1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software developed by the Computer Systems 8 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 9 * BG 91-66 and contributed to Berkeley. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __SCCSID("@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"); 38 39 /* 40 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 41 * users of this code, so we've factored it out into a separate module. 42 * Thus, we keep this grunge out of the other kvm applications (i.e., 43 * most other applications are interested only in open/close/read/nlist). 44 */ 45 46 #include <sys/param.h> 47 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 48 #include <sys/ucred.h> 49 #include <sys/queue.h> 50 #include <sys/_lock.h> 51 #include <sys/_mutex.h> 52 #include <sys/_task.h> 53 #include <sys/cpuset.h> 54 #include <sys/user.h> 55 #include <sys/proc.h> 56 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 57 #include <sys/jail.h> 58 #include <sys/exec.h> 59 #include <sys/stat.h> 60 #include <sys/sysent.h> 61 #include <sys/ioctl.h> 62 #include <sys/tty.h> 63 #include <sys/file.h> 64 #include <sys/conf.h> 65 #define _WANT_KW_EXITCODE 66 #include <sys/wait.h> 67 #include <stdio.h> 68 #include <stdlib.h> 69 #include <stdbool.h> 70 #include <unistd.h> 71 #include <nlist.h> 72 #include <kvm.h> 73 74 #include <sys/sysctl.h> 75 76 #include <limits.h> 77 #include <memory.h> 78 #include <paths.h> 79 80 #include "kvm_private.h" 81 82 #define KREAD(kd, addr, obj) \ 83 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 84 85 static int ticks; 86 static int hz; 87 static uint64_t cpu_tick_frequency; 88 89 /* 90 * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is 91 * read/initialized before this function is ever called. 92 */ 93 static uint64_t 94 cputick2usec(uint64_t tick) 95 { 96 if (cpu_tick_frequency == 0) 97 return (0); 98 return ((tick / cpu_tick_frequency) * 1000000ULL) + 99 ((tick % cpu_tick_frequency) * 1000000ULL) / cpu_tick_frequency; 100 } 101 102 /* 103 * Read proc's from memory file into buffer bp, which has space to hold 104 * at most maxcnt procs. 105 */ 106 static int 107 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 108 struct kinfo_proc *bp, int maxcnt) 109 { 110 int cnt = 0; 111 struct kinfo_proc kinfo_proc, *kp; 112 struct pgrp pgrp; 113 struct session sess; 114 struct cdev t_cdev; 115 struct tty tty; 116 struct vmspace vmspace; 117 struct sigacts sigacts; 118 #if 0 119 struct pstats pstats; 120 #endif 121 struct ucred ucred; 122 struct prison pr; 123 struct thread mtd; 124 struct proc proc; 125 struct proc pproc; 126 struct sysentvec sysent; 127 char svname[KI_EMULNAMELEN]; 128 struct thread *td = NULL; 129 bool first_thread; 130 131 kp = &kinfo_proc; 132 kp->ki_structsize = sizeof(kinfo_proc); 133 /* 134 * Loop on the processes, then threads within the process if requested. 