xref: /freebsd/lib/libkvm/kvm_proc.c (revision d876124d6ae9d56da5b4ff4c6015efd1d0c9222a)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #if 0
35 #if defined(LIBC_SCCS) && !defined(lint)
36 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
37 #endif /* LIBC_SCCS and not lint */
38 #endif
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49 
50 #include <sys/param.h>
51 #define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
52 #include <sys/ucred.h>
53 #include <sys/queue.h>
54 #include <sys/_lock.h>
55 #include <sys/_mutex.h>
56 #include <sys/_task.h>
57 #define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
58 #include <sys/jail.h>
59 #include <sys/user.h>
60 #include <sys/proc.h>
61 #include <sys/exec.h>
62 #include <sys/stat.h>
63 #include <sys/sysent.h>
64 #include <sys/ioctl.h>
65 #include <sys/tty.h>
66 #include <sys/file.h>
67 #include <sys/conf.h>
68 #include <stdio.h>
69 #include <stdlib.h>
70 #include <unistd.h>
71 #include <nlist.h>
72 #include <kvm.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 
77 #include <sys/sysctl.h>
78 
79 #include <limits.h>
80 #include <memory.h>
81 #include <paths.h>
82 
83 #include "kvm_private.h"
84 
85 #define KREAD(kd, addr, obj) \
86 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
87 
88 static int ticks;
89 static int hz;
90 
91 /*
92  * Read proc's from memory file into buffer bp, which has space to hold
93  * at most maxcnt procs.
94  */
95 static int
96 kvm_proclist(kd, what, arg, p, bp, maxcnt)
97 	kvm_t *kd;
98 	int what, arg;
99 	struct proc *p;
100 	struct kinfo_proc *bp;
101 	int maxcnt;
102 {
103 	int cnt = 0;
104 	struct kinfo_proc kinfo_proc, *kp;
105 	struct pgrp pgrp;
106 	struct session sess;
107 	struct cdev t_cdev;
108 	struct tty tty;
109 	struct vmspace vmspace;
110 	struct sigacts sigacts;
111 	struct pstats pstats;
112 	struct ucred ucred;
113 	struct prison pr;
114 	struct thread mtd;
115 	struct proc proc;
116 	struct proc pproc;
117 	struct timeval tv;
118 	struct sysentvec sysent;
119 	char svname[KI_EMULNAMELEN];
120 
121 	kp = &kinfo_proc;
122 	kp->ki_structsize = sizeof(kinfo_proc);
123 	/*
124 	 * Loop on the processes. this is completely broken because we need to be
125 	 * able to loop on the threads and merge the ones that are the same process some how.
126 	 */
127 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
128 		memset(kp, 0, sizeof *kp);
129 		if (KREAD(kd, (u_long)p, &proc)) {
130 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
131 			return (-1);
132 		}
133 		if (proc.p_state != PRS_ZOMBIE) {
134 			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
135 			    &mtd)) {
136 				_kvm_err(kd, kd->program,
137 				    "can't read thread at %x",
138 				    TAILQ_FIRST(&proc.p_threads));
139 				return (-1);
140 			}
141 		}
142 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
143 			kp->ki_ruid = ucred.cr_ruid;
144 			kp->ki_svuid = ucred.cr_svuid;
145 			kp->ki_rgid = ucred.cr_rgid;
146 			kp->ki_svgid = ucred.cr_svgid;
147 			kp->ki_ngroups = ucred.cr_ngroups;
148 			bcopy(ucred.cr_groups, kp->ki_groups,
149 			    NGROUPS * sizeof(gid_t));
150 			kp->ki_uid = ucred.cr_uid;
151 			if (ucred.cr_prison != NULL) {
152 				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
153 					_kvm_err(kd, kd->program,
154 					    "can't read prison at %x",
155 					    ucred.cr_prison);
156 					return (-1);
157 				}
158 				kp->ki_jid = pr.pr_id;
159 			}
160 		}
161 
162 		switch(what & ~KERN_PROC_INC_THREAD) {
163 
164 		case KERN_PROC_GID:
165 			if (kp->ki_groups[0] != (gid_t)arg)
166 				continue;
167 			break;
168 
169 		case KERN_PROC_PID:
170 			if (proc.p_pid != (pid_t)arg)
171 				continue;
172 			break;
173 
174 		case KERN_PROC_RGID:
175 			if (kp->ki_rgid != (gid_t)arg)
176 				continue;
177 			break;
178 
179 		case KERN_PROC_UID:
180 			if (kp->ki_uid != (uid_t)arg)
181 				continue;
182 			break;
183 
184 		case KERN_PROC_RUID:
185 			if (kp->ki_ruid != (uid_t)arg)
186 				continue;
187 			break;
188 		}
189 		/*
190 		 * We're going to add another proc to the set.  If this
191 		 * will overflow the buffer, assume the reason is because
192 		 * nprocs (or the proc list) is corrupt and declare an error.
