xref: /freebsd/lib/libkvm/kvm_proc.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD$
38  */
39 
40 #if defined(LIBC_SCCS) && !defined(lint)
41 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
42 #endif /* LIBC_SCCS and not lint */
43 
44 /*
45  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
46  * users of this code, so we've factored it out into a separate module.
47  * Thus, we keep this grunge out of the other kvm applications (i.e.,
48  * most other applications are interested only in open/close/read/nlist).
49  */
50 
51 #include <sys/param.h>
52 #include <sys/user.h>
53 #include <sys/proc.h>
54 #include <sys/exec.h>
55 #include <sys/stat.h>
56 #include <sys/ioctl.h>
57 #include <sys/tty.h>
58 #include <sys/file.h>
59 #include <stdio.h>
60 #include <stdlib.h>
61 #include <unistd.h>
62 #include <nlist.h>
63 #include <kvm.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_param.h>
67 #include <vm/swap_pager.h>
68 
69 #include <sys/sysctl.h>
70 
71 #include <limits.h>
72 #include <memory.h>
73 #include <paths.h>
74 
75 #include "kvm_private.h"
76 
77 #if used
78 static char *
79 kvm_readswap(kd, p, va, cnt)
80 	kvm_t *kd;
81 	const struct proc *p;
82 	u_long va;
83 	u_long *cnt;
84 {
85 #ifdef __FreeBSD__
86 	/* XXX Stubbed out, our vm system is differnet */
87 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
88 	return(0);
89 #endif	/* __FreeBSD__ */
90 }
91 #endif
92 
93 #define KREAD(kd, addr, obj) \
94 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
95 
96 /*
97  * Read proc's from memory file into buffer bp, which has space to hold
98  * at most maxcnt procs.
99  */
100 static int
101 kvm_proclist(kd, what, arg, p, bp, maxcnt)
102 	kvm_t *kd;
103 	int what, arg;
104 	struct proc *p;
105 	struct kinfo_proc *bp;
106 	int maxcnt;
107 {
108 	register int cnt = 0;
109 	struct eproc eproc;
110 	struct pgrp pgrp;
111 	struct session sess;
112 	struct tty tty;
113 	struct proc proc;
114 	struct proc pproc;
115 
116 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
117 		if (KREAD(kd, (u_long)p, &proc)) {
118 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
119 			return (-1);
120 		}
121 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
122 			(void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
123 			             &eproc.e_ucred));
124 
125 		switch(what) {
126 
127 		case KERN_PROC_PID:
128 			if (proc.p_pid != (pid_t)arg)
129 				continue;
130 			break;
131 
132 		case KERN_PROC_UID:
133 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
134 				continue;
135 			break;
136 
137 		case KERN_PROC_RUID:
138 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
139 				continue;
140 			break;
141 		}
142 		/*
143 		 * We're going to add another proc to the set.  If this
144 		 * will overflow the buffer, assume the reason is because
145 		 * nprocs (or the proc list) is corrupt and declare an error.
146 		 */
147 		if (cnt >= maxcnt) {
148 			_kvm_err(kd, kd->program, "nprocs corrupt");
149 			return (-1);
150 		}
151 		/*
152 		 * gather eproc
153 		 */
154 		eproc.e_paddr = p;
155 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
156 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
157 				 proc.p_pgrp);
158 			return (-1);
159 		}
160 		if (proc.p_oppid)
161 		  eproc.e_ppid = proc.p_oppid;
162 		else if (proc.p_pptr) {
163 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
164 			_kvm_err(kd, kd->program, "can't read pproc at %x",
165 				 proc.p_pptr);
166 			return (-1);
167 		  }
168 		  eproc.e_ppid = pproc.p_pid;
169 		} else
170 		  eproc.e_ppid = 0;
171 		eproc.e_sess = pgrp.pg_session;
172 		eproc.e_pgid = pgrp.pg_id;
173 		eproc.e_jobc = pgrp.pg_jobc;
174 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
175 			_kvm_err(kd, kd->program, "can't read session at %x",
176 				pgrp.pg_session);
177 			return (-1);
178 		}
179 		(void)memcpy(eproc.e_login, sess.s_login,
180 						sizeof(eproc.e_login));
181 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
182 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
183 				_kvm_err(kd, kd->program,
184 					 "can't read tty at %x", sess.s_ttyp);
185 				return (-1);
186 			}
187 			eproc.e_tdev = tty.t_dev;
188 			eproc.e_tsess = tty.t_session;
189 			if (tty.t_pgrp != NULL) {
190 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
191 					_kvm_err(kd, kd->program,
192 						 "can't read tpgrp at &x",
193 						tty.t_pgrp);
194 					return (-1);
195 				}
196 				eproc.e_tpgid = pgrp.pg_id;
197 			} else
198 				eproc.e_tpgid = -1;
199 		} else
200 			eproc.e_tdev = NODEV;
201 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
202 		if (sess.s_leader == p)
203 			eproc.e_flag |= EPROC_SLEADER;
204 		if (proc.p_wmesg)
205 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
206 			    eproc.e_wmesg, WMESGLEN);
