1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $FreeBSD$ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #if defined(LIBC_SCCS) && !defined(lint) 44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 45 #endif /* LIBC_SCCS and not lint */ 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #include <sys/user.h> 56 #include <sys/proc.h> 57 #include <sys/exec.h> 58 #include <sys/stat.h> 59 #include <sys/ioctl.h> 60 #include <sys/tty.h> 61 #include <sys/file.h> 62 #include <stdio.h> 63 #include <stdlib.h> 64 #include <unistd.h> 65 #include <nlist.h> 66 #include <kvm.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_param.h> 70 #include <vm/swap_pager.h> 71 72 #include <sys/sysctl.h> 73 74 #include <limits.h> 75 #include <memory.h> 76 #include <paths.h> 77 78 #include "kvm_private.h" 79 80 #if used 81 static char * 82 kvm_readswap(kd, p, va, cnt) 83 kvm_t *kd; 84 const struct proc *p; 85 u_long va; 86 u_long *cnt; 87 { 88 #ifdef __FreeBSD__ 89 /* XXX Stubbed out, our vm system is differnet */ 90 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 91 return(0); 92 #endif /* __FreeBSD__ */ 93 } 94 #endif 95 96 #define KREAD(kd, addr, obj) \ 97 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 98 99 /* 100 * Read proc's from memory file into buffer bp, which has space to hold 101 * at most maxcnt procs. 102 */ 103 static int 104 kvm_proclist(kd, what, arg, p, bp, maxcnt) 105 kvm_t *kd; 106 int what, arg; 107 struct proc *p; 108 struct kinfo_proc *bp; 109 int maxcnt; 110 { 111 register int cnt = 0; 112 struct kinfo_proc kinfo_proc, *kp; 113 struct pgrp pgrp; 114 struct session sess; 115 struct tty tty; 116 struct vmspace vmspace; 117 struct procsig procsig; 118 struct pstats pstats; 119 struct ucred ucred; 120 struct thread mainthread; 121 struct proc proc; 122 struct proc pproc; 123 124 kp = &kinfo_proc; 125 kp->ki_structsize = sizeof(kinfo_proc); 126 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 127 memset(kp, 0, sizeof *kp); 128 if (KREAD(kd, (u_long)p, &proc)) { 129 _kvm_err(kd, kd->program, "can't read proc at %x", p); 130 return (-1); 131 } 132 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 133 &mainthread)) { 134 _kvm_err(kd, kd->program, "can't read thread at %x", 135 TAILQ_FIRST(&proc.p_threads)); 136 return (-1); 137 } 138 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 139 kp->ki_ruid = ucred.cr_ruid; 140 kp->ki_svuid = ucred.cr_svuid; 141 kp->ki_rgid = ucred.cr_rgid; 142 kp->ki_svgid = ucred.cr_svgid; 143 kp->ki_ngroups = ucred.cr_ngroups; 144 bcopy(ucred.cr_groups, kp->ki_groups, 145 NGROUPS * sizeof(gid_t)); 146 kp->ki_uid = ucred.cr_uid; 147 } 148 149 switch(what) { 150 151 case KERN_PROC_PID: 152 if (proc.p_pid != (pid_t)arg) 153 continue; 154 break; 155 156 case KERN_PROC_UID: 157 if (kp->ki_uid != (uid_t)arg) 158 continue; 159 break; 160 161 case KERN_PROC_RUID: 162 if (kp->ki_ruid != (uid_t)arg) 163 continue; 164 break; 165 } 166 /* 167 * We're going to add another proc to the set. If this 168 * will overflow the buffer, assume the reason is because 169 * nprocs (or the proc list) is corrupt and declare an error. 170 */ 171 if (cnt >= maxcnt) { 172 _kvm_err(kd, kd->program, "nprocs corrupt"); 173 return (-1); 174 } 175 /* 176 * gather kinfo_proc 177 */ 178 kp->ki_paddr = p; 179 kp->ki_addr = proc.p_uarea; 180 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 181 kp->ki_args = proc.p_args; 182 kp->ki_tracep = proc.p_tracep; 183 kp->ki_textvp = proc.p_textvp; 184 kp->ki_fd = proc.p_fd; 185 kp->ki_vmspace = proc.p_vmspace; 186 if (proc.p_procsig != NULL) { 187 if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) { 188 _kvm_err(kd, kd->program, 189 "can't read procsig at %x", proc.p_procsig); 190 return (-1); 