xref: /freebsd/lib/libkvm/kvm_proc.c (revision d74e86d9e30043893d6b308468008b65640ddcae)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #if defined(LIBC_SCCS) && !defined(lint)
39 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
40 #endif /* LIBC_SCCS and not lint */
41 
42 /*
43  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
44  * users of this code, so we've factored it out into a separate module.
45  * Thus, we keep this grunge out of the other kvm applications (i.e.,
46  * most other applications are interested only in open/close/read/nlist).
47  */
48 
49 #include <sys/param.h>
50 #include <sys/user.h>
51 #include <sys/proc.h>
52 #include <sys/exec.h>
53 #include <sys/stat.h>
54 #include <sys/ioctl.h>
55 #include <sys/tty.h>
56 #include <sys/file.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <nlist.h>
61 #include <kvm.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/swap_pager.h>
66 
67 #include <sys/sysctl.h>
68 
69 #include <limits.h>
70 #include <memory.h>
71 #include <db.h>
72 #include <paths.h>
73 
74 #include "kvm_private.h"
75 
76 #if used
77 static char *
78 kvm_readswap(kd, p, va, cnt)
79 	kvm_t *kd;
80 	const struct proc *p;
81 	u_long va;
82 	u_long *cnt;
83 {
84 #ifdef __FreeBSD__
85 	/* XXX Stubbed out, our vm system is differnet */
86 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
87 	return(0);
88 #endif	/* __FreeBSD__ */
89 }
90 #endif
91 
92 #define KREAD(kd, addr, obj) \
93 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
94 
95 /*
96  * Read proc's from memory file into buffer bp, which has space to hold
97  * at most maxcnt procs.
98  */
99 static int
100 kvm_proclist(kd, what, arg, p, bp, maxcnt)
101 	kvm_t *kd;
102 	int what, arg;
103 	struct proc *p;
104 	struct kinfo_proc *bp;
105 	int maxcnt;
106 {
107 	register int cnt = 0;
108 	struct eproc eproc;
109 	struct pgrp pgrp;
110 	struct session sess;
111 	struct tty tty;
112 	struct proc proc;
113 	struct proc pproc;
114 
115 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
116 		if (KREAD(kd, (u_long)p, &proc)) {
117 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
118 			return (-1);
119 		}
120 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
121 			(void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
122 			             &eproc.e_ucred));
123 
124 		switch(what) {
125 
126 		case KERN_PROC_PID:
127 			if (proc.p_pid != (pid_t)arg)
128 				continue;
129 			break;
130 
131 		case KERN_PROC_UID:
132 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
133 				continue;
134 			break;
135 
136 		case KERN_PROC_RUID:
137 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
138 				continue;
139 			break;
140 		}
141 		/*
142 		 * We're going to add another proc to the set.  If this
143 		 * will overflow the buffer, assume the reason is because
144 		 * nprocs (or the proc list) is corrupt and declare an error.
145 		 */
146 		if (cnt >= maxcnt) {
147 			_kvm_err(kd, kd->program, "nprocs corrupt");
148 			return (-1);
149 		}
150 		/*
151 		 * gather eproc
152 		 */
153 		eproc.e_paddr = p;
154 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
155 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
156 				 proc.p_pgrp);
157 			return (-1);
158 		}
159 		if (proc.p_oppid)
160 		  eproc.e_ppid = proc.p_oppid;
161 		else if (proc.p_pptr) {
162 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
163 			_kvm_err(kd, kd->program, "can't read pproc at %x",
164 				 proc.p_pptr);
165 			return (-1);
166 		  }
167 		  eproc.e_ppid = pproc.p_pid;
