xref: /freebsd/lib/libkvm/kvm_proc.c (revision eacee0ff7ec955b32e09515246bd97b6edcd2b0f)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD$
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #if defined(LIBC_SCCS) && !defined(lint)
44 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
45 #endif /* LIBC_SCCS and not lint */
46 
47 /*
48  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49  * users of this code, so we've factored it out into a separate module.
50  * Thus, we keep this grunge out of the other kvm applications (i.e.,
51  * most other applications are interested only in open/close/read/nlist).
52  */
53 
54 #include <sys/param.h>
55 #include <sys/user.h>
56 #include <sys/proc.h>
57 #include <sys/exec.h>
58 #include <sys/stat.h>
59 #include <sys/ioctl.h>
60 #include <sys/tty.h>
61 #include <sys/file.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <unistd.h>
65 #include <nlist.h>
66 #include <kvm.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <vm/swap_pager.h>
71 
72 #include <sys/sysctl.h>
73 
74 #include <limits.h>
75 #include <memory.h>
76 #include <paths.h>
77 
78 #include "kvm_private.h"
79 
80 #if used
81 static char *
82 kvm_readswap(kd, p, va, cnt)
83 	kvm_t *kd;
84 	const struct proc *p;
85 	u_long va;
86 	u_long *cnt;
87 {
88 #ifdef __FreeBSD__
89 	/* XXX Stubbed out, our vm system is differnet */
90 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
91 	return(0);
92 #endif	/* __FreeBSD__ */
93 }
94 #endif
95 
96 #define KREAD(kd, addr, obj) \
97 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
98 
99 /*
100  * Read proc's from memory file into buffer bp, which has space to hold
101  * at most maxcnt procs.
102  */
103 static int
104 kvm_proclist(kd, what, arg, p, bp, maxcnt)
105 	kvm_t *kd;
106 	int what, arg;
107 	struct proc *p;
108 	struct kinfo_proc *bp;
109 	int maxcnt;
110 {
111 	register int cnt = 0;
112 	struct kinfo_proc kinfo_proc, *kp;
113 	struct pgrp pgrp;
114 	struct session sess;
115 	struct tty tty;
116 	struct vmspace vmspace;
117 	struct procsig procsig;
118 	struct pstats pstats;
119 	struct ucred ucred;
120 	struct thread mainthread;
121 	struct proc proc;
122 	struct proc pproc;
123 
124 	kp = &kinfo_proc;
125 	kp->ki_structsize = sizeof(kinfo_proc);
126 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
127 		memset(kp, 0, sizeof *kp);
128 		if (KREAD(kd, (u_long)p, &proc)) {
129 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
130 			return (-1);
131 		}
132 		if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
133 		    &mainthread)) {
134 			_kvm_err(kd, kd->program, "can't read thread at %x",
135 			    TAILQ_FIRST(&proc.p_threads));
136 			return (-1);
137 		}
138 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
139 			kp->ki_ruid = ucred.cr_ruid;
140 			kp->ki_svuid = ucred.cr_svuid;
141 			kp->ki_rgid = ucred.cr_rgid;
142 			kp->ki_svgid = ucred.cr_svgid;
143 			kp->ki_ngroups = ucred.cr_ngroups;
144 			bcopy(ucred.cr_groups, kp->ki_groups,
145 			    NGROUPS * sizeof(gid_t));
146 			kp->ki_uid = ucred.cr_uid;
147 		}
148 
149 		switch(what) {
150 
151 		case KERN_PROC_PID:
152 			if (proc.p_pid != (pid_t)arg)
153 				continue;
154 			break;
155 
156 		case KERN_PROC_UID:
157 			if (kp->ki_uid != (uid_t)arg)
158 				continue;
159 			break;
160 
161 		case KERN_PROC_RUID:
162 			if (kp->ki_ruid != (uid_t)arg)
163 				continue;
164 			break;
165 		}
166 		/*
167 		 * We're going to add another proc to the set.  If this
168 		 * will overflow the buffer, assume the reason is because
169 		 * nprocs (or the proc list) is corrupt and declare an error.