191 } 192 kp->ki_sigignore = procsig.ps_sigignore; 193 kp->ki_sigcatch = procsig.ps_sigcatch; 194 } 195 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 196 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 197 _kvm_err(kd, kd->program, 198 "can't read stats at %x", proc.p_stats); 199 return (-1); 200 } 201 kp->ki_start = pstats.p_start; 202 kp->ki_rusage = pstats.p_ru; 203 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + 204 pstats.p_cru.ru_stime.tv_sec; 205 kp->ki_childtime.tv_usec = 206 pstats.p_cru.ru_utime.tv_usec + 207 pstats.p_cru.ru_stime.tv_usec; 208 } 209 if (proc.p_oppid) 210 kp->ki_ppid = proc.p_oppid; 211 else if (proc.p_pptr) { 212 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 213 _kvm_err(kd, kd->program, 214 "can't read pproc at %x", proc.p_pptr); 215 return (-1); 216 } 217 kp->ki_ppid = pproc.p_pid; 218 } else 219 kp->ki_ppid = 0; 220 if (proc.p_pgrp == NULL) 221 goto nopgrp; 222 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 223 _kvm_err(kd, kd->program, "can't read pgrp at %x", 224 proc.p_pgrp); 225 return (-1); 226 } 227 kp->ki_pgid = pgrp.pg_id; 228 kp->ki_jobc = pgrp.pg_jobc; 229 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 230 _kvm_err(kd, kd->program, "can't read session at %x", 231 pgrp.pg_session); 232 return (-1); 233 } 234 kp->ki_sid = sess.s_sid; 235 (void)memcpy(kp->ki_login, sess.s_login, 236 sizeof(kp->ki_login)); 237 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 238 if (sess.s_leader == p) 239 kp->ki_kiflag |= KI_SLEADER; 240 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 241 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 242 _kvm_err(kd, kd->program, 243 "can't read tty at %x", sess.s_ttyp); 244 return (-1); 245 } 246 kp->ki_tdev = tty.t_dev; 247 if (tty.t_pgrp != NULL) { 248 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 249 _kvm_err(kd, kd->program, 250 "can't read tpgrp at &x", 251 tty.t_pgrp); 252 return (-1); 253 } 254 kp->ki_tpgid = pgrp.pg_id; 255 } else 256 kp->ki_tpgid = -1; 257 if (tty.t_session != NULL) { 258 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 259 _kvm_err(kd, kd->program, 260 "can't read session at %x", 261 tty.t_session); 262 return (-1); 263 } 264 kp->ki_tsid = sess.s_sid; 265 } 266 } else { 267 nopgrp: 268 kp->ki_tdev = NODEV; 269 } 270 if (mainthread.td_wmesg) /* XXXKSE */ 271 (void)kvm_read(kd, (u_long)mainthread.td_wmesg, 272 kp->ki_wmesg, WMESGLEN); 273 274 #ifdef sparc 275 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 276 (char *)&kp->ki_rssize, 277 sizeof(kp->ki_rssize)); 278 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 279 (char *)&kp->ki_tsize, 280 3 * sizeof(kp->ki_rssize)); /* XXX */ 281 #else 282 (void)kvm_read(kd, (u_long)proc.p_vmspace, 283 (char *)&vmspace, sizeof(vmspace)); 284 kp->ki_size = vmspace.vm_map.size; 285 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 286 kp->ki_swrss = vmspace.vm_swrss; 287 kp->ki_tsize = vmspace.vm_tsize; 288 kp->ki_dsize = vmspace.vm_dsize; 289 kp->ki_ssize = vmspace.vm_ssize; 290 #endif 291 292 switch (what) { 293 294 case KERN_PROC_PGRP: 295 if (kp->ki_pgid != (pid_t)arg) 296 continue; 297 break; 298 299 case KERN_PROC_TTY: 300 if ((proc.p_flag & P_CONTROLT) == 0 || 301 kp->ki_tdev != (dev_t)arg) 302 continue; 303 break; 304 } 305 if (proc.p_comm[0] != 0) { 306 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 307 kp->ki_comm[MAXCOMLEN] = 0; 308 } 309 if (mainthread.td_blocked != 0) { /* XXXKSE */ 310 kp->ki_kiflag |= KI_MTXBLOCK; 311 if (mainthread.td_mtxname) /* XXXKSE */ 312 (void)kvm_read(kd, (u_long)mainthread.td_mtxname, 313 kp->ki_mtxname, MTXNAMELEN); 314 kp->ki_mtxname[MTXNAMELEN] = 0; 315 } 316 kp->ki_runtime = proc.p_runtime; 317 kp->ki_pid = proc.p_pid; 318 kp->ki_siglist = proc.p_siglist; 319 kp->ki_sigmask = proc.p_sigmask; 320 kp->ki_xstat = proc.p_xstat; 321 kp->ki_acflag = proc.p_acflag; 322 kp->ki_pctcpu = proc.p_kse.ke_pctcpu; /* XXXKSE */ 323 kp->ki_estcpu = proc.p_ksegrp.kg_estcpu; /* XXXKSE */ 324 kp->ki_slptime = proc.p_kse.ke_slptime; /* XXXKSE */ 325 kp->ki_swtime = proc.p_swtime; 326 kp->ki_flag = proc.p_flag; 327 kp->ki_sflag = proc.p_sflag; 328 kp->ki_wchan = mainthread.td_wchan; /* XXXKSE */ 329 kp->ki_traceflag = proc.p_traceflag; 330 kp->ki_stat = proc.p_stat; 331 kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class; /* XXXKSE */ 332 kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri; /* XXXKSE */ 333 kp->ki_pri.pri_level = mainthread.td_priority; /* XXXKSE */ 334 kp->ki_pri.pri_native = mainthread.td_base_pri; /* XXXKSE */ 335 kp->ki_nice = proc.p_ksegrp.kg_nice; /* XXXKSE */ 336 kp->ki_lock = proc.p_lock; 337 kp->ki_rqindex = proc.p_kse.ke_rqindex; /* XXXKSE */ 338 kp->ki_oncpu = proc.p_kse.ke_oncpu; /* XXXKSE */ 339 kp->ki_lastcpu = mainthread.td_lastcpu; /* XXXKSE */ 340 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 341 ++bp; 342 ++cnt; 343 } 344 return (cnt); 345 } 346 347 /* 348 * Build proc info array by reading in proc list from a crash dump. 349 * Return number of procs read. maxcnt is the max we will read. 350 */ 351 static int 352 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 353 kvm_t *kd; 354 int what, arg; 355 u_long a_allproc; 356 u_long a_zombproc; 357 int maxcnt; 358 { 359 register struct kinfo_proc *bp = kd->procbase; 360 register int acnt, zcnt; 361 struct proc *p; 362 363 if (KREAD(kd, a_allproc, &p)) { 364 _kvm_err(kd, kd->program, "cannot read allproc"); 365 return (-1); 366 } 367 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 368 if (acnt < 0) 369 return (acnt); 370 371 if (KREAD(kd, a_zombproc, &p)) { 372 _kvm_err(kd, kd->program, "cannot read zombproc"); 373 return (-1); 374 } 375 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 376 if (zcnt < 0) 377 zcnt = 0; 378 379 return (acnt + zcnt); 380 } 381 382 struct kinfo_proc * 383 kvm_getprocs(kd, op, arg, cnt) 384 kvm_t *kd; 385 int op, arg; 386 int *cnt; 387 { 388 int mib[4], st, nprocs; 389 size_t size; 390 391 if (kd->procbase != 0) { 392 free((void *)kd->procbase); 393 /* 394 * Clear this pointer in case this call fails. Otherwise, 395 * kvm_close() will free it again. 396 */ 397 kd->procbase = 0; 398 } 399 if (ISALIVE(kd)) { 400 size = 0; 401 mib[0] = CTL_KERN; 402 mib[1] = KERN_PROC; 403 mib[2] = op; 404 mib[3] = arg; 405 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 406 if (st == -1) { 407 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 408 return (0); 409 } 410 do { 411 size += size / 10; 412 kd->procbase = (struct kinfo_proc *) 413 _kvm_realloc(kd, kd->procbase, size); 414 if (kd->procbase == 0) 415 return (0); 416 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 417 kd->procbase, &size, NULL, 0); 418 } while (st == -1 && errno == ENOMEM); 419 if (st == -1) { 420 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 421 return (0); 422 } 423 if (size > 0 && 424 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 425 _kvm_err(kd, kd->program, 426 "kinfo_proc size mismatch (expected %d, got %d)", 427 sizeof(struct kinfo_proc), 428 kd->procbase->ki_structsize); 429 return (0); 430 } 431 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 432 } else { 433 struct nlist nl[4], *p; 434 435 nl[0].n_name = "_nprocs"; 436 nl[1].n_name = "_allproc"; 437 nl[2].n_name = "_zombproc"; 438 nl[3].n_name = 0; 439 440 if (kvm_nlist(kd, nl) != 0) { 441 for (p = nl; p->n_type != 0; ++p) 442 ; 443 _kvm_err(kd, kd->program, 444 "%s: no such symbol", p->n_name); 445 