv; 604 len = 0; 605 /* 606 * Loop over pages, filling in the argument vector. 607 * Note that the argv strings could be pointing *anywhere* in 608 * the user address space and are no longer contiguous. 609 * Note that *argv is modified when we are going to fetch a string 610 * that crosses a page boundary. We copy the next part of the string 611 * into to "np" and eventually convert the pointer. 612 */ 613 while (argv < kd->argv + narg && *argv != 0) { 614 615 /* get the address that the current argv string is on */ 616 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 617 618 /* is it the same page as the last one? */ 619 if (addr != oaddr) { 620 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 621 PAGE_SIZE) 622 return (0); 623 oaddr = addr; 624 } 625 626 /* offset within the page... kd->argbuf */ 627 addr = (u_long)*argv & (PAGE_SIZE - 1); 628 629 /* cp = start of string, cc = count of chars in this chunk */ 630 cp = kd->argbuf + addr; 631 cc = PAGE_SIZE - addr; 632 633 /* dont get more than asked for by user process */ 634 if (maxcnt > 0 && cc > maxcnt - len) 635 cc = maxcnt - len; 636 637 /* pointer to end of string if we found it in this page */ 638 ep = memchr(cp, '\0', cc); 639 if (ep != 0) 640 cc = ep - cp + 1; 641 /* 642 * at this point, cc is the count of the chars that we are 643 * going to retrieve this time. we may or may not have found 644 * the end of it. (ep points to the null if the end is known) 645 */ 646 647 /* will we exceed the malloc/realloced buffer? */ 648 if (len + cc > kd->arglen) { 649 int off; 650 char **pp; 651 char *op = kd->argspc; 652 653 kd->arglen *= 2; 654 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 655 kd->arglen); 656 if (kd->argspc == 0) 657 return (0); 658 /* 659 * Adjust argv pointers in case realloc moved 660 * the string space. 661 */ 662 off = kd->argspc - op; 663 for (pp = kd->argv; pp < argv; pp++) 664 *pp += off; 665 ap += off; 666 np += off; 667 } 668 /* np = where to put the next part of the string in kd->argspc*/ 669 /* np is kinda redundant.. could use "kd->argspc + len" */ 670 memcpy(np, cp, cc); 671 np += cc; /* inc counters */ 672 len += cc; 673 674 /* 675 * if end of string found, set the *argv pointer to the 676 * saved beginning of string, and advance. argv points to 677 * somewhere in kd->argv.. This is initially relative 678 * to the target process, but when we close it off, we set 679 * it to point in our address space. 680 */ 681 if (ep != 0) { 682 *argv++ = ap; 683 ap = np; 684 } else { 685 /* update the address relative to the target process */ 686 *argv += cc; 687 } 688 689 if (maxcnt > 0 && len >= maxcnt) { 690 /* 691 * We're stopping prematurely. Terminate the 692 * current string. 693 */ 694 if (ep == 0) { 695 *np = '\0'; 696 *argv++ = ap; 697 } 698 break; 699 } 700 } 701 /* Make sure argv is terminated. */ 702 *argv = 0; 703 return (kd->argv); 704 } 705 706 static void 707 ps_str_a(p, addr, n) 708 struct ps_strings *p; 709 u_long *addr; 710 int *n; 711 { 712 *addr = (u_long)p->ps_argvstr; 713 *n = p->ps_nargvstr; 714 } 715 716 static void 717 ps_str_e(p, addr, n) 718 struct ps_strings *p; 719 u_long *addr; 720 int *n; 721 { 722 *addr = (u_long)p->ps_envstr; 723 *n = p->ps_nenvstr; 724 } 725 726 /* 727 * Determine if the proc indicated by p is still active. 