207 
208 #ifdef sparc
209 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
210 		    (char *)&eproc.e_vm.vm_rssize,
211 		    sizeof(eproc.e_vm.vm_rssize));
212 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
213 		    (char *)&eproc.e_vm.vm_tsize,
214 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
215 #else
216 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
217 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
218 #endif
219 		eproc.e_xsize = eproc.e_xrssize = 0;
220 		eproc.e_xccount = eproc.e_xswrss = 0;
221 
222 		switch (what) {
223 
224 		case KERN_PROC_PGRP:
225 			if (eproc.e_pgid != (pid_t)arg)
226 				continue;
227 			break;
228 
229 		case KERN_PROC_TTY:
230 			if ((proc.p_flag & P_CONTROLT) == 0 ||
231 			     eproc.e_tdev != (dev_t)arg)
232 				continue;
233 			break;
234 		}
235 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
236 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
237 		++bp;
238 		++cnt;
239 	}
240 	return (cnt);
241 }
242 
243 /*
244  * Build proc info array by reading in proc list from a crash dump.
245  * Return number of procs read.  maxcnt is the max we will read.
246  */
247 static int
248 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
249 	kvm_t *kd;
250 	int what, arg;
251 	u_long a_allproc;
252 	u_long a_zombproc;
253 	int maxcnt;
254 {
255 	register struct kinfo_proc *bp = kd->procbase;
256 	register int acnt, zcnt;
257 	struct proc *p;
258 
259 	if (KREAD(kd, a_allproc, &p)) {
260 		_kvm_err(kd, kd->program, "cannot read allproc");
261 		return (-1);
262 	}
263 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
264 	if (acnt < 0)
265 		return (acnt);
266 
267 	if (KREAD(kd, a_zombproc, &p)) {
268 		_kvm_err(kd, kd->program, "cannot read zombproc");
269 		return (-1);
270 	}
271 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
272 	if (zcnt < 0)
273 		zcnt = 0;
274 
275 	return (acnt + zcnt);
276 }
277 
278 struct kinfo_proc *
279 kvm_getprocs(kd, op, arg, cnt)
280 	kvm_t *kd;
281 	int op, arg;
282 	int *cnt;
283 {
284 	int mib[4], st, nprocs;
285 	size_t size;
286 
287 	if (kd->procbase != 0) {
288 		free((void *)kd->procbase);
289 		/*
290 		 * Clear this pointer in case this call fails.  Otherwise,
291 		 * kvm_close() will free it again.
292 		 */
293 		kd->procbase = 0;
294 	}
295 	if (ISALIVE(kd)) {
296 		size = 0;
297 		mib[0] = CTL_KERN;
298 		mib[1] = KERN_PROC;
299 		mib[2] = op;
300 		mib[3] = arg;
301 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
302 		if (st == -1) {
303 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
304 			return (0);
305 		}
306 		do {
307 			size += size / 10;
308 			kd->procbase = (struct kinfo_proc *)
309 			    _kvm_realloc(kd, kd->procbase, size);
310 			if (kd->procbase == 0)
311 				return (0);
312 			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
313 			    kd->procbase, &size, NULL, 0);
314 		} while (st == -1 && errno == ENOMEM);
315 		if (st == -1) {
316 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
317 			return (0);
318 		}
319 		if (size % sizeof(struct kinfo_proc) != 0) {
320 			_kvm_err(kd, kd->program,
321 				"proc size mismatch (%d total, %d chunks)",
322 				size, sizeof(struct kinfo_proc));
323 			return (0);
324 		}
325 		nprocs = size / sizeof(struct kinfo_proc);
326 	} else {
327 		struct nlist nl[4], *p;
328 
329 		nl[0].n_name = "_nprocs";
330 		nl[1].n_name = "_allproc";
331 		nl[2].n_name = "_zombproc";
332 		nl[3].n_name = 0;
333 
334 		if (kvm_nlist(kd, nl) != 0) {
335 			for (p = nl; p->n_type != 0; ++p)
336 				;
337 			_kvm_err(kd, kd->program,
338 				 "%s: no such symbol", p->n_name);
339 			return (0);
340 		}
341 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
342 			_kvm_err(kd, kd->program, "can't read nprocs");
343 			return (0);
344 		}
345 		size = nprocs * sizeof(struct kinfo_proc);
346 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
347 		if (kd->procbase == 0)
348 			return (0);
349 
350 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
351 				      nl[2].n_value, nprocs);
352 #ifdef notdef
353 		size = nprocs * sizeof(struct kinfo_proc);
354 		(void)realloc(kd->procbase, size);
355 #endif
356 	}
357 	*cnt = nprocs;
358 	return (kd->procbase);
359 }
360 
361 void
362 _kvm_freeprocs(kd)
363 	kvm_t *kd;
364 {
365 	if (kd->procbase) {
366 		free(kd->procbase);
367 		kd->procbase = 0;
368 	}
369 }
370 
371 void *
372 _kvm_realloc(kd, p, n)
373 	kvm_t *kd;
374 	void *p;
375 	size_t n;
376 {
377 	void *np = (void *)realloc(p, n);
378 
379 	if (np == 0) {
380 		free(p);
381 		_kvm_err(kd, kd->program, "out of memory");
382 	}
383 	return (np);
384 }
385 
386 #ifndef MAX
387 #define MAX(a, b) ((a) > (b) ? (a) : (b))
388 #endif
389 
390 /*
391  * Read in an argument vector from the user address space of process p.