170 		 */
171 		if (cnt >= maxcnt) {
172 			_kvm_err(kd, kd->program, "nprocs corrupt");
173 			return (-1);
174 		}
175 		/*
176 		 * gather kinfo_proc
177 		 */
178 		kp->ki_paddr = p;
179 		kp->ki_addr = proc.p_uarea;
180 		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
181 		kp->ki_args = proc.p_args;
182 		kp->ki_tracep = proc.p_tracep;
183 		kp->ki_textvp = proc.p_textvp;
184 		kp->ki_fd = proc.p_fd;
185 		kp->ki_vmspace = proc.p_vmspace;
186 		if (proc.p_procsig != NULL) {
187 			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
188 				_kvm_err(kd, kd->program,
189 				    "can't read procsig at %x", proc.p_procsig);
190 				return (-1);
191 			}
192 			kp->ki_sigignore = procsig.ps_sigignore;
193 			kp->ki_sigcatch = procsig.ps_sigcatch;
194 		}
195 		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
196 			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
197 				_kvm_err(kd, kd->program,
198 				    "can't read stats at %x", proc.p_stats);
199 				return (-1);
200 			}
201 			kp->ki_start = pstats.p_start;
202 			kp->ki_rusage = pstats.p_ru;
203 			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
204 			    pstats.p_cru.ru_stime.tv_sec;
205 			kp->ki_childtime.tv_usec =
206 			    pstats.p_cru.ru_utime.tv_usec +
207 			    pstats.p_cru.ru_stime.tv_usec;
208 		}
209 		if (proc.p_oppid)
210 			kp->ki_ppid = proc.p_oppid;
211 		else if (proc.p_pptr) {
212 			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
213 				_kvm_err(kd, kd->program,
214 				    "can't read pproc at %x", proc.p_pptr);
215 				return (-1);
216 			}
217 			kp->ki_ppid = pproc.p_pid;
218 		} else
219 			kp->ki_ppid = 0;
220 		if (proc.p_pgrp == NULL)
221 			goto nopgrp;
222 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
223 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
224 				 proc.p_pgrp);
225 			return (-1);
226 		}
227 		kp->ki_pgid = pgrp.pg_id;
228 		kp->ki_jobc = pgrp.pg_jobc;
229 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
230 			_kvm_err(kd, kd->program, "can't read session at %x",
231 				pgrp.pg_session);
232 			return (-1);
233 		}
234 		kp->ki_sid = sess.s_sid;
235 		(void)memcpy(kp->ki_login, sess.s_login,
236 						sizeof(kp->ki_login));
237 		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
238 		if (sess.s_leader == p)
239 			kp->ki_kiflag |= KI_SLEADER;
240 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
241 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
242 				_kvm_err(kd, kd->program,
243 					 "can't read tty at %x", sess.s_ttyp);
244 				return (-1);
245 			}
246 			kp->ki_tdev = tty.t_dev;
247 			if (tty.t_pgrp != NULL) {
248 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
249 					_kvm_err(kd, kd->program,
250 						 "can't read tpgrp at &x",
251 						tty.t_pgrp);
252 					return (-1);
253 				}
254 				kp->ki_tpgid = pgrp.pg_id;
255 			} else
256 				kp->ki_tpgid = -1;
257 			if (tty.t_session != NULL) {
258 				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
259 					_kvm_err(kd, kd->program,
260 					    "can't read session at %x",
261 					    tty.t_session);
