1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #if 0 35 #if defined(LIBC_SCCS) && !defined(lint) 36 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 37 #endif /* LIBC_SCCS and not lint */ 38 #endif 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 /* 44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 45 * users of this code, so we've factored it out into a separate module. 46 * Thus, we keep this grunge out of the other kvm applications (i.e., 47 * most other applications are interested only in open/close/read/nlist). 48 */ 49 50 #include <sys/param.h> 51 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 52 #include <sys/ucred.h> 53 #include <sys/queue.h> 54 #include <sys/_lock.h> 55 #include <sys/_mutex.h> 56 #include <sys/_task.h> 57 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 58 #include <sys/jail.h> 59 #include <sys/user.h> 60 #include <sys/proc.h> 61 #include <sys/exec.h> 62 #include <sys/stat.h> 63 #include <sys/sysent.h> 64 #include <sys/ioctl.h> 65 #include <sys/tty.h> 66 #include <sys/file.h> 67 #include <sys/conf.h> 68 #include <stdio.h> 69 #include <stdlib.h> 70 #include <unistd.h> 71 #include <nlist.h> 72 #include <kvm.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_param.h> 76 77 #include <sys/sysctl.h> 78 79 #include <limits.h> 80 #include <memory.h> 81 #include <paths.h> 82 83 #include "kvm_private.h" 84 85 #define KREAD(kd, addr, obj) \ 86 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 87 88 static int ticks; 89 static int hz; 90 91 /* 92 * Read proc's from memory file into buffer bp, which has space to hold 93 * at most maxcnt procs. 94 */ 95 static int 96 kvm_proclist(kd, what, arg, p, bp, maxcnt) 97 kvm_t *kd; 98 int what, arg; 99 struct proc *p; 100 struct kinfo_proc *bp; 101 int maxcnt; 102 { 103 int cnt = 0; 104 struct kinfo_proc kinfo_proc, *kp; 105 struct pgrp pgrp; 106 struct session sess; 107 struct cdev t_cdev; 108 struct tty tty; 109 struct vmspace vmspace; 110 struct sigacts sigacts; 111 struct pstats pstats; 112 struct ucred ucred; 113 struct prison pr; 114 struct thread mtd; 115 struct proc proc; 116 struct proc pproc; 117 struct timeval tv; 118 struct sysentvec sysent; 119 char svname[KI_EMULNAMELEN]; 120 121 kp = &kinfo_proc; 122 kp->ki_structsize = sizeof(kinfo_proc); 123 /* 124 * Loop on the processes. this is completely broken because we need to be 125 * able to loop on the threads and merge the ones that are the same process some how. 126 */ 127 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 128 memset(kp, 0, sizeof *kp); 129 if (KREAD(kd, (u_long)p, &proc)) { 130 _kvm_err(kd, kd->program, "can't read proc at %x", p); 131 return (-1); 132 } 133 if (proc.p_state != PRS_ZOMBIE) { 134 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 135 &mtd)) { 136 _kvm_err(kd, kd->program, 137 "can't read thread at %x", 138 TAILQ_FIRST(&proc.p_threads)); 139 return (-1); 140 } 141 } 142 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 143 kp->ki_ruid = ucred.cr_ruid; 144 kp->ki_svuid = ucred.cr_svuid; 145 kp->ki_rgid = ucred.cr_rgid; 146 kp->ki_svgid = ucred.cr_svgid; 147 kp->ki_ngroups = ucred.cr_ngroups; 148 bcopy(ucred.cr_groups, kp->ki_groups, 149 NGROUPS * sizeof(gid_t)); 150 kp->ki_uid = ucred.cr_uid; 151 if (ucred.cr_prison != NULL) { 152 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 153 _kvm_err(kd, kd->program, 154 "can't read prison at %x", 155 ucred.cr_prison); 156 return (-1); 157 } 158 kp->ki_jid = pr.pr_id; 159 } 160 } 161 162 switch(what & ~KERN_PROC_INC_THREAD) { 163 164 case KERN_PROC_GID: 165 if (kp->ki_groups[0] != (gid_t)arg) 166 continue; 167 break; 168 169 case KERN_PROC_PID: 170 if (proc.p_pid != (pid_t)arg) 171 continue; 172 break; 173 174 case KERN_PROC_RGID: 175 if (kp->ki_rgid != (gid_t)arg) 176 continue; 177 break; 178 179 case KERN_PROC_UID: 180 if (kp->ki_uid != (uid_t)arg) 181 continue; 182 break; 183 184 case KERN_PROC_RUID: 185 if (kp->ki_ruid != (uid_t)arg) 186 continue; 187 break; 188 } 189 /* 190 * We're going to add another proc to the set. If this 191 * will overflow the buffer, assume the reason is because 192 * nprocs (or the proc list) is corrupt and declare an error. 