135 */ 136 if (what == KERN_PROC_ALL) 137 what |= KERN_PROC_INC_THREAD; 138 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 139 memset(kp, 0, sizeof *kp); 140 if (KREAD(kd, (u_long)p, &proc)) { 141 _kvm_err(kd, kd->program, "can't read proc at %p", p); 142 return (-1); 143 } 144 if (proc.p_state == PRS_NEW) 145 continue; 146 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 147 kp->ki_ruid = ucred.cr_ruid; 148 kp->ki_svuid = ucred.cr_svuid; 149 kp->ki_rgid = ucred.cr_rgid; 150 kp->ki_svgid = ucred.cr_svgid; 151 kp->ki_cr_flags = ucred.cr_flags; 152 if (ucred.cr_ngroups > KI_NGROUPS) { 153 kp->ki_ngroups = KI_NGROUPS; 154 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 155 } else 156 kp->ki_ngroups = ucred.cr_ngroups; 157 kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, 158 kp->ki_ngroups * sizeof(gid_t)); 159 kp->ki_uid = ucred.cr_uid; 160 if (ucred.cr_prison != NULL) { 161 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 162 _kvm_err(kd, kd->program, 163 "can't read prison at %p", 164 ucred.cr_prison); 165 return (-1); 166 } 167 kp->ki_jid = pr.pr_id; 168 } 169 } 170 171 switch(what & ~KERN_PROC_INC_THREAD) { 172 173 case KERN_PROC_GID: 174 if (kp->ki_groups[0] != (gid_t)arg) 175 continue; 176 break; 177 178 case KERN_PROC_PID: 179 if (proc.p_pid != (pid_t)arg) 180 continue; 181 break; 182 183 case KERN_PROC_RGID: 184 if (kp->ki_rgid != (gid_t)arg) 185 continue; 186 break; 187 188 case KERN_PROC_UID: 189 if (kp->ki_uid != (uid_t)arg) 190 continue; 191 break; 192 193 case KERN_PROC_RUID: 194 if (kp->ki_ruid != (uid_t)arg) 195 continue; 196 break; 197 } 198 /* 199 * We're going to add another proc to the set. If this 200 * will overflow the buffer, assume the reason is because 201 * nprocs (or the proc list) is corrupt and declare an error. 202 */ 203 if (cnt >= maxcnt) { 204 _kvm_err(kd, kd->program, "nprocs corrupt"); 205 return (-1); 206 } 207 /* 208 * gather kinfo_proc 209 */ 210 kp->ki_paddr = p; 211 kp->ki_addr = 0; /* XXX uarea */ 212 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 213 kp->ki_args = proc.p_args; 214 kp->ki_numthreads = proc.p_numthreads; 215 kp->ki_tracep = NULL; /* XXXKIB do not expose ktr_io_params */ 216 kp->ki_textvp = proc.p_textvp; 217 kp->ki_fd = proc.p_fd; 218 kp->ki_pd = proc.p_pd; 219 kp->ki_vmspace = proc.p_vmspace; 220 if (proc.p_sigacts != NULL) { 221 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 222 _kvm_err(kd, kd->program, 223 "can't read sigacts at %p", proc.p_sigacts); 224 return (-1); 225 } 226 kp->ki_sigignore = sigacts.ps_sigignore; 227 kp->ki_sigcatch = sigacts.ps_sigcatch; 228 } 229 #if 0 230 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 231 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 232 _kvm_err(kd, kd->program, 233 "can't read stats at %x", proc.p_stats); 234 return (-1); 235 } 236 kp->ki_start = pstats.p_start; 237 238 /* 239 * XXX: The times here are probably zero and need 240 * to be calculated from the raw data in p_rux and 241 * p_crux. 242 */ 243 kp->ki_rusage = pstats.p_ru; 244 kp->ki_childstime = pstats.p_cru.ru_stime; 245 kp->ki_childutime = pstats.p_cru.ru_utime; 246 /* Some callers want child-times in a single value */ 247 timeradd(&kp->ki_childstime, &kp->ki_childutime, 248 &kp->ki_childtime); 249 } 250 #endif 251 if (proc.p_oppid) 252 kp->ki_ppid = proc.p_oppid; 253 else if (proc.p_pptr) { 254 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 255 _kvm_err(kd, kd->program, 256 "can't read pproc at %p", proc.p_pptr); 257 return (-1); 258 } 259 kp->ki_ppid = pproc.p_pid; 260 } else 261 kp->ki_ppid = 0; 262 if (proc.p_pgrp == NULL) 263 goto nopgrp; 264 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 265 _kvm_err(kd, kd->program, "can't read pgrp at %p", 266 proc.p_pgrp); 267 return (-1); 268 } 269 kp->ki_pgid = pgrp.pg_id; 270 kp->ki_jobc = -1; /* Or calculate? Arguably not. */ 271 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 