193 		 */
194 		if (cnt >= maxcnt) {
195 			_kvm_err(kd, kd->program, "nprocs corrupt");
196 			return (-1);
197 		}
198 		/*
199 		 * gather kinfo_proc
200 		 */
201 		kp->ki_paddr = p;
202 		kp->ki_addr = 0;	/* XXX uarea */
203 		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
204 		kp->ki_args = proc.p_args;
205 		kp->ki_tracep = proc.p_tracevp;
206 		kp->ki_textvp = proc.p_textvp;
207 		kp->ki_fd = proc.p_fd;
208 		kp->ki_vmspace = proc.p_vmspace;
209 		if (proc.p_sigacts != NULL) {
210 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
211 				_kvm_err(kd, kd->program,
212 				    "can't read sigacts at %x", proc.p_sigacts);
213 				return (-1);
214 			}
215 			kp->ki_sigignore = sigacts.ps_sigignore;
216 			kp->ki_sigcatch = sigacts.ps_sigcatch;
217 		}
218 #if 0
219 		if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
220 			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
221 				_kvm_err(kd, kd->program,
222 				    "can't read stats at %x", proc.p_stats);
223 				return (-1);
224 			}
225 			kp->ki_start = pstats.p_start;
226 
227 			/*
228 			 * XXX: The times here are probably zero and need
229 			 * to be calculated from the raw data in p_rux and
230 			 * p_crux.
231 			 */
232 			kp->ki_rusage = pstats.p_ru;
233 			kp->ki_childstime = pstats.p_cru.ru_stime;
234 			kp->ki_childutime = pstats.p_cru.ru_utime;
235 			/* Some callers want child-times in a single value */
236 			timeradd(&kp->ki_childstime, &kp->ki_childutime,
237 			    &kp->ki_childtime);
238 		}
239 #endif
240 		if (proc.p_oppid)
241 			kp->ki_ppid = proc.p_oppid;
242 		else if (proc.p_pptr) {
243 			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
244 				_kvm_err(kd, kd->program,
245 				    "can't read pproc at %x", proc.p_pptr);
246 				return (-1);
247 			}
248 			kp->ki_ppid = pproc.p_pid;
249 		} else
250 			kp->ki_ppid = 0;
251 		if (proc.p_pgrp == NULL)
252 			goto nopgrp;
253 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
254 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
255 				 proc.p_pgrp);
256 			return (-1);
257 		}
258 		kp->ki_pgid = pgrp.pg_id;
259 		kp->ki_jobc = pgrp.pg_jobc;
260 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
261 			_kvm_err(kd, kd->program, "can't read session at %x",
262 				pgrp.pg_session);
263 			return (-1);
264 		}
265 		kp->ki_sid = sess.s_sid;
266 		(void)memcpy(kp->ki_login, sess.s_login,
267 						sizeof(kp->ki_login));
268 		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
269 		if (sess.s_leader == p)
270 			kp->ki_kiflag |= KI_SLEADER;
271 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
272 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
273 				_kvm_err(kd, kd->program,
274 					 "can't read tty at %x", sess.s_ttyp);
275 				return (-1);
276 			}
277 			if (tty.t_dev != NULL) {