193 */ 194 if (cnt >= maxcnt) { 195 _kvm_err(kd, kd->program, "nprocs corrupt"); 196 return (-1); 197 } 198 /* 199 * gather kinfo_proc 200 */ 201 kp->ki_paddr = p; 202 kp->ki_addr = 0; /* XXX uarea */ 203 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 204 kp->ki_args = proc.p_args; 205 kp->ki_tracep = proc.p_tracevp; 206 kp->ki_textvp = proc.p_textvp; 207 kp->ki_fd = proc.p_fd; 208 kp->ki_vmspace = proc.p_vmspace; 209 if (proc.p_sigacts != NULL) { 210 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 211 _kvm_err(kd, kd->program, 212 "can't read sigacts at %x", proc.p_sigacts); 213 return (-1); 214 } 215 kp->ki_sigignore = sigacts.ps_sigignore; 216 kp->ki_sigcatch = sigacts.ps_sigcatch; 217 } 218 #if 0 219 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 220 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 221 _kvm_err(kd, kd->program, 222 "can't read stats at %x", proc.p_stats); 223 return (-1); 224 } 225 kp->ki_start = pstats.p_start; 226 227 /* 228 * XXX: The times here are probably zero and need 229 * to be calculated from the raw data in p_rux and 230 * p_crux. 231 */ 232 kp->ki_rusage = pstats.p_ru; 233 kp->ki_childstime = pstats.p_cru.ru_stime; 234 kp->ki_childutime = pstats.p_cru.ru_utime; 235 /* Some callers want child-times in a single value */ 236 timeradd(&kp->ki_childstime, &kp->ki_childutime, 237 &kp->ki_childtime); 238 } 239 #endif 240 if (proc.p_oppid) 241 kp->ki_ppid = proc.p_oppid; 242 else if (proc.p_pptr) { 243 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 244 _kvm_err(kd, kd->program, 245 "can't read pproc at %x", proc.p_pptr); 246 return (-1); 247 } 248 kp->ki_ppid = pproc.p_pid; 249 } else 250 kp->ki_ppid = 0; 251 if (proc.p_pgrp == NULL) 252 goto nopgrp; 253 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 254 _kvm_err(kd, kd->program, "can't read pgrp at %x", 255 proc.p_pgrp); 256 return (-1); 257 } 258 kp->ki_pgid = pgrp.pg_id; 259 kp->ki_jobc = pgrp.pg_jobc; 260 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 261 _kvm_err(kd, kd->program, "can't read session at %x", 262 pgrp.pg_session); 263 return (-1); 264 } 265 kp->ki_sid = sess.s_sid; 266 (void)memcpy(kp->ki_login, sess.s_login, 267 sizeof(kp->ki_login)); 268 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 269 if (sess.s_leader == p) 270 kp->ki_kiflag |= KI_SLEADER; 271 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 272 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 273 _kvm_err(kd, kd->program, 274 "can't read tty at %x", sess.s_ttyp); 275 return (-1); 276 } 277 if (tty.t_dev != NULL) { 278 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 279 _kvm_err(kd, kd->program, 280 "can't read cdev at %x", 281 tty.t_dev); 282 return (-1); 283 } 284 #if 0 285 kp->ki_tdev = t_cdev.si_udev; 286 #else 287 kp->ki_tdev = NODEV; 288 #endif 289 } 290 if (tty.t_pgrp != NULL) { 291 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 292 _kvm_err(kd, kd->program, 293 "can't read tpgrp at %x", 294 tty.t_pgrp); 295 return (-1); 296 } 297 kp->ki_tpgid = pgrp.pg_id; 298 } else 299 kp->ki_tpgid = -1; 300 if (tty.t_session != NULL) { 301 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 302 _kvm_err(kd, kd->program, 303 "can't read session at %x", 304 tty.t_session); 305 return (-1); 306 } 307 kp->ki_tsid = sess.s_sid; 308 } 309 } else { 310 nopgrp: 311 kp->ki_tdev = NODEV; 312 } 313 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 314 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 315 kp->ki_wmesg, WMESGLEN); 316 317 (void)kvm_read(kd, (u_long)proc.p_vmspace, 318 (char *)&vmspace, sizeof(vmspace)); 319 kp->ki_size = vmspace.vm_map.size; 320 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 321 kp->ki_swrss = vmspace.vm_swrss; 322 kp->ki_tsize = vmspace.vm_tsize; 323 kp->ki_dsize = vmspace.vm_dsize; 324 kp->ki_ssize = vmspace.vm_ssize; 325 326 switch (what & ~KERN_PROC_INC_THREAD) { 327 328 case KERN_PROC_PGRP: 329 if (kp->ki_pgid != (pid_t)arg) 330 continue; 331 break; 332 333 case KERN_PROC_SESSION: 334 if (kp->ki_sid != (pid_t)arg) 335 continue; 336 break; 337 338 case KERN_PROC_TTY: 339 if ((proc.p_flag & P_CONTROLT) == 0 || 340 kp->ki_tdev != (dev_t)arg) 341 continue; 342 break; 343 } 344 if (proc.p_comm[0] != 0) 345 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 346 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 347 sizeof(sysent)); 348 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 349 sizeof(svname)); 350 if (svname[0] != 0) 351 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 352 if ((proc.p_state != PRS_ZOMBIE) && 353 (mtd.td_blocked != 0)) { 354 kp->ki_kiflag |= KI_LOCKBLOCK; 355 if (mtd.td_lockname) 356 (void)kvm_read(kd, 357 (u_long)mtd.td_lockname, 358 kp->ki_lockname, LOCKNAMELEN); 359 kp->ki_lockname[LOCKNAMELEN] = 0; 360 } 361 /* 362 * XXX: This is plain wrong, rux_runtime has nothing 363 * to do with struct bintime, rux_runtime is just a 64-bit 364 * integer counter of cputicks. What we need here is a way 365 * to convert cputicks to usecs. The kernel does it in 366 * kern/kern_tc.c, but the function can't be just copied. 367 */ 368 bintime2timeval(&proc.p_rux.rux_runtime, &tv); 369 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 370 kp->ki_pid = proc.p_pid; 371 kp->ki_siglist = proc.p_siglist; 372 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 373 kp->ki_sigmask = mtd.td_sigmask; 374 kp->ki_xstat = proc.p_xstat; 375 kp->ki_acflag = proc.p_acflag; 376 kp->ki_lock = proc.p_lock; 377 if (proc.p_state != PRS_ZOMBIE) { 378 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 379 kp->ki_flag = proc.p_flag; 380 kp->ki_sflag = 0; 381 kp->ki_nice = proc.p_nice; 382 kp->ki_traceflag = proc.p_traceflag; 383 if (proc.p_state == PRS_NORMAL) { 384 if (TD_ON_RUNQ(&mtd) || 385 TD_CAN_RUN(&mtd) || 386 TD_IS_RUNNING(&mtd)) { 387 kp->ki_stat = SRUN; 388 } else if (mtd.td_state == 389 TDS_INHIBITED) { 390 if (P_SHOULDSTOP(&proc)) { 391 kp->ki_stat = SSTOP; 392 } else if ( 393 TD_IS_SLEEPING(&mtd)) { 394 kp->ki_stat = SSLEEP; 395 } else if (TD_ON_LOCK(&mtd)) { 396 kp->ki_stat = SLOCK; 397 } else { 398 kp->ki_stat = SWAIT; 399 } 400 } 401 } else { 402 kp->ki_stat = SIDL; 403 } 404 /* Stuff from the thread */ 405 kp->ki_pri.pri_level = mtd.td_priority; 406 kp->ki_pri.pri_native = mtd.td_base_pri; 407 kp->ki_lastcpu = mtd.td_lastcpu; 408 kp->ki_wchan = mtd.td_wchan; 409 if (mtd.td_name[0] != 0) 410 strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN); 411 kp->ki_oncpu = mtd.td_oncpu; 412 if (mtd.td_name[0] != '\0') 413 strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm)); 414 kp->ki_pctcpu = 0; 415 kp->ki_rqindex = 0; 416 } else { 417 kp->ki_stat = SZOMB; 418 } 419 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 420 ++bp; 421 ++cnt; 422 } 423 return (cnt); 424 } 425 426 /* 427 * Build proc info array by reading in proc list from a crash dump. 428 * Return number of procs