272 _kvm_err(kd, kd->program, "can't read session at %p", 273 pgrp.pg_session); 274 return (-1); 275 } 276 kp->ki_sid = sess.s_sid; 277 (void)memcpy(kp->ki_login, sess.s_login, 278 sizeof(kp->ki_login)); 279 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 280 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 281 _kvm_err(kd, kd->program, 282 "can't read tty at %p", sess.s_ttyp); 283 return (-1); 284 } 285 if (tty.t_dev != NULL) { 286 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 287 _kvm_err(kd, kd->program, 288 "can't read cdev at %p", 289 tty.t_dev); 290 return (-1); 291 } 292 #if 0 293 kp->ki_tdev = t_cdev.si_udev; 294 #else 295 kp->ki_tdev = NODEV; 296 #endif 297 } 298 if (tty.t_pgrp != NULL) { 299 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 300 _kvm_err(kd, kd->program, 301 "can't read tpgrp at %p", 302 tty.t_pgrp); 303 return (-1); 304 } 305 kp->ki_tpgid = pgrp.pg_id; 306 } else 307 kp->ki_tpgid = -1; 308 if (tty.t_session != NULL) { 309 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 310 _kvm_err(kd, kd->program, 311 "can't read session at %p", 312 tty.t_session); 313 return (-1); 314 } 315 kp->ki_tsid = sess.s_sid; 316 } 317 } else { 318 nopgrp: 319 kp->ki_tdev = NODEV; 320 } 321 322 (void)kvm_read(kd, (u_long)proc.p_vmspace, 323 (char *)&vmspace, sizeof(vmspace)); 324 kp->ki_size = vmspace.vm_map.size; 325 /* 326 * Approximate the kernel's method of calculating 327 * this field. 328 */ 329 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) 330 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); 331 kp->ki_swrss = vmspace.vm_swrss; 332 kp->ki_tsize = vmspace.vm_tsize; 333 kp->ki_dsize = vmspace.vm_dsize; 334 kp->ki_ssize = vmspace.vm_ssize; 335 336 switch (what & ~KERN_PROC_INC_THREAD) { 337 338 case KERN_PROC_PGRP: 339 if (kp->ki_pgid != (pid_t)arg) 340 continue; 341 break; 342 343 case KERN_PROC_SESSION: 344 if (kp->ki_sid != (pid_t)arg) 345 continue; 346 break; 347 348 case KERN_PROC_TTY: 349 if ((proc.p_flag & P_CONTROLT) == 0 || 350 kp->ki_tdev != (dev_t)arg) 351 continue; 352 break; 353 } 354 if (proc.p_comm[0] != 0) 355 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 356 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 357 sizeof(sysent)); 358 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 359 sizeof(svname)); 360 if (svname[0] != 0) 361 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 362 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); 363 kp->ki_pid = proc.p_pid; 364 kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig); 365 kp->ki_acflag = proc.p_acflag; 366 kp->ki_lock = proc.p_lock; 367 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 368 369 /* Per-thread items; iterate as appropriate. */ 370 td = TAILQ_FIRST(&proc.p_threads); 371 for (first_thread = true; cnt < maxcnt && td != NULL && 372 (first_thread || (what & KERN_PROC_INC_THREAD)); 373 first_thread = false) { 374 if (proc.p_state != PRS_ZOMBIE) { 375 if (KREAD(kd, (u_long)td, &mtd)) { 376 _kvm_err(kd, kd->program, 377 "can't read thread at %p", td); 378 return (-1); 379 } 380 if (what & KERN_PROC_INC_THREAD) 381 td = TAILQ_NEXT(&mtd, td_plist); 382 } else 383 td = NULL; 384 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 385 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 386 kp->ki_wmesg, WMESGLEN); 387 else 388 memset(kp->ki_wmesg, 0, WMESGLEN); 