168 		} else
169 		  eproc.e_ppid = 0;
170 		eproc.e_sess = pgrp.pg_session;
171 		eproc.e_pgid = pgrp.pg_id;
172 		eproc.e_jobc = pgrp.pg_jobc;
173 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
174 			_kvm_err(kd, kd->program, "can't read session at %x",
175 				pgrp.pg_session);
176 			return (-1);
177 		}
178 		(void)memcpy(eproc.e_login, sess.s_login,
179 						sizeof(eproc.e_login));
180 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
181 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
182 				_kvm_err(kd, kd->program,
183 					 "can't read tty at %x", sess.s_ttyp);
184 				return (-1);
185 			}
186 			eproc.e_tdev = tty.t_dev;
187 			eproc.e_tsess = tty.t_session;
188 			if (tty.t_pgrp != NULL) {
189 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
190 					_kvm_err(kd, kd->program,
191 						 "can't read tpgrp at &x",
192 						tty.t_pgrp);
193 					return (-1);
194 				}
195 				eproc.e_tpgid = pgrp.pg_id;
196 			} else
197 				eproc.e_tpgid = -1;
198 		} else
199 			eproc.e_tdev = NODEV;
200 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
201 		if (sess.s_leader == p)
202 			eproc.e_flag |= EPROC_SLEADER;
203 		if (proc.p_wmesg)
204 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
205 			    eproc.e_wmesg, WMESGLEN);
206 
207 #ifdef sparc
208 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
209 		    (char *)&eproc.e_vm.vm_rssize,
210 		    sizeof(eproc.e_vm.vm_rssize));
211 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
212 		    (char *)&eproc.e_vm.vm_tsize,
213 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
214 #else
215 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
216 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
217 #endif
218 		eproc.e_xsize = eproc.e_xrssize = 0;
219 		eproc.e_xccount = eproc.e_xswrss = 0;
220 
221 		switch (what) {
222 
223 		case KERN_PROC_PGRP:
224 			if (eproc.e_pgid != (pid_t)arg)
225 				continue;
226 			break;
227 
228 		case KERN_PROC_TTY:
229 			if ((proc.p_flag & P_CONTROLT) == 0 ||
230 			     eproc.e_tdev != (dev_t)arg)
231 				continue;
232 			break;
233 		}
234 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
235 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
236 		++bp;
237 		++cnt;
238 	}
239 	return (cnt);
240 }
241 
242 /*
243  * Build proc info array by reading in proc list from a crash dump.
244  * Return number of procs read.  maxcnt is the max we will read.
245  */
246 static int
247 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
248 	kvm_t *kd;
249 	int what, arg;
250 	u_long a_allproc;
251 	u_long a_zombproc;
252 	int maxcnt;
253 {
254 	register struct kinfo_proc *bp = kd->procbase;
255 	register int acnt, zcnt;
256 	struct proc *p;
257 
258 	if (KREAD(kd, a_allproc, &p)) {
259 		_kvm_err(kd, kd->program, "cannot read allproc");
260 		return (-1);
261 	}
262 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
263 	if (acnt < 0)
264 		return (acnt);
265 
266 	if (KREAD(kd, a_zombproc, &p)) {
267 		_kvm_err(kd, kd->program, "cannot read zombproc");
268 		return (-1);
269 	}
270 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
271 	if (zcnt < 0)
272 		zcnt = 0;
273 
274 	return (acnt + zcnt);
275 }
276 
277 struct kinfo_proc *
278 kvm_getprocs(kd, op, arg, cnt)
279 	kvm_t *kd;
280 	int op, arg;
281 	int *cnt;
282 {
283 	int mib[4], st, nprocs;
284 	size_t size;
285 
286 	if (kd->procbase != 0) {
287 		free((void *)kd->procbase);
288 		/*
289 		 * Clear this pointer in case this call fails.  Otherwise,
290 		 * kvm_close() will free it again.