read. maxcnt is the max we will read. 429 */ 430 static int 431 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 432 kvm_t *kd; 433 int what, arg; 434 u_long a_allproc; 435 u_long a_zombproc; 436 int maxcnt; 437 { 438 struct kinfo_proc *bp = kd->procbase; 439 int acnt, zcnt; 440 struct proc *p; 441 442 if (KREAD(kd, a_allproc, &p)) { 443 _kvm_err(kd, kd->program, "cannot read allproc"); 444 return (-1); 445 } 446 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 447 if (acnt < 0) 448 return (acnt); 449 450 if (KREAD(kd, a_zombproc, &p)) { 451 _kvm_err(kd, kd->program, "cannot read zombproc"); 452 return (-1); 453 } 454 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 455 if (zcnt < 0) 456 zcnt = 0; 457 458 return (acnt + zcnt); 459 } 460 461 struct kinfo_proc * 462 kvm_getprocs(kd, op, arg, cnt) 463 kvm_t *kd; 464 int op, arg; 465 int *cnt; 466 { 467 int mib[4], st, nprocs; 468 size_t size; 469 int temp_op; 470 471 if (kd->procbase != 0) { 472 free((void *)kd->procbase); 473 /* 474 * Clear this pointer in case this call fails. Otherwise, 475 * kvm_close() will free it again. 476 */ 477 kd->procbase = 0; 478 } 479 if (ISALIVE(kd)) { 480 size = 0; 481 mib[0] = CTL_KERN; 482 mib[1] = KERN_PROC; 483 mib[2] = op; 484 mib[3] = arg; 485 temp_op = op & ~KERN_PROC_INC_THREAD; 486 st = sysctl(mib, 487 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 488 3 : 4, NULL, &size, NULL, 0); 489 if (st == -1) { 490 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 491 return (0); 492 } 493 /* 494 * We can't continue with a size of 0 because we pass 495 * it to realloc() (via _kvm_realloc()), and passing 0 496 * to realloc() results in undefined behavior. 497 */ 498 if (size == 0) { 499 /* 500 * XXX: We should probably return an invalid, 501 * but non-NULL, pointer here so any client 502 * program trying to dereference it will 503 * crash. However, _kvm_freeprocs() calls 504 * free() on kd->procbase if it isn't NULL, 505 * and free()'ing a junk pointer isn't good. 506 * Then again, _kvm_freeprocs() isn't used 507 * anywhere . . . 508 */ 509 kd->procbase = _kvm_malloc(kd, 1); 510 goto liveout; 511 } 512 do { 513 size += size / 10; 514 kd->procbase = (struct kinfo_proc *) 515 _kvm_realloc(kd, kd->procbase, size); 516 if (kd->procbase == 0) 517 return (0); 518 st = sysctl(mib, temp_op == KERN_PROC_ALL || 519 temp_op == KERN_PROC_PROC ? 3 : 4, 520 kd->procbase, &size, NULL, 0); 521 } while (st == -1 && errno == ENOMEM); 522 if (st == -1) { 523 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 524 return (0); 525 } 526 /* 527 * We have to check the size again because sysctl() 528 * may "round up" oldlenp if oldp is NULL; hence it 529 * might've told us that there was data to get when 530 * there really isn't any. 531 */ 532 if (size > 0 && 533 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 534 _kvm_err(kd, kd->program, 535 "kinfo_proc size mismatch (expected %d, got %d)", 536 sizeof(struct kinfo_proc), 537 kd->procbase->ki_structsize); 538 return (0); 539 } 540 liveout: 541 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 542 } else { 543 struct nlist nl[6], *p; 544 545 nl[0].n_name = "_nprocs"; 546 nl[1].n_name = "_allproc"; 547 nl[2].n_name = "_zombproc"; 548 nl[3].n_name = "_ticks"; 549 nl[4].n_name = "_hz"; 550 nl[5].n_name = 0; 551 552 if (kvm_nlist(kd, nl) != 0) { 553 for (p = nl; p->n_type != 0; ++p) 554 ; 555 _kvm_err(kd, kd->program, 556 "%s: no such symbol", p->n_name); 557 return (0); 558 } 559 if (KREAD(kd, nl[0].n_value, &nprocs)) { 560 _kvm_err(kd, kd->program, "can't read nprocs"); 561 return (0); 562 } 563 if (KREAD(kd, nl[3].n_value, &ticks)) { 564 _kvm_err(kd, kd->program, "can't read ticks"); 