389 if (proc.p_pgrp == NULL) { 390 kp->ki_kiflag = 0; 391 } else { 392 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 393 if (sess.s_leader == p) 394 kp->ki_kiflag |= KI_SLEADER; 395 } 396 if ((proc.p_state != PRS_ZOMBIE) && 397 (mtd.td_blocked != 0)) { 398 kp->ki_kiflag |= KI_LOCKBLOCK; 399 if (mtd.td_lockname) 400 (void)kvm_read(kd, 401 (u_long)mtd.td_lockname, 402 kp->ki_lockname, LOCKNAMELEN); 403 else 404 memset(kp->ki_lockname, 0, 405 LOCKNAMELEN); 406 kp->ki_lockname[LOCKNAMELEN] = 0; 407 } else 408 kp->ki_kiflag &= ~KI_LOCKBLOCK; 409 kp->ki_siglist = proc.p_siglist; 410 if (proc.p_state != PRS_ZOMBIE) { 411 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 412 kp->ki_sigmask = mtd.td_sigmask; 413 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 414 kp->ki_flag = proc.p_flag; 415 kp->ki_sflag = 0; 416 kp->ki_nice = proc.p_nice; 417 kp->ki_traceflag = proc.p_traceflag; 418 if (proc.p_state == PRS_NORMAL) { 419 if (TD_ON_RUNQ(&mtd) || 420 TD_CAN_RUN(&mtd) || 421 TD_IS_RUNNING(&mtd)) { 422 kp->ki_stat = SRUN; 423 } else if (TD_GET_STATE(&mtd) == 424 TDS_INHIBITED) { 425 if (P_SHOULDSTOP(&proc)) { 426 kp->ki_stat = SSTOP; 427 } else if ( 428 TD_IS_SLEEPING(&mtd)) { 429 kp->ki_stat = SSLEEP; 430 } else if (TD_ON_LOCK(&mtd)) { 431 kp->ki_stat = SLOCK; 432 } else { 433 kp->ki_stat = SWAIT; 434 } 435 } 436 } else { 437 kp->ki_stat = SIDL; 438 } 439 /* Stuff from the thread */ 440 kp->ki_pri.pri_level = mtd.td_priority; 441 kp->ki_pri.pri_native = mtd.td_base_pri; 442 kp->ki_lastcpu = mtd.td_lastcpu; 443 kp->ki_wchan = mtd.td_wchan; 444 kp->ki_oncpu = mtd.td_oncpu; 445 if (mtd.td_name[0] != '\0') 446 strlcpy(kp->ki_tdname, mtd.td_name, 447 sizeof(kp->ki_tdname)); 448 else 449 memset(kp->ki_tdname, 0, 450 sizeof(kp->ki_tdname)); 451 kp->ki_pctcpu = 0; 452 kp->ki_rqindex = 0; 453 454 /* 455 * Note: legacy fields; wraps at NO_CPU_OLD 456 * or the old max CPU value as appropriate 457 */ 458 if (mtd.td_lastcpu == NOCPU) 459 kp->ki_lastcpu_old = NOCPU_OLD; 460 else if (mtd.td_lastcpu > MAXCPU_OLD) 461 kp->ki_lastcpu_old = MAXCPU_OLD; 462 else 463 kp->ki_lastcpu_old = mtd.td_lastcpu; 464 465 if (mtd.td_oncpu == NOCPU) 466 kp->ki_oncpu_old = NOCPU_OLD; 467 else if (mtd.td_oncpu > MAXCPU_OLD) 468 kp->ki_oncpu_old = MAXCPU_OLD; 469 else 470 kp->ki_oncpu_old = mtd.td_oncpu; 471 kp->ki_tid = mtd.td_tid; 472 } else { 473 memset(&kp->ki_sigmask, 0, 474 sizeof(kp->ki_sigmask)); 475 kp->ki_stat = SZOMB; 476 kp->ki_tid = 0; 477 } 478 479 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 480 ++bp; 481 ++cnt; 482 } 483 } 484 return (cnt); 485 } 486 487 /* 488 * Build proc info array by reading in proc list from a crash dump. 489 * Return number of procs read. maxcnt is the max we will read. 490 */ 491 static int 492 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 493 u_long a_zombproc, int maxcnt) 494 { 495 struct kinfo_proc *bp = kd->procbase; 496 int acnt, zcnt = 0; 497 struct proc *p; 498 499 if (KREAD(kd, a_allproc, &p)) { 500 _kvm_err(kd, kd->program, "cannot read allproc"); 501 return (-1); 502 } 503 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 504 if (acnt < 0) 505 return (acnt); 506 507 if (a_zombproc != 0) { 508 if (KREAD(kd, a_zombproc, &p)) { 509 _kvm_err(kd, kd->program, "cannot read zombproc"); 510 return (-1); 511 } 512 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 513 if (zcnt < 0) 514 zcnt = 0; 515 } 516 517 return (acnt + zcnt); 518 } 519 520 struct kinfo_proc * 521 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 522 { 523 int mib[4], st, nprocs; 524 size_t size, osize; 525 int temp_op; 526 527 if (kd->procbase != 0) { 528 free((void *)kd->procbase); 529 /* 530 * Clear this pointer in case this call fails. Otherwise, 531 * kvm_close() will free it again. 