278 				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
279 					_kvm_err(kd, kd->program,
280 						 "can't read cdev at %x",
281 						tty.t_dev);
282 					return (-1);
283 				}
284 #if 0
285 				kp->ki_tdev = t_cdev.si_udev;
286 #else
287 				kp->ki_tdev = NODEV;
288 #endif
289 			}
290 			if (tty.t_pgrp != NULL) {
291 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
292 					_kvm_err(kd, kd->program,
293 						 "can't read tpgrp at %x",
294 						tty.t_pgrp);
295 					return (-1);
296 				}
297 				kp->ki_tpgid = pgrp.pg_id;
298 			} else
299 				kp->ki_tpgid = -1;
300 			if (tty.t_session != NULL) {
301 				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
302 					_kvm_err(kd, kd->program,
303 					    "can't read session at %x",
304 					    tty.t_session);
305 					return (-1);
306 				}
307 				kp->ki_tsid = sess.s_sid;
308 			}
309 		} else {
310 nopgrp:
311 			kp->ki_tdev = NODEV;
312 		}
313 		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
314 			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
315 			    kp->ki_wmesg, WMESGLEN);
316 
317 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
318 		    (char *)&vmspace, sizeof(vmspace));
319 		kp->ki_size = vmspace.vm_map.size;
320 		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
321 		kp->ki_swrss = vmspace.vm_swrss;
322 		kp->ki_tsize = vmspace.vm_tsize;
323 		kp->ki_dsize = vmspace.vm_dsize;
324 		kp->ki_ssize = vmspace.vm_ssize;
325 
326 		switch (what & ~KERN_PROC_INC_THREAD) {
327 
328 		case KERN_PROC_PGRP:
329 			if (kp->ki_pgid != (pid_t)arg)
330 				continue;
331 			break;
332 
333 		case KERN_PROC_SESSION:
334 			if (kp->ki_sid != (pid_t)arg)
335 				continue;
336 			break;
337 
338 		case KERN_PROC_TTY:
339 			if ((proc.p_flag & P_CONTROLT) == 0 ||
340 			     kp->ki_tdev != (dev_t)arg)
341 				continue;
342 			break;
343 		}
344 		if (proc.p_comm[0] != 0)
345 			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
346 		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
347 		    sizeof(sysent));
348 		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
349 		    sizeof(svname));
350 		if (svname[0] != 0)
351 			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
352 		if ((proc.p_state != PRS_ZOMBIE) &&
353 		    (mtd.td_blocked != 0)) {
354 			kp->ki_kiflag |= KI_LOCKBLOCK;
355 			if (mtd.td_lockname)
356 				(void)kvm_read(kd,
357 				    (u_long)mtd.td_lockname,
358 				    kp->ki_lockname, LOCKNAMELEN);
359 			kp->ki_lockname[LOCKNAMELEN] = 0;
360 		}
361 		/*
362 		 * XXX: This is plain wrong, rux_runtime has nothing
363 		 * to do with struct bintime, rux_runtime is just a 64-bit
364 		 * integer counter of cputicks.  What we need here is a way
365 		 * to convert cputicks to usecs.  The kernel does it in
366 		 * kern/kern_tc.c, but the function can't be just copied.
