1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if defined(LIBC_SCCS) && !defined(lint) 39 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 40 #endif /* LIBC_SCCS and not lint */ 41 42 /* 43 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 44 * users of this code, so we've factored it out into a separate module. 45 * Thus, we keep this grunge out of the other kvm applications (i.e., 46 * most other applications are interested only in open/close/read/nlist). 47 */ 48 49 #include <sys/param.h> 50 #include <sys/user.h> 51 #include <sys/proc.h> 52 #include <sys/exec.h> 53 #include <sys/stat.h> 54 #include <sys/ioctl.h> 55 #include <sys/tty.h> 56 #include <sys/file.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <unistd.h> 60 #include <nlist.h> 61 #include <kvm.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/swap_pager.h> 66 67 #include <sys/sysctl.h> 68 69 #include <limits.h> 70 #include <memory.h> 71 #include <db.h> 72 #include <paths.h> 73 74 #include "kvm_private.h" 75 76 #if used 77 static char * 78 kvm_readswap(kd, p, va, cnt) 79 kvm_t *kd; 80 const struct proc *p; 81 u_long va; 82 u_long *cnt; 83 { 84 #ifdef __FreeBSD__ 85 /* XXX Stubbed out, our vm system is differnet */ 86 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 87 return(0); 88 #endif /* __FreeBSD__ */ 89 } 90 #endif 91 92 #define KREAD(kd, addr, obj) \ 93 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 94 95 /* 96 * Read proc's from memory file into buffer bp, which has space to hold 97 * at most maxcnt procs. 98 */ 99 static int 100 kvm_proclist(kd, what, arg, p, bp, maxcnt) 101 kvm_t *kd; 102 int what, arg; 103 struct proc *p; 104 struct kinfo_proc *bp; 105 int maxcnt; 106 { 107 register int cnt = 0; 108 struct eproc eproc; 109 struct pgrp pgrp; 110 struct session sess; 111 struct tty tty; 112 struct proc proc; 113 struct proc pproc; 114 115 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 116 if (KREAD(kd, (u_long)p, &proc)) { 117 _kvm_err(kd, kd->program, "can't read proc at %x", p); 118 return (-1); 119 } 120 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 121 (void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 122 &eproc.e_ucred)); 123 124 switch(what) { 125 126 case KERN_PROC_PID: 127 if (proc.p_pid != (pid_t)arg) 128 continue; 129 break; 130 131 case KERN_PROC_UID: 132 if (eproc.e_ucred.cr_uid != (uid_t)arg) 133 continue; 134 break; 135 136 case KERN_PROC_RUID: 137 if (eproc.e_pcred.p_ruid != (uid_t)arg) 138 continue; 139 break; 140 } 141 /* 142 * We're going to add another proc to the set. If this 143 * will overflow the buffer, assume the reason is because 144 * nprocs (or the proc list) is corrupt and declare an error. 145 */ 146 if (cnt >= maxcnt) { 147 _kvm_err(kd, kd->program, "nprocs corrupt"); 148 return (-1); 149 } 150 /* 151 * gather eproc 152 */ 153 eproc.e_paddr = p; 154 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 155 _kvm_err(kd, kd->program, "can't read pgrp at %x", 156 proc.p_pgrp); 157 return (-1); 158 } 159 if (proc.p_oppid) 160 eproc.e_ppid = proc.p_oppid; 161 else if (proc.p_pptr) { 162 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 163 _kvm_err(kd, kd->program, "can't read pproc at %x", 164 proc.p_pptr); 165 return (-1); 166 } 167 eproc.e_ppid = pproc.p_pid; 168 } else 169 eproc.e_ppid = 0; 170 eproc.e_sess = pgrp.pg_session; 171 eproc.e_pgid = pgrp.pg_id; 172 eproc.e_jobc = pgrp.pg_jobc; 173 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 174 _kvm_err(kd, kd->program, "can't read session at %x", 175 pgrp.pg_session); 176 