return (0); 446 } 447 if (KREAD(kd, nl[0].n_value, &nprocs)) { 448 _kvm_err(kd, kd->program, "can't read nprocs"); 449 return (0); 450 } 451 size = nprocs * sizeof(struct kinfo_proc); 452 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 453 if (kd->procbase == 0) 454 return (0); 455 456 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 457 nl[2].n_value, nprocs); 458 #ifdef notdef 459 size = nprocs * sizeof(struct kinfo_proc); 460 (void)realloc(kd->procbase, size); 461 #endif 462 } 463 *cnt = nprocs; 464 return (kd->procbase); 465 } 466 467 void 468 _kvm_freeprocs(kd) 469 kvm_t *kd; 470 { 471 if (kd->procbase) { 472 free(kd->procbase); 473 kd->procbase = 0; 474 } 475 } 476 477 void * 478 _kvm_realloc(kd, p, n) 479 kvm_t *kd; 480 void *p; 481 size_t n; 482 { 483 void *np = (void *)realloc(p, n); 484 485 if (np == 0) { 486 free(p); 487 _kvm_err(kd, kd->program, "out of memory"); 488 } 489 return (np); 490 } 491 492 #ifndef MAX 493 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 494 #endif 495 496 /* 497 * Read in an argument vector from the user address space of process kp. 498 * addr if the user-space base address of narg null-terminated contiguous 499 * strings. This is used to read in both the command arguments and 500 * environment strings. Read at most maxcnt characters of strings. 501 */ 502 static char ** 503 kvm_argv(kd, kp, addr, narg, maxcnt) 504 kvm_t *kd; 505 struct kinfo_proc *kp; 506 register u_long addr; 507 register int narg; 508 register int maxcnt; 509 { 510 register char *np, *cp, *ep, *ap; 511 register u_long oaddr = -1; 512 register int len, cc; 513 register char **argv; 514 515 /* 516 * Check that there aren't an unreasonable number of agruments, 517 * and that the address is in user space. 518 */ 519 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 520 return (0); 521 522 /* 523 * kd->argv : work space for fetching the strings from the target 524 * process's space, and is converted for returning to caller 525 */ 526 if (kd->argv == 0) { 527 /* 528 * Try to avoid reallocs. 529 */ 530 kd->argc = MAX(narg + 1, 32); 531 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 532 sizeof(*kd->argv)); 533 if (kd->argv == 0) 534 return (0); 535 } else if (narg + 1 > kd->argc) { 536 kd->argc = MAX(2 * kd->argc, narg + 1); 537 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 538 sizeof(*kd->argv)); 539 if (kd->argv == 0) 540 return (0); 541 } 542 /* 543 * kd->argspc : returned to user, this is where the kd->argv 544 * arrays are left pointing to the collected strings. 545 */ 546 if (kd->argspc == 0) { 547 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 548 if (kd->argspc == 0) 549 return (0); 550 kd->arglen = PAGE_SIZE; 551 } 552 /* 553 * kd->argbuf : used to pull in pages from the target process. 554 * the strings are copied out of here. 555 */ 556 if (kd->argbuf == 0) { 557 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 558 if (kd->argbuf == 0) 559 return (0); 560 } 561 562 /* Pull in the target process'es argv vector */ 563 cc = sizeof(char *) * narg; 564 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 565 return (0); 566 /* 567 * ap : saved start address of string we're working on in kd->argspc 568 * np : pointer to next place to write in kd->argspc 569 * len: length of data in kd->argspc 570 * argv: pointer to the argv vector that we are hunting around the 571 * target process space for, and converting to addresses in 572 * our address space (kd->argspc). 573 */ 574 ap = np = kd->argspc; 575 argv = kd->argv; 576 len = 0; 577 /* 578 * Loop over pages, filling in the argument vector. 579 * Note that the argv strings could be pointing *anywhere* in 580 * the user address space and are no longer contiguous. 