367 		 */
368 		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
369 		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
370 		kp->ki_pid = proc.p_pid;
371 		kp->ki_siglist = proc.p_siglist;
372 		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
373 		kp->ki_sigmask = mtd.td_sigmask;
374 		kp->ki_xstat = proc.p_xstat;
375 		kp->ki_acflag = proc.p_acflag;
376 		kp->ki_lock = proc.p_lock;
377 		if (proc.p_state != PRS_ZOMBIE) {
378 			kp->ki_swtime = (ticks - proc.p_swtick) / hz;
379 			kp->ki_flag = proc.p_flag;
380 			kp->ki_sflag = 0;
381 			kp->ki_nice = proc.p_nice;
382 			kp->ki_traceflag = proc.p_traceflag;
383 			if (proc.p_state == PRS_NORMAL) {
384 				if (TD_ON_RUNQ(&mtd) ||
385 				    TD_CAN_RUN(&mtd) ||
386 				    TD_IS_RUNNING(&mtd)) {
387 					kp->ki_stat = SRUN;
388 				} else if (mtd.td_state ==
389 				    TDS_INHIBITED) {
390 					if (P_SHOULDSTOP(&proc)) {
391 						kp->ki_stat = SSTOP;
392 					} else if (
393 					    TD_IS_SLEEPING(&mtd)) {
394 						kp->ki_stat = SSLEEP;
395 					} else if (TD_ON_LOCK(&mtd)) {
396 						kp->ki_stat = SLOCK;
397 					} else {
398 						kp->ki_stat = SWAIT;
399 					}
400 				}
401 			} else {
402 				kp->ki_stat = SIDL;
403 			}
404 			/* Stuff from the thread */
405 			kp->ki_pri.pri_level = mtd.td_priority;
406 			kp->ki_pri.pri_native = mtd.td_base_pri;
407 			kp->ki_lastcpu = mtd.td_lastcpu;
408 			kp->ki_wchan = mtd.td_wchan;
409 			if (mtd.td_name[0] != 0)
410 				strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN);
411 			kp->ki_oncpu = mtd.td_oncpu;
412 			if (mtd.td_name[0] != '\0')
413 				strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm));
414 			kp->ki_pctcpu = 0;
415 			kp->ki_rqindex = 0;
416 		} else {
417 			kp->ki_stat = SZOMB;
418 		}
419 		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
420 		++bp;
421 		++cnt;
422 	}
423 	return (cnt);
424 }
425 
426 /*
427  * Build proc info array by reading in proc list from a crash dump.
428  * Return number of procs read.  maxcnt is the max we will read.
429  */
430 static int
431 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
432 	kvm_t *kd;
433 	int what, arg;
434 	u_long a_allproc;
435 	u_long a_zombproc;
436 	int maxcnt;
437 {
438 	struct kinfo_proc *bp = kd->procbase;
439 	int acnt, zcnt;
440 	struct proc *p;
441 
442 	if (KREAD(kd, a_allproc, &p)) {
443 		_kvm_err(kd, kd->program, "cannot read allproc");
444 		return (-1);
445 	}
446 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
447 	if (acnt < 0)
448 		return (acnt);
449 
450 	if (KREAD(kd, a_zombproc, &p)) {
451 		_kvm_err(kd, kd->program, "cannot read zombproc");
452 		return (-1);
453 	}
454 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
455 	if (zcnt < 0)
456 		zcnt = 0;
457 
458 	return (acnt + zcnt);
459 }
460 
461 struct kinfo_proc *
462 kvm_getprocs(kd, op, arg, cnt)
463 	kvm_t *kd;
464 	int op, arg;
465 	int *cnt;
466 {
467 	int mib[4], st, nprocs;
468 	size_t size;
469 	int temp_op;
470 
471 	if (kd->procbase != 0) {
472 		free((void *)kd->procbase);
473 		/*
474 		 * Clear this pointer in case this call fails.  Otherwise,
475 		 * kvm_close() will free it again.
476 		 */
477 		kd->procbase = 0;
478 	}
479 	if (ISALIVE(kd)) {
480 		size = 0;
481 		mib[0] = CTL_KERN;
482 		mib[1] = KERN_PROC;
483 		mib[2] = op;
484 		mib[3] = arg;
485 		temp_op = op & ~KERN_PROC_INC_THREAD;
486 		st = sysctl(mib,
487 		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
488 		    3 : 4, NULL, &size, NULL, 0);
489 		if (st == -1) {
490 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
491 			return (0);
492 		}
493 		/*
494 		 * We can't continue with a size of 0 because we pass
495 		 * it to realloc() (via _kvm_realloc()), and passing 0
496 		 * to realloc() results in undefined behavior.