291 		 */
292 		kd->procbase = 0;
293 	}
294 	if (ISALIVE(kd)) {
295 		size = 0;
296 		mib[0] = CTL_KERN;
297 		mib[1] = KERN_PROC;
298 		mib[2] = op;
299 		mib[3] = arg;
300 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
301 		if (st == -1) {
302 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
303 			return (0);
304 		}
305 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
306 		if (kd->procbase == 0)
307 			return (0);
308 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, kd->procbase, &size, NULL, 0);
309 		if (st == -1) {
310 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
311 			return (0);
312 		}
313 		if (size % sizeof(struct kinfo_proc) != 0) {
314 			_kvm_err(kd, kd->program,
315 				"proc size mismatch (%d total, %d chunks)",
316 				size, sizeof(struct kinfo_proc));
317 			return (0);
318 		}
319 		nprocs = size / sizeof(struct kinfo_proc);
320 	} else {
321 		struct nlist nl[4], *p;
322 
323 		nl[0].n_name = "_nprocs";
324 		nl[1].n_name = "_allproc";
325 		nl[2].n_name = "_zombproc";
326 		nl[3].n_name = 0;
327 
328 		if (kvm_nlist(kd, nl) != 0) {
329 			for (p = nl; p->n_type != 0; ++p)
330 				;
331 			_kvm_err(kd, kd->program,
332 				 "%s: no such symbol", p->n_name);
333 			return (0);
334 		}
335 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
336 			_kvm_err(kd, kd->program, "can't read nprocs");
337 			return (0);
338 		}
339 		size = nprocs * sizeof(struct kinfo_proc);
340 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
341 		if (kd->procbase == 0)
342 			return (0);
343 
344 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
345 				      nl[2].n_value, nprocs);
346 #ifdef notdef
347 		size = nprocs * sizeof(struct kinfo_proc);
348 		(void)realloc(kd->procbase, size);
349 #endif
350 	}
351 	*cnt = nprocs;
352 	return (kd->procbase);
353 }
354 
355 void
356 _kvm_freeprocs(kd)
357 	kvm_t *kd;
358 {
359 	if (kd->procbase) {
360 		free(kd->procbase);
361 		kd->procbase = 0;
362 	}
363 }
364 
365 void *
366 _kvm_realloc(kd, p, n)
367 	kvm_t *kd;
368 	void *p;
369 	size_t n;
370 {
371 	void *np = (void *)realloc(p, n);
372 
373 	if (np == 0) {
374 		free(p);
375 		_kvm_err(kd, kd->program, "out of memory");
376 	}
377 	return (np);
378 }
379 
380 #ifndef MAX
381 #define MAX(a, b) ((a) > (b) ? (a) : (b))
382 #endif
383 
384 /*
385  * Read in an argument vector from the user address space of process p.
386  * addr if the user-space base address of narg null-terminated contiguous
387  * strings.  This is used to read in both the command arguments and
388  * environment strings.  Read at most maxcnt characters of strings.
389  */
390 static char **
391 kvm_argv(kd, p, addr, narg, maxcnt)
392 	kvm_t *kd;
393 	const struct proc *p;
394 	register u_long addr;
395 	register int narg;
396 	register int maxcnt;
397 {
398 	register char *np, *cp, *ep, *ap;
399 	register u_long oaddr = -1;
400 	register int len, cc;
401 	register char **argv;
402 
403 	/*
404 	 * Check that there aren't an unreasonable number of agruments,
405 	 * and that the address is in user space.
406 	 */
407 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
408 		return (0);
409 
410 	/*
411 	 * kd->argv : work space for fetching the strings from the target
412 	 *            process's space, and is converted for returning to caller
413 	 */
414 	if (kd->argv == 0) {
415 		/*
416 		 * Try to avoid reallocs.
417 		 */
418 		kd->argc = MAX(narg + 1, 32);
419 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
420 						sizeof(*kd->argv));
421 		if (kd->argv == 0)
422 			return (0);
423 	} else if (narg + 1 > kd->argc) {
424 		kd->argc = MAX(2 * kd->argc, narg + 1);
425 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
426 						sizeof(*kd->argv));
427 		if (kd->argv == 0)
428 			return (0);
429 	}
430 	/*
431 	 * kd->argspc : returned to user, this is where the kd->argv
432 	 *              arrays are left pointing to the collected strings.
433 	 */
434 	if (kd->argspc == 0) {
435 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
436 		if (kd->argspc == 0)
437 			return (0);
438 		kd->arglen = PAGE_SIZE;
439 	}
440 	/*
441 	 * kd->argbuf : used to pull in pages from the target process.
442 	 *              the strings are copied out of here.
443 	 */
444 	if (kd->argbuf == 0) {
445 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
446 		if (kd->argbuf == 0)
447 			return (0);
448 	}
449 
450 	/* Pull in the target process'es argv vector */
451 	cc = sizeof(char *) * narg;
452 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
453 		return (0);
454 	/*
455 	 * ap : saved start address of string we're working on in kd->argspc
456 	 * np : pointer to next place to write in kd->argspc
457 	 * len: length of data in kd->argspc
458 	 * argv: pointer to the argv vector that we are hunting around the
459 	 *       target process space for, and converting to addresses in
460 	 *       our address space (kd->argspc).