728 * This test is not 100% foolproof in theory, but chances of 729 * being wrong are very low. 730 */ 731 static int 732 proc_verify(curkp) 733 struct kinfo_proc *curkp; 734 { 735 struct kinfo_proc newkp; 736 int mib[4]; 737 size_t len; 738 739 mib[0] = CTL_KERN; 740 mib[1] = KERN_PROC; 741 mib[2] = KERN_PROC_PID; 742 mib[3] = curkp->ki_pid; 743 len = sizeof(newkp); 744 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 745 return (0); 746 return (curkp->ki_pid == newkp.ki_pid && 747 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 748 } 749 750 static char ** 751 kvm_doargv(kd, kp, nchr, info) 752 kvm_t *kd; 753 struct kinfo_proc *kp; 754 int nchr; 755 void (*info)(struct ps_strings *, u_long *, int *); 756 { 757 char **ap; 758 u_long addr; 759 int cnt; 760 static struct ps_strings arginfo; 761 static u_long ps_strings; 762 size_t len; 763 764 if (ps_strings == NULL) { 765 len = sizeof(ps_strings); 766 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 767 0) == -1) 768 ps_strings = PS_STRINGS; 769 } 770 771 /* 772 * Pointers are stored at the top of the user stack. 773 */ 774 if (kp->ki_stat == SZOMB || 775 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 776 sizeof(arginfo)) != sizeof(arginfo)) 777 return (0); 778 779 (*info)(&arginfo, &addr, &cnt); 780 if (cnt == 0) 781 return (0); 782 ap = kvm_argv(kd, kp, addr, cnt, nchr); 783 /* 784 * For live kernels, make sure this process didn't go away. 785 */ 786 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 787 ap = 0; 788 return (ap); 789 } 790 791 /* 792 * Get the command args. This code is now machine independent. 793 */ 794 char ** 795 kvm_getargv(kd, kp, nchr) 796 kvm_t *kd; 797 const struct kinfo_proc *kp; 798 int nchr; 799 { 800 int oid[4]; 801 int i; 802 size_t bufsz; 803 static unsigned long buflen; 804 static char *buf, *p; 805 static char **bufp; 806 static int argc; 807 808 if (!ISALIVE(kd)) { 809 _kvm_err(kd, kd->program, 810 "cannot read user space from dead kernel"); 811 return (0); 812 } 813 814 if (!buflen) { 815 bufsz = sizeof(buflen); 816 i = sysctlbyname("kern.ps_arg_cache_limit", 817 &buflen, &bufsz, NULL, 0); 818 if (i == -1) { 819 buflen = 0; 820 } else { 821 buf = malloc(buflen); 822 if (buf == NULL) 823 buflen = 0; 824 argc = 32; 825 bufp = malloc(sizeof(char *) * argc); 826 } 827 } 828 if (buf != NULL) { 829 oid[0] = CTL_KERN; 830 oid[1] = KERN_PROC; 831 oid[2] = KERN_PROC_ARGS; 832 oid[3] = kp->ki_pid; 833 bufsz = buflen; 834 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 835 if (i == 0 && bufsz > 0) { 836 i = 0; 837 p = buf; 838 do { 839 bufp[i++] = p; 840 p += strlen(p) + 1; 841 if (i >= argc) { 842 argc += argc; 843 bufp = realloc(bufp, 844 sizeof(char *) * argc); 845 } 846 } while (p < buf + bufsz); 847 bufp[i++] = 0; 848 return (bufp); 849 } 850 } 851 if (kp->ki_flag & P_SYSTEM) 852 return (NULL); 853 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 854 } 855 856 char ** 857 kvm_getenvv(kd, kp, nchr) 858 kvm_t *kd; 859 const struct kinfo_proc *kp; 860 int nchr; 861 { 862 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 863 } 864 865 /* 866 * Read from user space. The user context is given by p. 867 */ 868 ssize_t 869 kvm_uread(kd, kp, uva, buf, len) 870 kvm_t *kd; 871 struct kinfo_proc *kp; 872 u_long uva; 873 char *buf; 874 size_t len; 875 { 876 char *cp; 877 char procfile[MAXPATHLEN]; 878 ssize_t amount; 879 int fd; 880 881 if (!ISALIVE(kd)) { 882 _kvm_err(kd, kd->program, 883 "cannot read user space from dead kernel"); 884 return (0); 885 } 886 887 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 888 fd = open(procfile, O_RDONLY, 0); 889 if (fd < 0) { 890 _kvm_err(kd, kd->program, "cannot open %s", procfile); 891 close(fd); 892 return (0); 893 } 894 895 cp = buf; 896 while (len > 0) { 897 errno = 0; 898 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 899 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 900 uva, procfile); 901 break; 902 } 903 amount = read(fd, cp, len); 904 if (amount < 0) { 905 _kvm_syserr(kd, kd->program, "error reading %s", 906 procfile); 907 break; 908 } 909 if (amount == 0) { 910 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 911 break; 912 } 913 cp += amount; 914 uva += amount; 915 len -= amount; 916 } 917 918 close(fd); 919 return ((ssize_t)(cp - buf)); 920 } 921