return (-1); 177 } 178 (void)memcpy(eproc.e_login, sess.s_login, 179 sizeof(eproc.e_login)); 180 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 181 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 182 _kvm_err(kd, kd->program, 183 "can't read tty at %x", sess.s_ttyp); 184 return (-1); 185 } 186 eproc.e_tdev = tty.t_dev; 187 eproc.e_tsess = tty.t_session; 188 if (tty.t_pgrp != NULL) { 189 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 190 _kvm_err(kd, kd->program, 191 "can't read tpgrp at &x", 192 tty.t_pgrp); 193 return (-1); 194 } 195 eproc.e_tpgid = pgrp.pg_id; 196 } else 197 eproc.e_tpgid = -1; 198 } else 199 eproc.e_tdev = NODEV; 200 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 201 if (sess.s_leader == p) 202 eproc.e_flag |= EPROC_SLEADER; 203 if (proc.p_wmesg) 204 (void)kvm_read(kd, (u_long)proc.p_wmesg, 205 eproc.e_wmesg, WMESGLEN); 206 207 #ifdef sparc 208 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 209 (char *)&eproc.e_vm.vm_rssize, 210 sizeof(eproc.e_vm.vm_rssize)); 211 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 212 (char *)&eproc.e_vm.vm_tsize, 213 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */ 214 #else 215 (void)kvm_read(kd, (u_long)proc.p_vmspace, 216 (char *)&eproc.e_vm, sizeof(eproc.e_vm)); 217 #endif 218 eproc.e_xsize = eproc.e_xrssize = 0; 219 eproc.e_xccount = eproc.e_xswrss = 0; 220 221 switch (what) { 222 223 case KERN_PROC_PGRP: 224 if (eproc.e_pgid != (pid_t)arg) 225 continue; 226 break; 227 228 case KERN_PROC_TTY: 229 if ((proc.p_flag & P_CONTROLT) == 0 || 230 eproc.e_tdev != (dev_t)arg) 231 continue; 232 break; 233 } 234 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 235 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 236 ++bp; 237 ++cnt; 238 } 239 return (cnt); 240 } 241 242 /* 243 * Build proc info array by reading in proc list from a crash dump. 244 * Return number of procs read. maxcnt is the max we will read. 245 */ 246 static int 247 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 248 kvm_t *kd; 249 int what, arg; 250 u_long a_allproc; 251 u_long a_zombproc; 252 int maxcnt; 253 { 254 register struct kinfo_proc *bp = kd->procbase; 255 register int acnt, zcnt; 256 struct proc *p; 257 258 if (KREAD(kd, a_allproc, &p)) { 259 _kvm_err(kd, kd->program, "cannot read allproc"); 260 return (-1); 261 } 262 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 263 if (acnt < 0) 264 return (acnt); 265 266 if (KREAD(kd, a_zombproc, &p)) { 267 _kvm_err(kd, kd->program, "cannot read zombproc"); 268 return (-1); 269 } 270 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 271 if (zcnt < 0) 272 zcnt = 0; 273 274 return (acnt + zcnt); 275 } 276 277 struct kinfo_proc * 278 kvm_getprocs(kd, op, arg, cnt) 279 kvm_t *kd; 280 int op, arg; 281 int *cnt; 282 { 283 int mib[4], size, st, nprocs; 284 285 if (kd->procbase != 0) { 286 free((void *)kd->procbase); 287 /* 288 * Clear this pointer in case this call fails. Otherwise, 289 * kvm_close() will free it again. 290 */ 291 kd->procbase = 0; 292 } 293 if (ISALIVE(kd)) { 294 size = 0; 295 mib[0] = CTL_KERN; 296 mib[1] = KERN_PROC; 297 mib[2] = op; 298 mib[3] = arg; 299 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 300 if (st == -1) { 301 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 302 return (0); 303 } 304 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 305 if (kd->procbase == 0) 306 return (0); 307 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, kd->procbase, &size, NULL, 0); 308 if (st == -1) { 309 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 