392  * addr if the user-space base address of narg null-terminated contiguous
393  * strings.  This is used to read in both the command arguments and
394  * environment strings.  Read at most maxcnt characters of strings.
395  */
396 static char **
397 kvm_argv(kd, p, addr, narg, maxcnt)
398 	kvm_t *kd;
399 	const struct proc *p;
400 	register u_long addr;
401 	register int narg;
402 	register int maxcnt;
403 {
404 	register char *np, *cp, *ep, *ap;
405 	register u_long oaddr = -1;
406 	register int len, cc;
407 	register char **argv;
408 
409 	/*
410 	 * Check that there aren't an unreasonable number of agruments,
411 	 * and that the address is in user space.
412 	 */
413 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
414 		return (0);
415 
416 	/*
417 	 * kd->argv : work space for fetching the strings from the target
418 	 *            process's space, and is converted for returning to caller
419 	 */
420 	if (kd->argv == 0) {
421 		/*
422 		 * Try to avoid reallocs.
423 		 */
424 		kd->argc = MAX(narg + 1, 32);
425 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
426 						sizeof(*kd->argv));
427 		if (kd->argv == 0)
428 			return (0);
429 	} else if (narg + 1 > kd->argc) {
430 		kd->argc = MAX(2 * kd->argc, narg + 1);
431 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
432 						sizeof(*kd->argv));
433 		if (kd->argv == 0)
434 			return (0);
435 	}
436 	/*
437 	 * kd->argspc : returned to user, this is where the kd->argv
438 	 *              arrays are left pointing to the collected strings.
439 	 */
440 	if (kd->argspc == 0) {
441 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
442 		if (kd->argspc == 0)
443 			return (0);
444 		kd->arglen = PAGE_SIZE;
445 	}
446 	/*
447 	 * kd->argbuf : used to pull in pages from the target process.
448 	 *              the strings are copied out of here.
449 	 */
450 	if (kd->argbuf == 0) {
451 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
452 		if (kd->argbuf == 0)
453 			return (0);
454 	}
455 
456 	/* Pull in the target process'es argv vector */
457 	cc = sizeof(char *) * narg;
458 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
459 		return (0);
460 	/*
461 	 * ap : saved start address of string we're working on in kd->argspc
462 	 * np : pointer to next place to write in kd->argspc
463 	 * len: length of data in kd->argspc
464 	 * argv: pointer to the argv vector that we are hunting around the
465 	 *       target process space for, and converting to addresses in
466 	 *       our address space (kd->argspc).
467 	 */
468 	ap = np = kd->argspc;
469 	argv = kd->argv;
470 	len = 0;
471 	/*
472 	 * Loop over pages, filling in the argument vector.
473 	 * Note that the argv strings could be pointing *anywhere* in
474 	 * the user address space and are no longer contiguous.
475 	 * Note that *argv is modified when we are going to fetch a string
476 	 * that crosses a page boundary.  We copy the next part of the string
477 	 * into to "np" and eventually convert the pointer.