581 * Note that *argv is modified when we are going to fetch a string 582 * that crosses a page boundary. We copy the next part of the string 583 * into to "np" and eventually convert the pointer. 584 */ 585 while (argv < kd->argv + narg && *argv != 0) { 586 587 /* get the address that the current argv string is on */ 588 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 589 590 /* is it the same page as the last one? */ 591 if (addr != oaddr) { 592 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 593 PAGE_SIZE) 594 return (0); 595 oaddr = addr; 596 } 597 598 /* offset within the page... kd->argbuf */ 599 addr = (u_long)*argv & (PAGE_SIZE - 1); 600 601 /* cp = start of string, cc = count of chars in this chunk */ 602 cp = kd->argbuf + addr; 603 cc = PAGE_SIZE - addr; 604 605 /* dont get more than asked for by user process */ 606 if (maxcnt > 0 && cc > maxcnt - len) 607 cc = maxcnt - len; 608 609 /* pointer to end of string if we found it in this page */ 610 ep = memchr(cp, '\0', cc); 611 if (ep != 0) 612 cc = ep - cp + 1; 613 /* 614 * at this point, cc is the count of the chars that we are 615 * going to retrieve this time. we may or may not have found 616 * the end of it. (ep points to the null if the end is known) 617 */ 618 619 /* will we exceed the malloc/realloced buffer? */ 620 if (len + cc > kd->arglen) { 621 register int off; 622 register char **pp; 623 register char *op = kd->argspc; 624 625 kd->arglen *= 2; 626 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 627 kd->arglen); 628 if (kd->argspc == 0) 629 return (0); 630 /* 631 * Adjust argv pointers in case realloc moved 632 * the string space. 633 */ 634 off = kd->argspc - op; 635 for (pp = kd->argv; pp < argv; pp++) 636 *pp += off; 637 ap += off; 638 np += off; 639 } 640 /* np = where to put the next part of the string in kd->argspc*/ 641 /* np is kinda redundant.. could use "kd->argspc + len" */ 642 memcpy(np, cp, cc); 643 np += cc; /* inc counters */ 644 len += cc; 645 646 /* 647 * if end of string found, set the *argv pointer to the 648 * saved beginning of string, and advance. argv points to 649 * somewhere in kd->argv.. This is initially relative 650 * to the target process, but when we close it off, we set 651 * it to point in our address space. 652 */ 653 if (ep != 0) { 654 *argv++ = ap; 655 ap = np; 656 } else { 657 /* update the address relative to the target process */ 658 *argv += cc; 659 } 660 661 if (maxcnt > 0 && len >= maxcnt) { 662 /* 663 * We're stopping prematurely. Terminate the 664 * current string. 665 */ 666 if (ep == 0) { 667 *np = '\0'; 668 *argv++ = ap; 669 } 670 break; 671 } 672 } 673 /* Make sure argv is terminated. */ 674 *argv = 0; 675 return (kd->argv); 676 } 677 678 static void 679 ps_str_a(p, addr, n) 680 struct ps_strings *p; 681 u_long *addr; 682 int *n; 683 { 684 *addr = (u_long)p->ps_argvstr; 685 *n = p->ps_nargvstr; 686 } 687 688 static void 689 ps_str_e(p, addr, n) 690 struct ps_strings *p; 691 u_long *addr; 692 int *n; 693 { 694 *addr = (u_long)p->ps_envstr; 695 *n = p->ps_nenvstr; 696 } 697 698 /* 699 * Determine if the proc indicated by p is still active. 700 * This test is not 100% foolproof in theory, but chances of 701 * being wrong are very low. 702 */ 703 static int 704 proc_verify(curkp) 705 struct kinfo_proc *curkp; 706 { 707 struct kinfo_proc newkp; 708 int mib[4]; 709 size_t len; 710 711 mib[0] = CTL_KERN; 712 mib[1] = KERN_PROC; 713 mib[2] = KERN_PROC_PID; 714 mib[3] = curkp->ki_pid; 715 len = sizeof(newkp); 716 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 717 return (0); 718 return (curkp->ki_pid == newkp.ki_pid && 719 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 720 } 721 722 static char ** 723 kvm_doargv(kd, kp, nchr, info) 724 kvm_t *kd; 725 struct kinfo_proc *kp; 726 int nchr; 727 void (*info)(struct ps_strings *, u_long *, int *); 728 { 729 char **ap; 730 u_long addr; 731 int cnt; 732 static struct ps_strings arginfo; 733 static u_long ps_strings; 734 size_t len; 735 736 if (ps_strings == NULL) { 737 len = sizeof(ps_strings); 738 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 739 0) == -1) 740 ps_strings = PS_STRINGS; 741 } 742 743 /* 744 * Pointers are stored at the top of the user stack. 