310 return (0); 311 } 312 if (size % sizeof(struct kinfo_proc) != 0) { 313 _kvm_err(kd, kd->program, 314 "proc size mismatch (%d total, %d chunks)", 315 size, sizeof(struct kinfo_proc)); 316 return (0); 317 } 318 nprocs = size / sizeof(struct kinfo_proc); 319 } else { 320 struct nlist nl[4], *p; 321 322 nl[0].n_name = "_nprocs"; 323 nl[1].n_name = "_allproc"; 324 nl[2].n_name = "_zombproc"; 325 nl[3].n_name = 0; 326 327 if (kvm_nlist(kd, nl) != 0) { 328 for (p = nl; p->n_type != 0; ++p) 329 ; 330 _kvm_err(kd, kd->program, 331 "%s: no such symbol", p->n_name); 332 return (0); 333 } 334 if (KREAD(kd, nl[0].n_value, &nprocs)) { 335 _kvm_err(kd, kd->program, "can't read nprocs"); 336 return (0); 337 } 338 size = nprocs * sizeof(struct kinfo_proc); 339 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 340 if (kd->procbase == 0) 341 return (0); 342 343 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 344 nl[2].n_value, nprocs); 345 #ifdef notdef 346 size = nprocs * sizeof(struct kinfo_proc); 347 (void)realloc(kd->procbase, size); 348 #endif 349 } 350 *cnt = nprocs; 351 return (kd->procbase); 352 } 353 354 void 355 _kvm_freeprocs(kd) 356 kvm_t *kd; 357 { 358 if (kd->procbase) { 359 free(kd->procbase); 360 kd->procbase = 0; 361 } 362 } 363 364 void * 365 _kvm_realloc(kd, p, n) 366 kvm_t *kd; 367 void *p; 368 size_t n; 369 { 370 void *np = (void *)realloc(p, n); 371 372 if (np == 0) 373 _kvm_err(kd, kd->program, "out of memory"); 374 return (np); 375 } 376 377 #ifndef MAX 378 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 379 #endif 380 381 /* 382 * Read in an argument vector from the user address space of process p. 383 * addr if the user-space base address of narg null-terminated contiguous 384 * strings. This is used to read in both the command arguments and 385 * environment strings. Read at most maxcnt characters of strings. 386 */ 387 static char ** 388 kvm_argv(kd, p, addr, narg, maxcnt) 389 kvm_t *kd; 390 const struct proc *p; 391 register u_long addr; 392 register int narg; 393 register int maxcnt; 394 { 395 register char *np, *cp, *ep, *ap; 396 register u_long oaddr = -1; 397 register int len, cc; 398 register char **argv; 399 400 /* 401 * Check that there aren't an unreasonable number of agruments, 402 * and that the address is in user space. 403 */ 404 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 405 return (0); 406 407 /* 408 * kd->argv : work space for fetching the strings from the target 409 * process's space, and is converted for returning to caller 410 */ 411 if (kd->argv == 0) { 412 /* 413 * Try to avoid reallocs. 414 */ 415 kd->argc = MAX(narg + 1, 32); 416 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 417 sizeof(*kd->argv)); 418 if (kd->argv == 0) 419 return (0); 420 } else if (narg + 1 > kd->argc) { 421 kd->argc = MAX(2 * kd->argc, narg + 1); 422 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 423 sizeof(*kd->argv)); 424 if (kd->argv == 0) 425 return (0); 426 } 427 /* 428 * kd->argspc : returned to user, this is where the kd->argv 429 * arrays are left pointing to the collected strings. 430 */ 431 if (kd->argspc == 0) { 432 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 433 if (kd->argspc == 0) 434 return (0); 435 kd->arglen = PAGE_SIZE; 436 } 437 /* 438 * kd->argbuf : used to pull in pages from the target process. 