262 					return (-1);
263 				}
264 				kp->ki_tsid = sess.s_sid;
265 			}
266 		} else {
267 nopgrp:
268 			kp->ki_tdev = NODEV;
269 		}
270 		if (mainthread.td_wmesg)	/* XXXKSE */
271 			(void)kvm_read(kd, (u_long)mainthread.td_wmesg,
272 			    kp->ki_wmesg, WMESGLEN);
273 
274 #ifdef sparc
275 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
276 		    (char *)&kp->ki_rssize,
277 		    sizeof(kp->ki_rssize));
278 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
279 		    (char *)&kp->ki_tsize,
280 		    3 * sizeof(kp->ki_rssize));	/* XXX */
281 #else
282 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
283 		    (char *)&vmspace, sizeof(vmspace));
284 		kp->ki_size = vmspace.vm_map.size;
285 		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
286 		kp->ki_swrss = vmspace.vm_swrss;
287 		kp->ki_tsize = vmspace.vm_tsize;
288 		kp->ki_dsize = vmspace.vm_dsize;
289 		kp->ki_ssize = vmspace.vm_ssize;
290 #endif
291 
292 		switch (what) {
293 
294 		case KERN_PROC_PGRP:
295 			if (kp->ki_pgid != (pid_t)arg)
296 				continue;
297 			break;
298 
299 		case KERN_PROC_TTY:
300 			if ((proc.p_flag & P_CONTROLT) == 0 ||
301 			     kp->ki_tdev != (dev_t)arg)
302 				continue;
303 			break;
304 		}
305 		if (proc.p_comm[0] != 0) {
306 			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
307 			kp->ki_comm[MAXCOMLEN] = 0;
308 		}
309 		if (mainthread.td_blocked != 0) {	/* XXXKSE */
310 			kp->ki_kiflag |= KI_MTXBLOCK;
311 			if (mainthread.td_mtxname)	/* XXXKSE */
312 				(void)kvm_read(kd, (u_long)mainthread.td_mtxname,
313 				    kp->ki_mtxname, MTXNAMELEN);
314 			kp->ki_mtxname[MTXNAMELEN] = 0;
315 		}
316 		kp->ki_runtime = proc.p_runtime;
317 		kp->ki_pid = proc.p_pid;
318 		kp->ki_siglist = proc.p_siglist;
319 		kp->ki_sigmask = proc.p_sigmask;
320 		kp->ki_xstat = proc.p_xstat;
321 		kp->ki_acflag = proc.p_acflag;
322 		kp->ki_pctcpu = proc.p_kse.ke_pctcpu;		/* XXXKSE */
323 		kp->ki_estcpu = proc.p_ksegrp.kg_estcpu;	/* XXXKSE */
324 		kp->ki_slptime = proc.p_kse.ke_slptime;		/* XXXKSE */
325 		kp->ki_swtime = proc.p_swtime;
326 		kp->ki_flag = proc.p_flag;
327 		kp->ki_sflag = proc.p_sflag;
328 		kp->ki_wchan = mainthread.td_wchan;		/* XXXKSE */
329 		kp->ki_traceflag = proc.p_traceflag;
330 		kp->ki_stat = proc.p_stat;
331 		kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class; /* XXXKSE */
332 		kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri; /* XXXKSE */
333 		kp->ki_pri.pri_level = mainthread.td_priority;	/* XXXKSE */
334 		kp->ki_pri.pri_native = mainthread.td_base_pri; /* XXXKSE */
335 		kp->ki_nice = proc.p_ksegrp.kg_nice;		/* XXXKSE */
336 		kp->ki_lock = proc.p_lock;
337 		kp->ki_rqindex = proc.p_kse.ke_rqindex;		/* XXXKSE */
338 		kp->ki_oncpu = proc.p_kse.ke_oncpu;		/* XXXKSE */
339 		kp->ki_lastcpu = mainthread.td_lastcpu;	/* XXXKSE */
340 		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
341 		++bp;
342 		++cnt;
343 	}
344 	return (cnt);
345 }
346 
347 /*
348  * Build proc info array by reading in proc list from a crash dump.
349  * Return number of procs read.  maxcnt is the max we will read.