565 return (0); 566 } 567 if (KREAD(kd, nl[4].n_value, &hz)) { 568 _kvm_err(kd, kd->program, "can't read hz"); 569 return (0); 570 } 571 size = nprocs * sizeof(struct kinfo_proc); 572 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 573 if (kd->procbase == 0) 574 return (0); 575 576 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 577 nl[2].n_value, nprocs); 578 #ifdef notdef 579 size = nprocs * sizeof(struct kinfo_proc); 580 (void)realloc(kd->procbase, size); 581 #endif 582 } 583 *cnt = nprocs; 584 return (kd->procbase); 585 } 586 587 void 588 _kvm_freeprocs(kd) 589 kvm_t *kd; 590 { 591 if (kd->procbase) { 592 free(kd->procbase); 593 kd->procbase = 0; 594 } 595 } 596 597 void * 598 _kvm_realloc(kd, p, n) 599 kvm_t *kd; 600 void *p; 601 size_t n; 602 { 603 void *np = (void *)realloc(p, n); 604 605 if (np == 0) { 606 free(p); 607 _kvm_err(kd, kd->program, "out of memory"); 608 } 609 return (np); 610 } 611 612 #ifndef MAX 613 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 614 #endif 615 616 /* 617 * Read in an argument vector from the user address space of process kp. 618 * addr if the user-space base address of narg null-terminated contiguous 619 * strings. This is used to read in both the command arguments and 620 * environment strings. Read at most maxcnt characters of strings. 621 */ 622 static char ** 623 kvm_argv(kd, kp, addr, narg, maxcnt) 624 kvm_t *kd; 625 struct kinfo_proc *kp; 626 u_long addr; 627 int narg; 628 int maxcnt; 629 { 630 char *np, *cp, *ep, *ap; 631 u_long oaddr = -1; 632 int len, cc; 633 char **argv; 634 635 /* 636 * Check that there aren't an unreasonable number of agruments, 637 * and that the address is in user space. 638 */ 639 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 640 return (0); 641 642 /* 643 * kd->argv : work space for fetching the strings from the target 644 * process's space, and is converted for returning to caller 645 */ 646 if (kd->argv == 0) { 647 /* 648 * Try to avoid reallocs. 649 */ 650 kd->argc = MAX(narg + 1, 32); 651 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 652 sizeof(*kd->argv)); 653 if (kd->argv == 0) 654 return (0); 655 } else if (narg + 1 > kd->argc) { 656 kd->argc = MAX(2 * kd->argc, narg + 1); 657 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 658 sizeof(*kd->argv)); 659 if (kd->argv == 0) 660 return (0); 661 } 662 /* 663 * kd->argspc : returned to user, this is where the kd->argv 664 * arrays are left pointing to the collected strings. 665 */ 666 if (kd->argspc == 0) { 667 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 668 if (kd->argspc == 0) 669 return (0); 670 kd->arglen = PAGE_SIZE; 671 } 672 /* 673 * kd->argbuf : used to pull in pages from the target process. 674 * the strings are copied out of here. 675 */ 676 if (kd->argbuf == 0) { 677 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 678 if (kd->argbuf == 0) 679 return (0); 680 } 681 682 /* Pull in the target process'es argv vector */ 683 cc = sizeof(char *) * narg; 684 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 685 return (0); 686 /* 687 * ap : saved start address of string we're working on in kd->argspc 688 * np : pointer to next place to write in kd->argspc 689 * len: length of data in kd->argspc 690 * argv: pointer to the argv vector that we are hunting around the 691 * target process space for, and converting to addresses in 692 * our address space (kd->argspc). 693 */ 694 ap = np = kd->argspc; 695 argv = kd->argv; 696 len = 0; 697 /* 698 * Loop over pages, filling in the argument vector. 699 * Note that the argv strings could be pointing *anywhere* in 700 * the user address space and are no longer contiguous. 