497 		 */
498 		if (size == 0) {
499 			/*
500 			 * XXX: We should probably return an invalid,
501 			 * but non-NULL, pointer here so any client
502 			 * program trying to dereference it will
503 			 * crash.  However, _kvm_freeprocs() calls
504 			 * free() on kd->procbase if it isn't NULL,
505 			 * and free()'ing a junk pointer isn't good.
506 			 * Then again, _kvm_freeprocs() isn't used
507 			 * anywhere . . .
508 			 */
509 			kd->procbase = _kvm_malloc(kd, 1);
510 			goto liveout;
511 		}
512 		do {
513 			size += size / 10;
514 			kd->procbase = (struct kinfo_proc *)
515 			    _kvm_realloc(kd, kd->procbase, size);
516 			if (kd->procbase == 0)
517 				return (0);
518 			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
519 			    temp_op == KERN_PROC_PROC ? 3 : 4,
520 			    kd->procbase, &size, NULL, 0);
521 		} while (st == -1 && errno == ENOMEM);
522 		if (st == -1) {
523 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
524 			return (0);
525 		}
526 		/*
527 		 * We have to check the size again because sysctl()
528 		 * may "round up" oldlenp if oldp is NULL; hence it
529 		 * might've told us that there was data to get when
530 		 * there really isn't any.
531 		 */
532 		if (size > 0 &&
533 		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
534 			_kvm_err(kd, kd->program,
535 			    "kinfo_proc size mismatch (expected %d, got %d)",
536 			    sizeof(struct kinfo_proc),
537 			    kd->procbase->ki_structsize);
538 			return (0);
539 		}
540 liveout:
541 		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
542 	} else {
543 		struct nlist nl[6], *p;
544 
545 		nl[0].n_name = "_nprocs";
546 		nl[1].n_name = "_allproc";
547 		nl[2].n_name = "_zombproc";
548 		nl[3].n_name = "_ticks";
549 		nl[4].n_name = "_hz";
550 		nl[5].n_name = 0;
551 
552 		if (kvm_nlist(kd, nl) != 0) {
553 			for (p = nl; p->n_type != 0; ++p)
554 				;
555 			_kvm_err(kd, kd->program,
556 				 "%s: no such symbol", p->n_name);
557 			return (0);
558 		}
559 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
560 			_kvm_err(kd, kd->program, "can't read nprocs");
561 			return (0);
562 		}
563 		if (KREAD(kd, nl[3].n_value, &ticks)) {
564 			_kvm_err(kd, kd->program, "can't read ticks");
565 			return (0);
566 		}
567 		if (KREAD(kd, nl[4].n_value, &hz)) {
568 			_kvm_err(kd, kd->program, "can't read hz");
569 			return (0);
570 		}
571 		size = nprocs * sizeof(struct kinfo_proc);
572 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
573 		if (kd->procbase == 0)
574 			return (0);
575 
576 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
577 				      nl[2].n_value, nprocs);
578 #ifdef notdef
579 		size = nprocs * sizeof(struct kinfo_proc);
580 		(void)realloc(kd->procbase, size);
581 #endif
582 	}
583 	*cnt = nprocs;
584 	return (kd->procbase);
585 }
586 
587 void
588 _kvm_freeprocs(kd)
589 	kvm_t *kd;
590 {
591 	if (kd->procbase) {
592 		free(kd->procbase);
593 		kd->procbase = 0;
594 	}
595 }
596 
597 void *
598 _kvm_realloc(kd, p, n)
599 	kvm_t *kd;
600 	void *p;
601 	size_t n;
602 {
603 	void *np = (void *)realloc(p, n);
604 
605 	if (np == 0) {
606 		free(p);
607 		_kvm_err(kd, kd->program, "out of memory");
608 	}
609 	return (np);
610 }
611 
612 #ifndef MAX
613 #define MAX(a, b) ((a) > (b) ? (a) : (b))
614 #endif
615 
616 /*
617  * Read in an argument vector from the user address space of process kp.