350  */
351 static int
352 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
353 	kvm_t *kd;
354 	int what, arg;
355 	u_long a_allproc;
356 	u_long a_zombproc;
357 	int maxcnt;
358 {
359 	register struct kinfo_proc *bp = kd->procbase;
360 	register int acnt, zcnt;
361 	struct proc *p;
362 
363 	if (KREAD(kd, a_allproc, &p)) {
364 		_kvm_err(kd, kd->program, "cannot read allproc");
365 		return (-1);
366 	}
367 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
368 	if (acnt < 0)
369 		return (acnt);
370 
371 	if (KREAD(kd, a_zombproc, &p)) {
372 		_kvm_err(kd, kd->program, "cannot read zombproc");
373 		return (-1);
374 	}
375 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
376 	if (zcnt < 0)
377 		zcnt = 0;
378 
379 	return (acnt + zcnt);
380 }
381 
382 struct kinfo_proc *
383 kvm_getprocs(kd, op, arg, cnt)
384 	kvm_t *kd;
385 	int op, arg;
386 	int *cnt;
387 {
388 	int mib[4], st, nprocs;
389 	size_t size;
390 
391 	if (kd->procbase != 0) {
392 		free((void *)kd->procbase);
393 		/*
394 		 * Clear this pointer in case this call fails.  Otherwise,
395 		 * kvm_close() will free it again.
396 		 */
397 		kd->procbase = 0;
398 	}
399 	if (ISALIVE(kd)) {
400 		size = 0;
401 		mib[0] = CTL_KERN;
402 		mib[1] = KERN_PROC;
403 		mib[2] = op;
404 		mib[3] = arg;
405 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
406 		if (st == -1) {
407 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
408 			return (0);
409 		}
410 		do {
411 			size += size / 10;
412 			kd->procbase = (struct kinfo_proc *)
413 			    _kvm_realloc(kd, kd->procbase, size);
414 			if (kd->procbase == 0)
415 				return (0);
416 			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
417 			    kd->procbase, &size, NULL, 0);
418 		} while (st == -1 && errno == ENOMEM);
419 		if (st == -1) {
420 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
421 			return (0);
422 		}
423 		if (size > 0 &&
424 		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
425 			_kvm_err(kd, kd->program,
426 			    "kinfo_proc size mismatch (expected %d, got %d)",
427 			    sizeof(struct kinfo_proc),
428 			    kd->procbase->ki_structsize);
429 			return (0);
430 		}
431 		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
432 	} else {
433 		struct nlist nl[4], *p;
434 
435 		nl[0].n_name = "_nprocs";
436 		nl[1].n_name = "_allproc";
437 		nl[2].n_name = "_zombproc";
438 		nl[3].n_name = 0;
439 
440 		if (kvm_nlist(kd, nl) != 0) {
441 			for (p = nl; p->n_type != 0; ++p)
442 				;
443 			_kvm_err(kd, kd->program,
444 				 "%s: no such symbol", p->n_name);
445 			return (0);
446 		}
447 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
448 			_kvm_err(kd, kd->program, "can't read nprocs");
449 			return (0);
450 		}
451 		size = nprocs * sizeof(struct kinfo_proc);
452 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
453 		if (kd->procbase == 0)
454 			return (0);
455 
456 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
457 				      nl[2].n_value, nprocs);
458 #ifdef notdef
459 		size = nprocs * sizeof(struct kinfo_proc);
460 		(void)realloc(kd->procbase, size);
461 #endif
462 	}
463 	*cnt = nprocs;
464 	return (kd->procbase);
465 }
466 
467 void
468 _kvm_freeprocs(kd)
469 	kvm_t *kd;
470 {
471 	if (kd->procbase) {
472 		free(kd->procbase);
473 		kd->procbase = 0;
474 	}
475 }
476 
477 void *
478 _kvm_realloc(kd, p, n)
479 	kvm_t *kd;
480 	void *p;
481 	size_t n;
482 {
483 	void *np = (void *)realloc(p, n);
484 
485 	if (np == 0) {
486 		free(p);
487 		_kvm_err(kd, kd->program, "out of memory");
488 	}
489 	return (np);
490 }
491 
492 #ifndef MAX
493 #define MAX(a, b) ((a) > (b) ? (a) : (b))
494 #endif
495 
496 /*
497  * Read in an argument vector from the user address space of process kp.