701 * Note that *argv is modified when we are going to fetch a string 702 * that crosses a page boundary. We copy the next part of the string 703 * into to "np" and eventually convert the pointer. 704 */ 705 while (argv < kd->argv + narg && *argv != 0) { 706 707 /* get the address that the current argv string is on */ 708 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 709 710 /* is it the same page as the last one? */ 711 if (addr != oaddr) { 712 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 713 PAGE_SIZE) 714 return (0); 715 oaddr = addr; 716 } 717 718 /* offset within the page... kd->argbuf */ 719 addr = (u_long)*argv & (PAGE_SIZE - 1); 720 721 /* cp = start of string, cc = count of chars in this chunk */ 722 cp = kd->argbuf + addr; 723 cc = PAGE_SIZE - addr; 724 725 /* dont get more than asked for by user process */ 726 if (maxcnt > 0 && cc > maxcnt - len) 727 cc = maxcnt - len; 728 729 /* pointer to end of string if we found it in this page */ 730 ep = memchr(cp, '\0', cc); 731 if (ep != 0) 732 cc = ep - cp + 1; 733 /* 734 * at this point, cc is the count of the chars that we are 735 * going to retrieve this time. we may or may not have found 736 * the end of it. (ep points to the null if the end is known) 737 */ 738 739 /* will we exceed the malloc/realloced buffer? */ 740 if (len + cc > kd->arglen) { 741 int off; 742 char **pp; 743 char *op = kd->argspc; 744 745 kd->arglen *= 2; 746 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 747 kd->arglen); 748 if (kd->argspc == 0) 749 return (0); 750 /* 751 * Adjust argv pointers in case realloc moved 752 * the string space. 753 */ 754 off = kd->argspc - op; 755 for (pp = kd->argv; pp < argv; pp++) 756 *pp += off; 757 ap += off; 758 np += off; 759 } 760 /* np = where to put the next part of the string in kd->argspc*/ 761 /* np is kinda redundant.. could use "kd->argspc + len" */ 762 memcpy(np, cp, cc); 763 np += cc; /* inc counters */ 764 len += cc; 765 766 /* 767 * if end of string found, set the *argv pointer to the 768 * saved beginning of string, and advance. argv points to 769 * somewhere in kd->argv.. This is initially relative 770 * to the target process, but when we close it off, we set 771 * it to point in our address space. 772 */ 773 if (ep != 0) { 774 *argv++ = ap; 775 ap = np; 776 } else { 777 /* update the address relative to the target process */ 778 *argv += cc; 779 } 780 781 if (maxcnt > 0 && len >= maxcnt) { 782 /* 783 * We're stopping prematurely. Terminate the 784 * current string. 785 */ 786 if (ep == 0) { 787 *np = '\0'; 788 *argv++ = ap; 789 } 790 break; 791 } 792 } 793 /* Make sure argv is terminated. */ 794 *argv = 0; 795 return (kd->argv); 796 } 797 798 static void 799 ps_str_a(p, addr, n) 800 struct ps_strings *p; 801 u_long *addr; 802 int *n; 803 { 804 *addr = (u_long)p->ps_argvstr; 805 *n = p->ps_nargvstr; 806 } 807 808 static void 809 ps_str_e(p, addr, n) 810 struct ps_strings *p; 811 u_long *addr; 812 int *n; 813 { 814 *addr = (u_long)p->ps_envstr; 815 *n = p->ps_nenvstr; 816 } 817 818 /* 819 * Determine if the proc indicated by p is still active. 820 * This test is not 100% foolproof in theory, but chances of 821 * being wrong are very low. 822 */ 823 static int 824 proc_verify(curkp) 825 struct kinfo_proc *curkp; 826 { 827 struct kinfo_proc newkp; 828 int mib[4]; 829 size_t len; 830 831 mib[0] = CTL_KERN; 832 mib[1] = KERN_PROC; 833 mib[2] = KERN_PROC_PID; 834 mib[3] = curkp->ki_pid; 835 len = sizeof(newkp); 836 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 837 return (0); 838 return (curkp->ki_pid == newkp.ki_pid && 839 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 840 } 841 842 static char ** 843 kvm_doargv(kd, kp, nchr, info) 844 kvm_t *kd; 845 struct kinfo_proc *kp; 846 int nchr; 847 void (*info)(struct ps_strings *, u_long *, int *); 848 { 849 char **ap; 850 u_long addr; 851 int cnt; 852 static struct ps_strings arginfo; 853 static u_long ps_strings; 854 size_t len; 855 856 if (ps_strings == 0) { 857 len = sizeof(ps_strings); 858 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 859 0) == -1) 860 ps_strings = PS_STRINGS; 861 } 862 863 /* 864 * Pointers are stored at the top of the user stack. 