532 */ 533 kd->procbase = 0; 534 } 535 if (ISALIVE(kd)) { 536 size = 0; 537 mib[0] = CTL_KERN; 538 mib[1] = KERN_PROC; 539 mib[2] = op; 540 mib[3] = arg; 541 temp_op = op & ~KERN_PROC_INC_THREAD; 542 st = sysctl(mib, 543 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 544 3 : 4, NULL, &size, NULL, 0); 545 if (st == -1) { 546 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 547 return (0); 548 } 549 /* 550 * We can't continue with a size of 0 because we pass 551 * it to realloc() (via _kvm_realloc()), and passing 0 552 * to realloc() results in undefined behavior. 553 */ 554 if (size == 0) { 555 /* 556 * XXX: We should probably return an invalid, 557 * but non-NULL, pointer here so any client 558 * program trying to dereference it will 559 * crash. However, _kvm_freeprocs() calls 560 * free() on kd->procbase if it isn't NULL, 561 * and free()'ing a junk pointer isn't good. 562 * Then again, _kvm_freeprocs() isn't used 563 * anywhere . . . 564 */ 565 kd->procbase = _kvm_malloc(kd, 1); 566 goto liveout; 567 } 568 do { 569 size += size / 10; 570 kd->procbase = (struct kinfo_proc *) 571 _kvm_realloc(kd, kd->procbase, size); 572 if (kd->procbase == NULL) 573 return (0); 574 osize = size; 575 st = sysctl(mib, temp_op == KERN_PROC_ALL || 576 temp_op == KERN_PROC_PROC ? 3 : 4, 577 kd->procbase, &size, NULL, 0); 578 } while (st == -1 && errno == ENOMEM && size == osize); 579 if (st == -1) { 580 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 581 return (0); 582 } 583 /* 584 * We have to check the size again because sysctl() 585 * may "round up" oldlenp if oldp is NULL; hence it 586 * might've told us that there was data to get when 587 * there really isn't any. 588 */ 589 if (size > 0 && 590 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 591 _kvm_err(kd, kd->program, 592 "kinfo_proc size mismatch (expected %zu, got %d)", 593 sizeof(struct kinfo_proc), 594 kd->procbase->ki_structsize); 595 return (0); 596 } 597 liveout: 598 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 599 } else { 600 struct nlist nl[6], *p; 601 struct nlist nlz[2]; 602 603 nl[0].n_name = "_nprocs"; 604 nl[1].n_name = "_allproc"; 605 nl[2].n_name = "_ticks"; 606 nl[3].n_name = "_hz"; 607 nl[4].n_name = "_cpu_tick_frequency"; 608 nl[5].n_name = 0; 609 610 nlz[0].n_name = "_zombproc"; 611 nlz[1].n_name = 0; 612 613 if (!kd->arch->ka_native(kd)) { 614 _kvm_err(kd, kd->program, 615 "cannot read procs from non-native core"); 616 return (0); 617 } 618 619 if (kvm_nlist(kd, nl) != 0) { 620 for (p = nl; p->n_type != 0; ++p) 621 ; 622 _kvm_err(kd, kd->program, 623 "%s: no such symbol", p->n_name); 624 return (0); 625 } 626 (void) kvm_nlist(kd, nlz); /* attempt to get zombproc */ 627 if (KREAD(kd, nl[0].n_value, &nprocs)) { 628 _kvm_err(kd, kd->program, "can't read nprocs"); 629 return (0); 630 } 631 /* 632 * If returning all threads, we don't know how many that 633 * might be. Presume that there are, on average, no more 634 * than 10 threads per process. 