498  * addr if the user-space base address of narg null-terminated contiguous
499  * strings.  This is used to read in both the command arguments and
500  * environment strings.  Read at most maxcnt characters of strings.
501  */
502 static char **
503 kvm_argv(kd, kp, addr, narg, maxcnt)
504 	kvm_t *kd;
505 	struct kinfo_proc *kp;
506 	register u_long addr;
507 	register int narg;
508 	register int maxcnt;
509 {
510 	register char *np, *cp, *ep, *ap;
511 	register u_long oaddr = -1;
512 	register int len, cc;
513 	register char **argv;
514 
515 	/*
516 	 * Check that there aren't an unreasonable number of agruments,
517 	 * and that the address is in user space.
518 	 */
519 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
520 		return (0);
521 
522 	/*
523 	 * kd->argv : work space for fetching the strings from the target
524 	 *            process's space, and is converted for returning to caller
525 	 */
526 	if (kd->argv == 0) {
527 		/*
528 		 * Try to avoid reallocs.
529 		 */
530 		kd->argc = MAX(narg + 1, 32);
531 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
532 						sizeof(*kd->argv));
533 		if (kd->argv == 0)
534 			return (0);
535 	} else if (narg + 1 > kd->argc) {
536 		kd->argc = MAX(2 * kd->argc, narg + 1);
537 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
538 						sizeof(*kd->argv));
539 		if (kd->argv == 0)
540 			return (0);
541 	}
542 	/*
543 	 * kd->argspc : returned to user, this is where the kd->argv
544 	 *              arrays are left pointing to the collected strings.
545 	 */
546 	if (kd->argspc == 0) {
547 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
548 		if (kd->argspc == 0)
549 			return (0);
550 		kd->arglen = PAGE_SIZE;
551 	}
552 	/*
553 	 * kd->argbuf : used to pull in pages from the target process.
554 	 *              the strings are copied out of here.
555 	 */
556 	if (kd->argbuf == 0) {
557 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
558 		if (kd->argbuf == 0)
559 			return (0);
560 	}
561 
562 	/* Pull in the target process'es argv vector */
563 	cc = sizeof(char *) * narg;
564 	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
565 		return (0);
566 	/*
567 	 * ap : saved start address of string we're working on in kd->argspc
568 	 * np : pointer to next place to write in kd->argspc
569 	 * len: length of data in kd->argspc
570 	 * argv: pointer to the argv vector that we are hunting around the
571 	 *       target process space for, and converting to addresses in
572 	 *       our address space (kd->argspc).
573 	 */
574 	ap = np = kd->argspc;
575 	argv = kd->argv;
576 	len = 0;
577 	/*
578 	 * Loop over pages, filling in the argument vector.
579 	 * Note that the argv strings could be pointing *anywhere* in
580 	 * the user address space and are no longer contiguous.
581 	 * Note that *argv is modified when we are going to fetch a string
582 	 * that crosses a page boundary.  We copy the next part of the string
583 	 * into to "np" and eventually convert the pointer.
584 	 */
585 	while (argv < kd->argv + narg && *argv != 0) {
586 
587 		/* get the address that the current argv string is on */
588 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
589 
590 		/* is it the same page as the last one? */
591 		if (addr != oaddr) {
592 			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
593 			    PAGE_SIZE)
594 				return (0);
595 			oaddr = addr;
596 		}
597 
598 		/* offset within the page... kd->argbuf */
599 		addr = (u_long)*argv & (PAGE_SIZE - 1);
600 
601 		/* cp = start of string, cc = count of chars in this chunk */
602 		cp = kd->argbuf + addr;
603 		cc = PAGE_SIZE - addr;
604 
605 		/* dont get more than asked for by user process */
606 		if (maxcnt > 0 && cc > maxcnt - len)
607 			cc = maxcnt - len;
608 
609 		/* pointer to end of string if we found it in this page */
610 		ep = memchr(cp, '\0', cc);
611 		if (ep != 0)
612 			cc = ep - cp + 1;
613 		/*
614 		 * at this point, cc is the count of the chars that we are
615 		 * going to retrieve this time. we may or may not have found
616 		 * the end of it.  (ep points to the null if the end is known)
617 		 */
618 
619 		/* will we exceed the malloc/realloced buffer? */
620 		if (len + cc > kd->arglen) {
621 			register int off;
622 			register char **pp;
623 			register char *op = kd->argspc;
624 
625 			kd->arglen *= 2;
626 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
627 							  kd->arglen);
628 			if (kd->argspc == 0)
629 				return (0);
630 			/*
631 			 * Adjust argv pointers in case realloc moved
632 			 * the string space.