865 */ 866 if (kp->ki_stat == SZOMB || 867 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 868 sizeof(arginfo)) != sizeof(arginfo)) 869 return (0); 870 871 (*info)(&arginfo, &addr, &cnt); 872 if (cnt == 0) 873 return (0); 874 ap = kvm_argv(kd, kp, addr, cnt, nchr); 875 /* 876 * For live kernels, make sure this process didn't go away. 877 */ 878 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 879 ap = 0; 880 return (ap); 881 } 882 883 /* 884 * Get the command args. This code is now machine independent. 885 */ 886 char ** 887 kvm_getargv(kd, kp, nchr) 888 kvm_t *kd; 889 const struct kinfo_proc *kp; 890 int nchr; 891 { 892 int oid[4]; 893 int i; 894 size_t bufsz; 895 static unsigned long buflen; 896 static char *buf, *p; 897 static char **bufp; 898 static int argc; 899 900 if (!ISALIVE(kd)) { 901 _kvm_err(kd, kd->program, 902 "cannot read user space from dead kernel"); 903 return (0); 904 } 905 906 if (!buflen) { 907 bufsz = sizeof(buflen); 908 i = sysctlbyname("kern.ps_arg_cache_limit", 909 &buflen, &bufsz, NULL, 0); 910 if (i == -1) { 911 buflen = 0; 912 } else { 913 buf = malloc(buflen); 914 if (buf == NULL) 915 buflen = 0; 916 argc = 32; 917 bufp = malloc(sizeof(char *) * argc); 918 } 919 } 920 if (buf != NULL) { 921 oid[0] = CTL_KERN; 922 oid[1] = KERN_PROC; 923 oid[2] = KERN_PROC_ARGS; 924 oid[3] = kp->ki_pid; 925 bufsz = buflen; 926 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 927 if (i == 0 && bufsz > 0) { 928 i = 0; 929 p = buf; 930 do { 931 bufp[i++] = p; 932 p += strlen(p) + 1; 933 if (i >= argc) { 934 argc += argc; 935 bufp = realloc(bufp, 936 sizeof(char *) * argc); 937 } 938 } while (p < buf + bufsz); 939 bufp[i++] = 0; 940 return (bufp); 941 } 942 } 943 if (kp->ki_flag & P_SYSTEM) 944 return (NULL); 945 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 946 } 947 948 char ** 949 kvm_getenvv(kd, kp, nchr) 950 kvm_t *kd; 951 const struct kinfo_proc *kp; 952 int nchr; 953 { 954 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 955 } 956 957 /* 958 * Read from user space. The user context is given by p. 959 */ 960 ssize_t 961 kvm_uread(kd, kp, uva, buf, len) 962 kvm_t *kd; 963 struct kinfo_proc *kp; 964 u_long uva; 965 char *buf; 966 size_t len; 967 { 968 char *cp; 969 char procfile[MAXPATHLEN]; 970 ssize_t amount; 971 int fd; 972 973 if (!ISALIVE(kd)) { 974 _kvm_err(kd, kd->program, 975 "cannot read user space from dead kernel"); 976 return (0); 977 } 978 979 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 980 fd = open(procfile, O_RDONLY, 0); 981 if (fd < 0) { 982 _kvm_err(kd, kd->program, "cannot open %s", procfile); 983 return (0); 984 } 985 986 cp = buf; 987 while (len > 0) { 988 errno = 0; 989 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 990 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 991 uva, procfile); 992 break; 993 } 994 amount = read(fd, cp, len); 995 if (amount < 0) { 996 _kvm_syserr(kd, kd->program, "error reading %s", 997 procfile); 998 break; 999 } 1000 if (amount == 0) { 1001 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 1002 break; 1003 } 1004 cp += amount; 1005 uva += amount; 1006 len -= amount; 1007 } 1008 1009 close(fd); 1010 return ((ssize_t)(cp - buf)); 1011 } 1012