618  * addr if the user-space base address of narg null-terminated contiguous
619  * strings.  This is used to read in both the command arguments and
620  * environment strings.  Read at most maxcnt characters of strings.
621  */
622 static char **
623 kvm_argv(kd, kp, addr, narg, maxcnt)
624 	kvm_t *kd;
625 	struct kinfo_proc *kp;
626 	u_long addr;
627 	int narg;
628 	int maxcnt;
629 {
630 	char *np, *cp, *ep, *ap;
631 	u_long oaddr = -1;
632 	int len, cc;
633 	char **argv;
634 
635 	/*
636 	 * Check that there aren't an unreasonable number of agruments,
637 	 * and that the address is in user space.
638 	 */
639 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
640 		return (0);
641 
642 	/*
643 	 * kd->argv : work space for fetching the strings from the target
644 	 *            process's space, and is converted for returning to caller
645 	 */
646 	if (kd->argv == 0) {
647 		/*
648 		 * Try to avoid reallocs.
649 		 */
650 		kd->argc = MAX(narg + 1, 32);
651 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
652 						sizeof(*kd->argv));
653 		if (kd->argv == 0)
654 			return (0);
655 	} else if (narg + 1 > kd->argc) {
656 		kd->argc = MAX(2 * kd->argc, narg + 1);
657 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
658 						sizeof(*kd->argv));
659 		if (kd->argv == 0)
660 			return (0);
661 	}
662 	/*
663 	 * kd->argspc : returned to user, this is where the kd->argv
664 	 *              arrays are left pointing to the collected strings.
665 	 */
666 	if (kd->argspc == 0) {
667 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
668 		if (kd->argspc == 0)
669 			return (0);
670 		kd->arglen = PAGE_SIZE;
671 	}
672 	/*
673 	 * kd->argbuf : used to pull in pages from the target process.
674 	 *              the strings are copied out of here.
675 	 */
676 	if (kd->argbuf == 0) {
677 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
678 		if (kd->argbuf == 0)
679 			return (0);
680 	}
681 
682 	/* Pull in the target process'es argv vector */
683 	cc = sizeof(char *) * narg;
684 	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
685 		return (0);
686 	/*
687 	 * ap : saved start address of string we're working on in kd->argspc
688 	 * np : pointer to next place to write in kd->argspc
689 	 * len: length of data in kd->argspc
690 	 * argv: pointer to the argv vector that we are hunting around the
691 	 *       target process space for, and converting to addresses in
692 	 *       our address space (kd->argspc).
693 	 */
694 	ap = np = kd->argspc;
695 	argv = kd->argv;
696 	len = 0;
697 	/*
698 	 * Loop over pages, filling in the argument vector.
699 	 * Note that the argv strings could be pointing *anywhere* in
700 	 * the user address space and are no longer contiguous.
701 	 * Note that *argv is modified when we are going to fetch a string
702 	 * that crosses a page boundary.  We copy the next part of the string
703 	 * into to "np" and eventually convert the pointer.
704 	 */
705 	while (argv < kd->argv + narg && *argv != 0) {
706 
707 		/* get the address that the current argv string is on */
708 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
709 
710 		/* is it the same page as the last one? */
711 		if (addr != oaddr) {
712 			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
713 			    PAGE_SIZE)
714 				return (0);
715 			oaddr = addr;
716 		}
717 
718 		/* offset within the page... kd->argbuf */
719 		addr = (u_long)*argv & (PAGE_SIZE - 1);
720 
721 		/* cp = start of string, cc = count of chars in this chunk */
722 		cp = kd->argbuf + addr;
723 		cc = PAGE_SIZE - addr;
724 
725 		/* dont get more than asked for by user process */
726 		if (maxcnt > 0 && cc > maxcnt - len)
727 			cc = maxcnt - len;
728 
729 		/* pointer to end of string if we found it in this page */
730 		ep = memchr(cp, '\0', cc);
731 		if (ep != 0)
732 			cc = ep - cp + 1;
733 		/*
734 		 * at this point, cc is the count of the chars that we are
735 		 * going to retrieve this time. we may or may not have found
736 		 * the end of it.  (ep points to the null if the end is known)
737 		 */
738 
739 		/* will we exceed the malloc/realloced buffer? */
740 		if (len + cc > kd->arglen) {
741 			int off;
742 			char **pp;
743 			char *op = kd->argspc;
744 
745 			kd->arglen *= 2;
746 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
747 							  kd->arglen);
748 			if (kd->argspc == 0)
749 				return (0);
750 			/*
751 			 * Adjust argv pointers in case realloc moved
752 			 * the string space.