478 	 */
479 	while (argv < kd->argv + narg && *argv != 0) {
480 
481 		/* get the address that the current argv string is on */
482 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
483 
484 		/* is it the same page as the last one? */
485 		if (addr != oaddr) {
486 			if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) !=
487 			    PAGE_SIZE)
488 				return (0);
489 			oaddr = addr;
490 		}
491 
492 		/* offset within the page... kd->argbuf */
493 		addr = (u_long)*argv & (PAGE_SIZE - 1);
494 
495 		/* cp = start of string, cc = count of chars in this chunk */
496 		cp = kd->argbuf + addr;
497 		cc = PAGE_SIZE - addr;
498 
499 		/* dont get more than asked for by user process */
500 		if (maxcnt > 0 && cc > maxcnt - len)
501 			cc = maxcnt - len;
502 
503 		/* pointer to end of string if we found it in this page */
504 		ep = memchr(cp, '\0', cc);
505 		if (ep != 0)
506 			cc = ep - cp + 1;
507 		/*
508 		 * at this point, cc is the count of the chars that we are
509 		 * going to retrieve this time. we may or may not have found
510 		 * the end of it.  (ep points to the null if the end is known)
511 		 */
512 
513 		/* will we exceed the malloc/realloced buffer? */
514 		if (len + cc > kd->arglen) {
515 			register int off;
516 			register char **pp;
517 			register char *op = kd->argspc;
518 
519 			kd->arglen *= 2;
520 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
521 							  kd->arglen);
522 			if (kd->argspc == 0)
523 				return (0);
524 			/*
525 			 * Adjust argv pointers in case realloc moved
526 			 * the string space.
527 			 */
528 			off = kd->argspc - op;
529 			for (pp = kd->argv; pp < argv; pp++)
530 				*pp += off;
531 			ap += off;
532 			np += off;
533 		}
534 		/* np = where to put the next part of the string in kd->argspc*/
535 		/* np is kinda redundant.. could use "kd->argspc + len" */
536 		memcpy(np, cp, cc);
537 		np += cc;	/* inc counters */
538 		len += cc;
539 
540 		/*
541 		 * if end of string found, set the *argv pointer to the
542 		 * saved beginning of string, and advance. argv points to
543 		 * somewhere in kd->argv..  This is initially relative
544 		 * to the target process, but when we close it off, we set
545 		 * it to point in our address space.
546 		 */
547 		if (ep != 0) {
548 			*argv++ = ap;
549 			ap = np;
550 		} else {
551 			/* update the address relative to the target process */
552 			*argv += cc;
553 		}
554 
555 		if (maxcnt > 0 && len >= maxcnt) {
556 			/*
557 			 * We're stopping prematurely.  Terminate the
558 			 * current string.
559 			 */
560 			if (ep == 0) {
561 				*np = '\0';
562 				*argv++ = ap;
563 			}
564 			break;
565 		}
566 	}
567 	/* Make sure argv is terminated. */
568 	*argv = 0;
569 	return (kd->argv);
570 }
571 
572 static void
573 ps_str_a(p, addr, n)
574 	struct ps_strings *p;
575 	u_long *addr;
576 	int *n;
577 {
578 	*addr = (u_long)p->ps_argvstr;
579 	*n = p->ps_nargvstr;
580 }
581 
582 static void
583 ps_str_e(p, addr, n)
584 	struct ps_strings *p;
585 	u_long *addr;
586 	int *n;
587 {
588 	*addr = (u_long)p->ps_envstr;
589 	*n = p->ps_nenvstr;
590 }
591 
592 /*
593  * Determine if the proc indicated by p is still active.
594  * This test is not 100% foolproof in theory, but chances of
595  * being wrong are very low.
596  */
597 static int
598 proc_verify(kd, kernp, p)
599 	kvm_t *kd;
600 	u_long kernp;
601 	const struct proc *p;
602 {
603 	struct kinfo_proc kp;
604 	int mib[4];
605 	size_t len;
606 
607 	mib[0] = CTL_KERN;
608 	mib[1] = KERN_PROC;
609 	mib[2] = KERN_PROC_PID;
610 	mib[3] = p->p_pid;
611 	len = sizeof(kp);
612 	if (sysctl(mib, 4, &kp, &len, NULL, 0) == -1)
613 		return (0);
614 	return (p->p_pid == kp.kp_proc.p_pid &&
615 	    (kp.kp_proc.p_stat != SZOMB || p->p_stat == SZOMB));
616 }
617 
618 static char **
619 kvm_doargv(kd, kp, nchr, info)
620 	kvm_t *kd;
621 	const struct kinfo_proc *kp;
622 	int nchr;
623 	void (*info)(struct ps_strings *, u_long *, int *);
624 {
625 	register const struct proc *p = &kp->kp_proc;
626 	register char **ap;
627 	u_long addr;
628 	int cnt;
629 	static struct ps_strings arginfo;
630 	static u_long ps_strings;
631 	size_t len;
632 
633 	if (ps_strings == NULL) {
634 		len = sizeof(ps_strings);
635 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
636 		    0) == -1)
637 			ps_strings = PS_STRINGS;
638 	}
639 
640 	/*
641 	 * Pointers are stored at the top of the user stack.