635 */ 636 if (op == KERN_PROC_ALL || (op & KERN_PROC_INC_THREAD)) 637 nprocs *= 10; /* XXX */ 638 if (KREAD(kd, nl[2].n_value, &ticks)) { 639 _kvm_err(kd, kd->program, "can't read ticks"); 640 return (0); 641 } 642 if (KREAD(kd, nl[3].n_value, &hz)) { 643 _kvm_err(kd, kd->program, "can't read hz"); 644 return (0); 645 } 646 if (KREAD(kd, nl[4].n_value, &cpu_tick_frequency)) { 647 _kvm_err(kd, kd->program, 648 "can't read cpu_tick_frequency"); 649 return (0); 650 } 651 size = nprocs * sizeof(struct kinfo_proc); 652 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 653 if (kd->procbase == NULL) 654 return (0); 655 656 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 657 nlz[0].n_value, nprocs); 658 if (nprocs <= 0) { 659 _kvm_freeprocs(kd); 660 nprocs = 0; 661 } 662 #ifdef notdef 663 else { 664 size = nprocs * sizeof(struct kinfo_proc); 665 kd->procbase = realloc(kd->procbase, size); 666 } 667 #endif 668 } 669 *cnt = nprocs; 670 return (kd->procbase); 671 } 672 673 void 674 _kvm_freeprocs(kvm_t *kd) 675 { 676 677 free(kd->procbase); 678 kd->procbase = NULL; 679 } 680 681 void * 682 _kvm_realloc(kvm_t *kd, void *p, size_t n) 683 { 684 void *np; 685 686 np = reallocf(p, n); 687 if (np == NULL) 688 _kvm_err(kd, kd->program, "out of memory"); 689 return (np); 690 } 691 692 /* 693 * Get the command args or environment. 694 */ 695 static char ** 696 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr) 697 { 698 int oid[4]; 699 int i; 700 size_t bufsz; 701 static int buflen; 702 static char *buf, *p; 703 static char **bufp; 704 static int argc; 705 char **nbufp; 706 707 if (!ISALIVE(kd)) { 708 _kvm_err(kd, kd->program, 709 "cannot read user space from dead kernel"); 710 return (NULL); 711 } 712 713 if (nchr == 0 || nchr > ARG_MAX) 714 nchr = ARG_MAX; 715 if (buflen == 0) { 716 buf = malloc(nchr); 717 if (buf == NULL) { 718 _kvm_err(kd, kd->program, "cannot allocate memory"); 719 return (NULL); 720 } 721 argc = 32; 722 bufp = malloc(sizeof(char *) * argc); 723 if (bufp == NULL) { 724 free(buf); 725 buf = NULL; 726 _kvm_err(kd, kd->program, "cannot allocate memory"); 727 return (NULL); 728 } 729 buflen = nchr; 730 } else if (nchr > buflen) { 731 p = realloc(buf, nchr); 732 if (p != NULL) { 733 buf = p; 734 buflen = nchr; 735 } 736 } 737 oid[0] = CTL_KERN; 738 oid[1] = KERN_PROC; 739 oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 740 oid[3] = kp->ki_pid; 741 bufsz = buflen; 742 if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) { 743 /* 744 * If the supplied buf is too short to hold the requested 745 * value the sysctl returns with ENOMEM. The buf is filled 746 * with the truncated value and the returned bufsz is equal 747 * to the requested len. 748 */ 749 if (errno != ENOMEM || bufsz != (size_t)buflen) 750 return (NULL); 751 buf[bufsz - 1] = '\0'; 752 errno = 0; 753 } else if (bufsz == 0) 754 return (NULL); 755 i = 0; 756 p = buf; 757 do { 758 bufp[i++] = p; 759 p += strlen(p) + 1; 760 if (i >= argc) { 761 argc += argc; 762 nbufp = realloc(bufp, sizeof(char *) * argc); 763 if (nbufp == NULL) 764 return (NULL); 765 bufp = nbufp; 766 } 767 } while (p < buf + bufsz); 768 bufp[i++] = 0; 769 return (bufp); 770 } 771 772 char ** 773 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 774 { 775 return (kvm_argv(kd, kp, 0, nchr)); 776 } 777 778 char ** 779 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 780 { 781 return (kvm_argv(kd, kp, 1, nchr)); 782 } 783