745 */ 746 if (kp->ki_stat == SZOMB || 747 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 748 sizeof(arginfo)) != sizeof(arginfo)) 749 return (0); 750 751 (*info)(&arginfo, &addr, &cnt); 752 if (cnt == 0) 753 return (0); 754 ap = kvm_argv(kd, kp, addr, cnt, nchr); 755 /* 756 * For live kernels, make sure this process didn't go away. 757 */ 758 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 759 ap = 0; 760 return (ap); 761 } 762 763 /* 764 * Get the command args. This code is now machine independent. 765 */ 766 char ** 767 kvm_getargv(kd, kp, nchr) 768 kvm_t *kd; 769 const struct kinfo_proc *kp; 770 int nchr; 771 { 772 int oid[4]; 773 int i; 774 size_t bufsz; 775 static unsigned long buflen; 776 static char *buf, *p; 777 static char **bufp; 778 static int argc; 779 780 if (!ISALIVE(kd)) { 781 _kvm_err(kd, kd->program, 782 "cannot read user space from dead kernel"); 783 return (0); 784 } 785 786 if (!buflen) { 787 bufsz = sizeof(buflen); 788 i = sysctlbyname("kern.ps_arg_cache_limit", 789 &buflen, &bufsz, NULL, 0); 790 if (i == -1) { 791 buflen = 0; 792 } else { 793 buf = malloc(buflen); 794 if (buf == NULL) 795 buflen = 0; 796 argc = 32; 797 bufp = malloc(sizeof(char *) * argc); 798 } 799 } 800 if (buf != NULL) { 801 oid[0] = CTL_KERN; 802 oid[1] = KERN_PROC; 803 oid[2] = KERN_PROC_ARGS; 804 oid[3] = kp->ki_pid; 805 bufsz = buflen; 806 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 807 if (i == 0 && bufsz > 0) { 808 i = 0; 809 p = buf; 810 do { 811 bufp[i++] = p; 812 p += strlen(p) + 1; 813 if (i >= argc) { 814 argc += argc; 815 bufp = realloc(bufp, 816 sizeof(char *) * argc); 817 } 818 } while (p < buf + bufsz); 819 bufp[i++] = 0; 820 return (bufp); 821 } 822 } 823 if (kp->ki_flag & P_SYSTEM) 824 return (NULL); 825 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 826 } 827 828 char ** 829 kvm_getenvv(kd, kp, nchr) 830 kvm_t *kd; 831 const struct kinfo_proc *kp; 832 int nchr; 833 { 834 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 835 } 836 837 /* 838 * Read from user space. The user context is given by p. 839 */ 840 ssize_t 841 kvm_uread(kd, kp, uva, buf, len) 842 kvm_t *kd; 843 struct kinfo_proc *kp; 844 register u_long uva; 845 register char *buf; 846 register size_t len; 847 { 848 register char *cp; 849 char procfile[MAXPATHLEN]; 850 ssize_t amount; 851 int fd; 852 853 if (!ISALIVE(kd)) { 854 _kvm_err(kd, kd->program, 855 "cannot read user space from dead kernel"); 856 return (0); 857 } 858 859 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 860 fd = open(procfile, O_RDONLY, 0); 861 if (fd < 0) { 862 _kvm_err(kd, kd->program, "cannot open %s", procfile); 863 close(fd); 864 return (0); 865 } 866 867 cp = buf; 868 while (len > 0) { 869 errno = 0; 870 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 871 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 872 uva, procfile); 873 break; 874 } 875 amount = read(fd, cp, len); 876 if (amount < 0) { 877 _kvm_syserr(kd, kd->program, "error reading %s", 878 procfile); 879 break; 880 } 881 if (amount == 0) { 882 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 883 break; 884 } 885 cp += amount; 886 uva += amount; 887 len -= amount; 888 } 889 890 close(fd); 891 return ((ssize_t)(cp - buf)); 892 } 893