633 			 */
634 			off = kd->argspc - op;
635 			for (pp = kd->argv; pp < argv; pp++)
636 				*pp += off;
637 			ap += off;
638 			np += off;
639 		}
640 		/* np = where to put the next part of the string in kd->argspc*/
641 		/* np is kinda redundant.. could use "kd->argspc + len" */
642 		memcpy(np, cp, cc);
643 		np += cc;	/* inc counters */
644 		len += cc;
645 
646 		/*
647 		 * if end of string found, set the *argv pointer to the
648 		 * saved beginning of string, and advance. argv points to
649 		 * somewhere in kd->argv..  This is initially relative
650 		 * to the target process, but when we close it off, we set
651 		 * it to point in our address space.
652 		 */
653 		if (ep != 0) {
654 			*argv++ = ap;
655 			ap = np;
656 		} else {
657 			/* update the address relative to the target process */
658 			*argv += cc;
659 		}
660 
661 		if (maxcnt > 0 && len >= maxcnt) {
662 			/*
663 			 * We're stopping prematurely.  Terminate the
664 			 * current string.
665 			 */
666 			if (ep == 0) {
667 				*np = '\0';
668 				*argv++ = ap;
669 			}
670 			break;
671 		}
672 	}
673 	/* Make sure argv is terminated. */
674 	*argv = 0;
675 	return (kd->argv);
676 }
677 
678 static void
679 ps_str_a(p, addr, n)
680 	struct ps_strings *p;
681 	u_long *addr;
682 	int *n;
683 {
684 	*addr = (u_long)p->ps_argvstr;
685 	*n = p->ps_nargvstr;
686 }
687 
688 static void
689 ps_str_e(p, addr, n)
690 	struct ps_strings *p;
691 	u_long *addr;
692 	int *n;
693 {
694 	*addr = (u_long)p->ps_envstr;
695 	*n = p->ps_nenvstr;
696 }
697 
698 /*
699  * Determine if the proc indicated by p is still active.
700  * This test is not 100% foolproof in theory, but chances of
701  * being wrong are very low.
702  */
703 static int
704 proc_verify(curkp)
705 	struct kinfo_proc *curkp;
706 {
707 	struct kinfo_proc newkp;
708 	int mib[4];
709 	size_t len;
710 
711 	mib[0] = CTL_KERN;
712 	mib[1] = KERN_PROC;
713 	mib[2] = KERN_PROC_PID;
714 	mib[3] = curkp->ki_pid;
715 	len = sizeof(newkp);
716 	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
717 		return (0);
718 	return (curkp->ki_pid == newkp.ki_pid &&
719 	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
720 }
721 
722 static char **
723 kvm_doargv(kd, kp, nchr, info)
724 	kvm_t *kd;
725 	struct kinfo_proc *kp;
726 	int nchr;
727 	void (*info)(struct ps_strings *, u_long *, int *);
728 {
729 	char **ap;
730 	u_long addr;
731 	int cnt;
732 	static struct ps_strings arginfo;
733 	static u_long ps_strings;
734 	size_t len;
735 
736 	if (ps_strings == NULL) {
737 		len = sizeof(ps_strings);
738 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
739 		    0) == -1)
740 			ps_strings = PS_STRINGS;
741 	}
742 
743 	/*
744 	 * Pointers are stored at the top of the user stack.