439 * the strings are copied out of here. 440 */ 441 if (kd->argbuf == 0) { 442 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 443 if (kd->argbuf == 0) 444 return (0); 445 } 446 447 /* Pull in the target process'es argv vector */ 448 cc = sizeof(char *) * narg; 449 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc) 450 return (0); 451 /* 452 * ap : saved start address of string we're working on in kd->argspc 453 * np : pointer to next place to write in kd->argspc 454 * len: length of data in kd->argspc 455 * argv: pointer to the argv vector that we are hunting around the 456 * target process space for, and converting to addresses in 457 * our address space (kd->argspc). 458 */ 459 ap = np = kd->argspc; 460 argv = kd->argv; 461 len = 0; 462 /* 463 * Loop over pages, filling in the argument vector. 464 * Note that the argv strings could be pointing *anywhere* in 465 * the user address space and are no longer contiguous. 466 * Note that *argv is modified when we are going to fetch a string 467 * that crosses a page boundary. We copy the next part of the string 468 * into to "np" and eventually convert the pointer. 469 */ 470 while (argv < kd->argv + narg && *argv != 0) { 471 472 /* get the address that the current argv string is on */ 473 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 474 475 /* is it the same page as the last one? */ 476 if (addr != oaddr) { 477 if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) != 478 PAGE_SIZE) 479 return (0); 480 oaddr = addr; 481 } 482 483 /* offset within the page... kd->argbuf */ 484 addr = (u_long)*argv & (PAGE_SIZE - 1); 485 486 /* cp = start of string, cc = count of chars in this chunk */ 487 cp = kd->argbuf + addr; 488 cc = PAGE_SIZE - addr; 489 490 /* dont get more than asked for by user process */ 491 if (maxcnt > 0 && cc > maxcnt - len) 492 cc = maxcnt - len; 493 494 /* pointer to end of string if we found it in this page */ 495 ep = memchr(cp, '\0', cc); 496 if (ep != 0) 497 cc = ep - cp + 1; 498 /* 499 * at this point, cc is the count of the chars that we are 500 * going to retrieve this time. we may or may not have found 501 * the end of it. (ep points to the null if the end is known) 502 */ 503 504 /* will we exceed the malloc/realloced buffer? */ 505 if (len + cc > kd->arglen) { 506 register int off; 507 register char **pp; 508 register char *op = kd->argspc; 509 510 kd->arglen *= 2; 511 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 512 kd->arglen); 513 if (kd->argspc == 0) 514 return (0); 515 /* 516 * Adjust argv pointers in case realloc moved 517 * the string space. 518 */ 519 off = kd->argspc - op; 520 for (pp = kd->argv; pp < argv; pp++) 521 *pp += off; 522 ap += off; 523 np += off; 524 } 525 /* np = where to put the next part of the string in kd->argspc*/ 526 /* np is kinda redundant.. could use "kd->argspc + len" */ 527 memcpy(np, cp, cc); 528 np += cc; /* inc counters */ 529 len += cc; 530 531 /* 532 * if end of string found, set the *argv pointer to the 533 * saved beginning of string, and advance. argv points to 534 * somewhere in kd->argv.. This is initially relative 535 * to the target process, but when we close it off, we set 536 * it to point in our address space. 537 */ 538 if (ep != 0) { 539 *argv++ = ap; 540 ap = np; 541 } else { 542 /* update the address relative to the target process */ 543 *argv += cc; 544 } 545 546 if (maxcnt > 0 && len >= maxcnt) { 547 /* 548 * We're stopping prematurely. Terminate the 549 * current string. 