753 			 */
754 			off = kd->argspc - op;
755 			for (pp = kd->argv; pp < argv; pp++)
756 				*pp += off;
757 			ap += off;
758 			np += off;
759 		}
760 		/* np = where to put the next part of the string in kd->argspc*/
761 		/* np is kinda redundant.. could use "kd->argspc + len" */
762 		memcpy(np, cp, cc);
763 		np += cc;	/* inc counters */
764 		len += cc;
765 
766 		/*
767 		 * if end of string found, set the *argv pointer to the
768 		 * saved beginning of string, and advance. argv points to
769 		 * somewhere in kd->argv..  This is initially relative
770 		 * to the target process, but when we close it off, we set
771 		 * it to point in our address space.
772 		 */
773 		if (ep != 0) {
774 			*argv++ = ap;
775 			ap = np;
776 		} else {
777 			/* update the address relative to the target process */
778 			*argv += cc;
779 		}
780 
781 		if (maxcnt > 0 && len >= maxcnt) {
782 			/*
783 			 * We're stopping prematurely.  Terminate the
784 			 * current string.
785 			 */
786 			if (ep == 0) {
787 				*np = '\0';
788 				*argv++ = ap;
789 			}
790 			break;
791 		}
792 	}
793 	/* Make sure argv is terminated. */
794 	*argv = 0;
795 	return (kd->argv);
796 }
797 
798 static void
799 ps_str_a(p, addr, n)
800 	struct ps_strings *p;
801 	u_long *addr;
802 	int *n;
803 {
804 	*addr = (u_long)p->ps_argvstr;
805 	*n = p->ps_nargvstr;
806 }
807 
808 static void
809 ps_str_e(p, addr, n)
810 	struct ps_strings *p;
811 	u_long *addr;
812 	int *n;
813 {
814 	*addr = (u_long)p->ps_envstr;
815 	*n = p->ps_nenvstr;
816 }
817 
818 /*
819  * Determine if the proc indicated by p is still active.
820  * This test is not 100% foolproof in theory, but chances of
821  * being wrong are very low.
822  */
823 static int
824 proc_verify(curkp)
825 	struct kinfo_proc *curkp;
826 {
827 	struct kinfo_proc newkp;
828 	int mib[4];
829 	size_t len;
830 
831 	mib[0] = CTL_KERN;
832 	mib[1] = KERN_PROC;
833 	mib[2] = KERN_PROC_PID;
834 	mib[3] = curkp->ki_pid;
835 	len = sizeof(newkp);
836 	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
837 		return (0);
838 	return (curkp->ki_pid == newkp.ki_pid &&
839 	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
840 }
841 
842 static char **
843 kvm_doargv(kd, kp, nchr, info)
844 	kvm_t *kd;
845 	struct kinfo_proc *kp;
846 	int nchr;
847 	void (*info)(struct ps_strings *, u_long *, int *);
848 {
849 	char **ap;
850 	u_long addr;
851 	int cnt;
852 	static struct ps_strings arginfo;
853 	static u_long ps_strings;
854 	size_t len;
855 
856 	if (ps_strings == 0) {
857 		len = sizeof(ps_strings);
858 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
859 		    0) == -1)
860 			ps_strings = PS_STRINGS;
861 	}
862 
863 	/*
864 	 * Pointers are stored at the top of the user stack.