461 	 */
462 	ap = np = kd->argspc;
463 	argv = kd->argv;
464 	len = 0;
465 	/*
466 	 * Loop over pages, filling in the argument vector.
467 	 * Note that the argv strings could be pointing *anywhere* in
468 	 * the user address space and are no longer contiguous.
469 	 * Note that *argv is modified when we are going to fetch a string
470 	 * that crosses a page boundary.  We copy the next part of the string
471 	 * into to "np" and eventually convert the pointer.
472 	 */
473 	while (argv < kd->argv + narg && *argv != 0) {
474 
475 		/* get the address that the current argv string is on */
476 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
477 
478 		/* is it the same page as the last one? */
479 		if (addr != oaddr) {
480 			if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) !=
481 			    PAGE_SIZE)
482 				return (0);
483 			oaddr = addr;
484 		}
485 
486 		/* offset within the page... kd->argbuf */
487 		addr = (u_long)*argv & (PAGE_SIZE - 1);
488 
489 		/* cp = start of string, cc = count of chars in this chunk */
490 		cp = kd->argbuf + addr;
491 		cc = PAGE_SIZE - addr;
492 
493 		/* dont get more than asked for by user process */
494 		if (maxcnt > 0 && cc > maxcnt - len)
495 			cc = maxcnt - len;
496 
497 		/* pointer to end of string if we found it in this page */
498 		ep = memchr(cp, '\0', cc);
499 		if (ep != 0)
500 			cc = ep - cp + 1;
501 		/*
502 		 * at this point, cc is the count of the chars that we are
503 		 * going to retrieve this time. we may or may not have found
504 		 * the end of it.  (ep points to the null if the end is known)
505 		 */
506 
507 		/* will we exceed the malloc/realloced buffer? */
508 		if (len + cc > kd->arglen) {
509 			register int off;
510 			register char **pp;
511 			register char *op = kd->argspc;
512 
513 			kd->arglen *= 2;
514 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
515 							  kd->arglen);
516 			if (kd->argspc == 0)
517 				return (0);
518 			/*
519 			 * Adjust argv pointers in case realloc moved
520 			 * the string space.
521 			 */
522 			off = kd->argspc - op;
523 			for (pp = kd->argv; pp < argv; pp++)
524 				*pp += off;
525 			ap += off;
526 			np += off;
527 		}
528 		/* np = where to put the next part of the string in kd->argspc*/
529 		/* np is kinda redundant.. could use "kd->argspc + len" */
530 		memcpy(np, cp, cc);
531 		np += cc;	/* inc counters */
532 		len += cc;
533 
534 		/*
535 		 * if end of string found, set the *argv pointer to the
536 		 * saved beginning of string, and advance. argv points to
537 		 * somewhere in kd->argv..  This is initially relative
538 		 * to the target process, but when we close it off, we set
539 		 * it to point in our address space.
540 		 */
541 		if (ep != 0) {
542 			*argv++ = ap;
543 			ap = np;
544 		} else {
545 			/* update the address relative to the target process */
546 			*argv += cc;
547 		}
548 
549 		if (maxcnt > 0 && len >= maxcnt) {
550 			/*
551 			 * We're stopping prematurely.  Terminate the
552 			 * current string.
553 			 */
554 			if (ep == 0) {
555 				*np = '\0';
556 				*argv++ = ap;
557 			}
558 			break;
559 		}
560 	}
561 	/* Make sure argv is terminated. */
562 	*argv = 0;
563 	return (kd->argv);
564 }
565 
566 static void
567 ps_str_a(p, addr, n)
568 	struct ps_strings *p;
569 	u_long *addr;
570 	int *n;
571 {
572 	*addr = (u_long)p->ps_argvstr;
573 	*n = p->ps_nargvstr;
574 }
575 
576 static void
577 ps_str_e(p, addr, n)
578 	struct ps_strings *p;
579 	u_long *addr;
580 	int *n;
581 {
582 	*addr = (u_long)p->ps_envstr;
583 	*n = p->ps_nenvstr;
584 }
585 
586 /*
587  * Determine if the proc indicated by p is still active.
588  * This test is not 100% foolproof in theory, but chances of
589  * being wrong are very low.