550 */ 551 if (ep == 0) { 552 *np = '\0'; 553 *argv++ = ap; 554 } 555 break; 556 } 557 } 558 /* Make sure argv is terminated. */ 559 *argv = 0; 560 return (kd->argv); 561 } 562 563 static void 564 ps_str_a(p, addr, n) 565 struct ps_strings *p; 566 u_long *addr; 567 int *n; 568 { 569 *addr = (u_long)p->ps_argvstr; 570 *n = p->ps_nargvstr; 571 } 572 573 static void 574 ps_str_e(p, addr, n) 575 struct ps_strings *p; 576 u_long *addr; 577 int *n; 578 { 579 *addr = (u_long)p->ps_envstr; 580 *n = p->ps_nenvstr; 581 } 582 583 /* 584 * Determine if the proc indicated by p is still active. 585 * This test is not 100% foolproof in theory, but chances of 586 * being wrong are very low. 587 */ 588 static int 589 proc_verify(kd, kernp, p) 590 kvm_t *kd; 591 u_long kernp; 592 const struct proc *p; 593 { 594 struct proc kernproc; 595 596 /* 597 * Just read in the whole proc. It's not that big relative 598 * to the cost of the read system call. 599 */ 600 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) != 601 sizeof(kernproc)) 602 return (0); 603 return (p->p_pid == kernproc.p_pid && 604 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 605 } 606 607 static char ** 608 kvm_doargv(kd, kp, nchr, info) 609 kvm_t *kd; 610 const struct kinfo_proc *kp; 611 int nchr; 612 void (*info)(struct ps_strings *, u_long *, int *); 613 { 614 register const struct proc *p = &kp->kp_proc; 615 register char **ap; 616 u_long addr; 617 int cnt; 618 struct ps_strings arginfo, *ps_strings; 619 int mib[2]; 620 size_t len; 621 622 ps_strings = NULL; 623 mib[0] = CTL_KERN; 624 mib[1] = KERN_PS_STRINGS; 625 len = sizeof(ps_strings); 626 if (sysctl(mib, 2, &ps_strings, &len, NULL, 0) < 0 || 627 ps_strings == NULL) 628 ps_strings = PS_STRINGS; 629 630 /* 631 * Pointers are stored at the top of the user stack. 632 */ 633 if (p->p_stat == SZOMB || 634 kvm_uread(kd, p, ps_strings, (char *)&arginfo, 635 sizeof(arginfo)) != sizeof(arginfo)) 636 return (0); 637 638 (*info)(&arginfo, &addr, &cnt); 639 if (cnt == 0) 640 return (0); 641 ap = kvm_argv(kd, p, addr, cnt, nchr); 642 /* 643 * For live kernels, make sure this process didn't go away. 644 */ 645 if (ap != 0 && ISALIVE(kd) && 646 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 647 ap = 0; 648 return (ap); 649 } 650 651 /* 652 * Get the command args. This code is now machine independent. 653 */ 654 char ** 655 kvm_getargv(kd, kp, nchr) 656 kvm_t *kd; 657 const struct kinfo_proc *kp; 658 int nchr; 659 { 660 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 661 } 662 663 char ** 664 kvm_getenvv(kd, kp, nchr) 665 kvm_t *kd; 666 const struct kinfo_proc *kp; 667 int nchr; 668 { 669 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 670 } 671 672 /* 673 * Read from user space. The user context is given by p. 674 */ 675 ssize_t 676 kvm_uread(kd, p, uva, buf, len) 677 kvm_t *kd; 678 register const struct proc *p; 679 register u_long uva; 680 register char *buf; 681 register size_t len; 682 { 683 register char *cp; 684 char procfile[MAXPATHLEN]; 685 ssize_t amount; 686 int fd; 687 688 if (!ISALIVE(kd)) { 689 _kvm_err(kd, kd->program, "cannot read user space from dead kernel"); 690 return(0); 691 } 692 693 cp = buf; 694 695 sprintf(procfile, "/proc/%d/mem", p->p_pid); 696 fd = open(procfile, O_RDONLY, 0); 697 698 if (fd < 0) { 699 _kvm_err(kd, kd->program, "cannot open %s", procfile); 700 close(fd); 701 return (0); 702 } 703 704 705 while (len > 0) { 706 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 707 _kvm_err(kd, kd->program, "invalid address (%x) in %s", uva, procfile); 708 break; 709 } 710 amount = read(fd, cp, len); 711 if (amount < 0) { 712 _kvm_err(kd, kd->program, "error reading %s", procfile); 713 break; 714 } 715 cp += amount; 716 uva += amount; 717 len -= amount; 718 } 719 720 close(fd); 721 return (ssize_t)(cp - buf); 722 } 723