745 	 */
746 	if (kp->ki_stat == SZOMB ||
747 	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
748 		      sizeof(arginfo)) != sizeof(arginfo))
749 		return (0);
750 
751 	(*info)(&arginfo, &addr, &cnt);
752 	if (cnt == 0)
753 		return (0);
754 	ap = kvm_argv(kd, kp, addr, cnt, nchr);
755 	/*
756 	 * For live kernels, make sure this process didn't go away.
757 	 */
758 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
759 		ap = 0;
760 	return (ap);
761 }
762 
763 /*
764  * Get the command args.  This code is now machine independent.
765  */
766 char **
767 kvm_getargv(kd, kp, nchr)
768 	kvm_t *kd;
769 	const struct kinfo_proc *kp;
770 	int nchr;
771 {
772 	int oid[4];
773 	int i;
774 	size_t bufsz;
775 	static unsigned long buflen;
776 	static char *buf, *p;
777 	static char **bufp;
778 	static int argc;
779 
780 	if (!ISALIVE(kd)) {
781 		_kvm_err(kd, kd->program,
782 		    "cannot read user space from dead kernel");
783 		return (0);
784 	}
785 
786 	if (!buflen) {
787 		bufsz = sizeof(buflen);
788 		i = sysctlbyname("kern.ps_arg_cache_limit",
789 		    &buflen, &bufsz, NULL, 0);
790 		if (i == -1) {
791 			buflen = 0;
792 		} else {
793 			buf = malloc(buflen);
794 			if (buf == NULL)
795 				buflen = 0;
796 			argc = 32;
797 			bufp = malloc(sizeof(char *) * argc);
798 		}
799 	}
800 	if (buf != NULL) {
801 		oid[0] = CTL_KERN;
802 		oid[1] = KERN_PROC;
803 		oid[2] = KERN_PROC_ARGS;
804 		oid[3] = kp->ki_pid;
805 		bufsz = buflen;
806 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
807 		if (i == 0 && bufsz > 0) {
808 			i = 0;
809 			p = buf;
810 			do {
811 				bufp[i++] = p;
812 				p += strlen(p) + 1;
813 				if (i >= argc) {
814 					argc += argc;
815 					bufp = realloc(bufp,
816 					    sizeof(char *) * argc);
817 				}
818 			} while (p < buf + bufsz);
819 			bufp[i++] = 0;
820 			return (bufp);
821 		}
822 	}
823 	if (kp->ki_flag & P_SYSTEM)
824 		return (NULL);
825 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
826 }
827 
828 char **
829 kvm_getenvv(kd, kp, nchr)
830 	kvm_t *kd;
831 	const struct kinfo_proc *kp;
832 	int nchr;
833 {
834 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
835 }
836 
837 /*
838  * Read from user space.  The user context is given by p.
839  */
840 ssize_t
841 kvm_uread(kd, kp, uva, buf, len)
842 	kvm_t *kd;
843 	struct kinfo_proc *kp;
844 	register u_long uva;
845 	register char *buf;
846 	register size_t len;
847 {
848 	register char *cp;
849 	char procfile[MAXPATHLEN];
850 	ssize_t amount;
851 	int fd;
852 
853 	if (!ISALIVE(kd)) {
854 		_kvm_err(kd, kd->program,
855 		    "cannot read user space from dead kernel");
856 		return (0);
857 	}
858 
859 	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
860 	fd = open(procfile, O_RDONLY, 0);
861 	if (fd < 0) {
862 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
863 		close(fd);
864 		return (0);
865 	}
866 
867 	cp = buf;
868 	while (len > 0) {
869 		errno = 0;
870 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
871 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
872 			    uva, procfile);
873 			break;
874 		}
875 		amount = read(fd, cp, len);
876 		if (amount < 0) {
877 			_kvm_syserr(kd, kd->program, "error reading %s",
878 			    procfile);
879 			break;
880 		}
881 		if (amount == 0) {
882 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
883 			break;
884 		}
885 		cp += amount;
886 		uva += amount;
887 		len -= amount;
888 	}
889 
890 	close(fd);
891 	return ((ssize_t)(cp - buf));
892 }
893