865 	 */
866 	if (kp->ki_stat == SZOMB ||
867 	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
868 		      sizeof(arginfo)) != sizeof(arginfo))
869 		return (0);
870 
871 	(*info)(&arginfo, &addr, &cnt);
872 	if (cnt == 0)
873 		return (0);
874 	ap = kvm_argv(kd, kp, addr, cnt, nchr);
875 	/*
876 	 * For live kernels, make sure this process didn't go away.
877 	 */
878 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
879 		ap = 0;
880 	return (ap);
881 }
882 
883 /*
884  * Get the command args.  This code is now machine independent.
885  */
886 char **
887 kvm_getargv(kd, kp, nchr)
888 	kvm_t *kd;
889 	const struct kinfo_proc *kp;
890 	int nchr;
891 {
892 	int oid[4];
893 	int i;
894 	size_t bufsz;
895 	static unsigned long buflen;
896 	static char *buf, *p;
897 	static char **bufp;
898 	static int argc;
899 
900 	if (!ISALIVE(kd)) {
901 		_kvm_err(kd, kd->program,
902 		    "cannot read user space from dead kernel");
903 		return (0);
904 	}
905 
906 	if (!buflen) {
907 		bufsz = sizeof(buflen);
908 		i = sysctlbyname("kern.ps_arg_cache_limit",
909 		    &buflen, &bufsz, NULL, 0);
910 		if (i == -1) {
911 			buflen = 0;
912 		} else {
913 			buf = malloc(buflen);
914 			if (buf == NULL)
915 				buflen = 0;
916 			argc = 32;
917 			bufp = malloc(sizeof(char *) * argc);
918 		}
919 	}
920 	if (buf != NULL) {
921 		oid[0] = CTL_KERN;
922 		oid[1] = KERN_PROC;
923 		oid[2] = KERN_PROC_ARGS;
924 		oid[3] = kp->ki_pid;
925 		bufsz = buflen;
926 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
927 		if (i == 0 && bufsz > 0) {
928 			i = 0;
929 			p = buf;
930 			do {
931 				bufp[i++] = p;
932 				p += strlen(p) + 1;
933 				if (i >= argc) {
934 					argc += argc;
935 					bufp = realloc(bufp,
936 					    sizeof(char *) * argc);
937 				}
938 			} while (p < buf + bufsz);
939 			bufp[i++] = 0;
940 			return (bufp);
941 		}
942 	}
943 	if (kp->ki_flag & P_SYSTEM)
944 		return (NULL);
945 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
946 }
947 
948 char **
949 kvm_getenvv(kd, kp, nchr)
950 	kvm_t *kd;
951 	const struct kinfo_proc *kp;
952 	int nchr;
953 {
954 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
955 }
956 
957 /*
958  * Read from user space.  The user context is given by p.
959  */
960 ssize_t
961 kvm_uread(kd, kp, uva, buf, len)
962 	kvm_t *kd;
963 	struct kinfo_proc *kp;
964 	u_long uva;
965 	char *buf;
966 	size_t len;
967 {
968 	char *cp;
969 	char procfile[MAXPATHLEN];
970 	ssize_t amount;
971 	int fd;
972 
973 	if (!ISALIVE(kd)) {
974 		_kvm_err(kd, kd->program,
975 		    "cannot read user space from dead kernel");
976 		return (0);
977 	}
978 
979 	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
980 	fd = open(procfile, O_RDONLY, 0);
981 	if (fd < 0) {
982 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
983 		return (0);
984 	}
985 
986 	cp = buf;
987 	while (len > 0) {
988 		errno = 0;
989 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
990 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
991 			    uva, procfile);
992 			break;
993 		}
994 		amount = read(fd, cp, len);
995 		if (amount < 0) {
996 			_kvm_syserr(kd, kd->program, "error reading %s",
997 			    procfile);
998 			break;
999 		}
1000 		if (amount == 0) {
1001 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
1002 			break;
1003 		}
1004 		cp += amount;
1005 		uva += amount;
1006 		len -= amount;
1007 	}
1008 
1009 	close(fd);
1010 	return ((ssize_t)(cp - buf));
1011 }
1012