642 	 */
643 	if (p->p_stat == SZOMB ||
644 	    kvm_uread(kd, p, ps_strings, (char *)&arginfo,
645 		      sizeof(arginfo)) != sizeof(arginfo))
646 		return (0);
647 
648 	(*info)(&arginfo, &addr, &cnt);
649 	if (cnt == 0)
650 		return (0);
651 	ap = kvm_argv(kd, p, addr, cnt, nchr);
652 	/*
653 	 * For live kernels, make sure this process didn't go away.
654 	 */
655 	if (ap != 0 && ISALIVE(kd) &&
656 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
657 		ap = 0;
658 	return (ap);
659 }
660 
661 /*
662  * Get the command args.  This code is now machine independent.
663  */
664 char **
665 kvm_getargv(kd, kp, nchr)
666 	kvm_t *kd;
667 	const struct kinfo_proc *kp;
668 	int nchr;
669 {
670 	int oid[4];
671 	int i, l;
672 	static int buflen;
673 	static char *buf, *p;
674 	static char **bufp;
675 	static int argc;
676 
677 	if (!ISALIVE(kd)) {
678 		_kvm_err(kd, kd->program,
679 		    "cannot read user space from dead kernel");
680 		return (0);
681 	}
682 
683 	if (!buflen) {
684 		l = sizeof(buflen);
685 		i = sysctlbyname("kern.ps_arg_cache_limit",
686 		    &buflen, &l, NULL, 0);
687 		if (i == -1) {
688 			buflen == 0;
689 		} else {
690 			buf = malloc(buflen);
691 			if (buf == NULL)
692 				buflen = 0;
693 			argc = 32;
694 			bufp = malloc(sizeof(char *) * argc);
695 		}
696 	}
697 	if (buf != NULL) {
698 		oid[0] = CTL_KERN;
699 		oid[1] = KERN_PROC;
700 		oid[2] = KERN_PROC_ARGS;
701 		oid[3] = kp->kp_proc.p_pid;
702 		l = buflen;
703 		i = sysctl(oid, 4, buf, &l, 0, 0);
704 		if (i == 0 && l > 0) {
705 			i = 0;
706 			p = buf;
707 			do {
708 				bufp[i++] = p;
709 				p += strlen(p) + 1;
710 				if (i >= argc) {
711 					argc += argc;
712 					bufp = realloc(bufp,
713 					    sizeof(char *) * argc);
714 				}
715 			} while (p < buf + l);
716 			bufp[i++] = 0;
717 			return (bufp);
718 		}
719 	}
720 	if (kp->kp_proc.p_flag & P_SYSTEM)
721 		return (NULL);
722 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
723 }
724 
725 char **
726 kvm_getenvv(kd, kp, nchr)
727 	kvm_t *kd;
728 	const struct kinfo_proc *kp;
729 	int nchr;
730 {
731 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
732 }
733 
734 /*
735  * Read from user space.  The user context is given by p.
736  */
737 ssize_t
738 kvm_uread(kd, p, uva, buf, len)
739 	kvm_t *kd;
740 	register const struct proc *p;
741 	register u_long uva;
742 	register char *buf;
743 	register size_t len;
744 {
745 	register char *cp;
746 	char procfile[MAXPATHLEN];
747 	ssize_t amount;
748 	int fd;
749 
750 	if (!ISALIVE(kd)) {
751 		_kvm_err(kd, kd->program,
752 		    "cannot read user space from dead kernel");
753 		return (0);
754 	}
755 
756 	sprintf(procfile, "/proc/%d/mem", p->p_pid);
757 	fd = open(procfile, O_RDONLY, 0);
758 	if (fd < 0) {
759 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
760 		close(fd);
761 		return (0);
762 	}
763 
764 	cp = buf;
765 	while (len > 0) {
766 		errno = 0;
767 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
768 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
769 			    uva, procfile);
770 			break;
771 		}
772 		amount = read(fd, cp, len);
773 		if (amount < 0) {
774 			_kvm_syserr(kd, kd->program, "error reading %s",
775 			    procfile);
776 			break;
777 		}
778 		if (amount == 0) {
779 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
780 			break;
781 		}
782 		cp += amount;
783 		uva += amount;
784 		len -= amount;
785 	}
786 
787 	close(fd);
788 	return ((ssize_t)(cp - buf));
789 }
790