590  */
591 static int
592 proc_verify(kd, kernp, p)
593 	kvm_t *kd;
594 	u_long kernp;
595 	const struct proc *p;
596 {
597 	struct kinfo_proc kp;
598 	int mib[4], st;
599 	size_t len;
600 
601 	mib[0] = CTL_KERN;
602 	mib[1] = KERN_PROC;
603 	mib[2] = KERN_PROC_PID;
604 	mib[3] = p->p_pid;
605 
606 	len = sizeof kp;
607 
608 	st = sysctl(mib, 4, &kp, &len, NULL, 0);
609 	if (st < 0)
610 		return(0);
611 	return (p->p_pid == kp.kp_proc.p_pid &&
612 		(kp.kp_proc.p_stat != SZOMB || p->p_stat == SZOMB));
613 }
614 
615 static char **
616 kvm_doargv(kd, kp, nchr, info)
617 	kvm_t *kd;
618 	const struct kinfo_proc *kp;
619 	int nchr;
620 	void (*info)(struct ps_strings *, u_long *, int *);
621 {
622 	register const struct proc *p = &kp->kp_proc;
623 	register char **ap;
624 	u_long addr;
625 	int cnt;
626 	static struct ps_strings arginfo, *ps_strings;
627 	size_t len;
628 	int i;
629 
630 	if (ps_strings == NULL) {
631 		len = sizeof ps_strings;
632 		i = sysctlbyname("kern.ps_strings",
633 		    &ps_strings, &len, 0, 0);
634 		if (i < 0 || ps_strings == NULL)
635 			ps_strings = PS_STRINGS;
636 	}
637 
638 	/*
639 	 * Pointers are stored at the top of the user stack.
640 	 */
641 	if (p->p_stat == SZOMB ||
642 	    kvm_uread(kd, p, ps_strings, (char *)&arginfo,
643 		      sizeof(arginfo)) != sizeof(arginfo))
644 		return (0);
645 
646 	(*info)(&arginfo, &addr, &cnt);
647 	if (cnt == 0)
648 		return (0);
649 	ap = kvm_argv(kd, p, addr, cnt, nchr);
650 	/*
651 	 * For live kernels, make sure this process didn't go away.
652 	 */
653 	if (ap != 0 && ISALIVE(kd) &&
654 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
655 		ap = 0;
656 	return (ap);
657 }
658 
659 /*
660  * Get the command args.  This code is now machine independent.
661  */
662 char **
663 kvm_getargv(kd, kp, nchr)
664 	kvm_t *kd;
665 	const struct kinfo_proc *kp;
666 	int nchr;
667 {
668 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
669 }
670 
671 char **
672 kvm_getenvv(kd, kp, nchr)
673 	kvm_t *kd;
674 	const struct kinfo_proc *kp;
675 	int nchr;
676 {
677 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
678 }
679 
680 /*
681  * Read from user space.  The user context is given by p.
682  */
683 ssize_t
684 kvm_uread(kd, p, uva, buf, len)
685 	kvm_t *kd;
686 	register const struct proc *p;
687 	register u_long uva;
688 	register char *buf;
689 	register size_t len;
690 {
691 	register char *cp;
692 	char procfile[MAXPATHLEN];
693 	ssize_t amount;
694 	int fd;
695 
696 	if (!ISALIVE(kd)) {
697 		_kvm_err(kd, kd->program,
698 		    "cannot read user space from dead kernel");
699 		return (0);
700 	}
701 
702 	sprintf(procfile, "/proc/%d/mem", p->p_pid);
703 	fd = open(procfile, O_RDONLY, 0);
704 	if (fd < 0) {
705 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
706 		close(fd);
707 		return (0);
708 	}
709 
710 	cp = buf;
711 	while (len > 0) {
712 		errno = 0;
713 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
714 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
715 			    uva, procfile);
716 			break;
717 		}
718 		amount = read(fd, cp, len);
719 		if (amount < 0) {
720 			_kvm_syserr(kd, kd->program, "error reading %s",
721 			    procfile);
722 			break;
723 		}
724 		if (amount == 0) {
725 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
726 			break;
727 		}
728 		cp += amount;
729 		uva += amount;
730 		len -= amount;
731 	}
732 
733 	close(fd);
734 	return ((ssize_t)(cp - buf));
735 }
736