xref: /freebsd/lib/libkvm/kvm_proc.c (revision ce834215a70ff69e7e222827437116eee2f9ac6f)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #if defined(LIBC_SCCS) && !defined(lint)
39 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
40 #endif /* LIBC_SCCS and not lint */
41 
42 /*
43  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
44  * users of this code, so we've factored it out into a separate module.
45  * Thus, we keep this grunge out of the other kvm applications (i.e.,
46  * most other applications are interested only in open/close/read/nlist).
47  */
48 
49 #include <sys/param.h>
50 #include <sys/user.h>
51 #include <sys/proc.h>
52 #include <sys/exec.h>
53 #include <sys/stat.h>
54 #include <sys/ioctl.h>
55 #include <sys/tty.h>
56 #include <sys/file.h>
57 #include <stdio.h>
58 #include <stdlib.h>
59 #include <unistd.h>
60 #include <nlist.h>
61 #include <kvm.h>
62 
63 #include <vm/vm.h>
64 #include <vm/vm_param.h>
65 #include <vm/swap_pager.h>
66 
67 #include <sys/sysctl.h>
68 
69 #include <limits.h>
70 #include <memory.h>
71 #include <db.h>
72 #include <paths.h>
73 
74 #include "kvm_private.h"
75 
76 #if used
77 static char *
78 kvm_readswap(kd, p, va, cnt)
79 	kvm_t *kd;
80 	const struct proc *p;
81 	u_long va;
82 	u_long *cnt;
83 {
84 #ifdef __FreeBSD__
85 	/* XXX Stubbed out, our vm system is differnet */
86 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
87 	return(0);
88 #endif	/* __FreeBSD__ */
89 }
90 #endif
91 
92 #define KREAD(kd, addr, obj) \
93 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
94 
95 /*
96  * Read proc's from memory file into buffer bp, which has space to hold
97  * at most maxcnt procs.
98  */
99 static int
100 kvm_proclist(kd, what, arg, p, bp, maxcnt)
101 	kvm_t *kd;
102 	int what, arg;
103 	struct proc *p;
104 	struct kinfo_proc *bp;
105 	int maxcnt;
106 {
107 	register int cnt = 0;
108 	struct eproc eproc;
109 	struct pgrp pgrp;
110 	struct session sess;
111 	struct tty tty;
112 	struct proc proc;
113 	struct proc pproc;
114 
115 	for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
116 		if (KREAD(kd, (u_long)p, &proc)) {
117 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
118 			return (-1);
119 		}
120 		if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
121 			(void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
122 			             &eproc.e_ucred));
123 
124 		switch(what) {
125 
126 		case KERN_PROC_PID:
127 			if (proc.p_pid != (pid_t)arg)
128 				continue;
129 			break;
130 
131 		case KERN_PROC_UID:
132 			if (eproc.e_ucred.cr_uid != (uid_t)arg)
133 				continue;
134 			break;
135 
136 		case KERN_PROC_RUID:
137 			if (eproc.e_pcred.p_ruid != (uid_t)arg)
138 				continue;
139 			break;
140 		}
141 		/*
142 		 * We're going to add another proc to the set.  If this
143 		 * will overflow the buffer, assume the reason is because
144 		 * nprocs (or the proc list) is corrupt and declare an error.
145 		 */
146 		if (cnt >= maxcnt) {
147 			_kvm_err(kd, kd->program, "nprocs corrupt");
148 			return (-1);
149 		}
150 		/*
151 		 * gather eproc
152 		 */
153 		eproc.e_paddr = p;
154 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
155 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
156 				 proc.p_pgrp);
157 			return (-1);
158 		}
159 		if (proc.p_oppid)
160 		  eproc.e_ppid = proc.p_oppid;
161 		else if (proc.p_pptr) {
162 		  if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
163 			_kvm_err(kd, kd->program, "can't read pproc at %x",
164 				 proc.p_pptr);
165 			return (-1);
166 		  }
167 		  eproc.e_ppid = pproc.p_pid;
168 		} else
169 		  eproc.e_ppid = 0;
170 		eproc.e_sess = pgrp.pg_session;
171 		eproc.e_pgid = pgrp.pg_id;
172 		eproc.e_jobc = pgrp.pg_jobc;
173 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
174 			_kvm_err(kd, kd->program, "can't read session at %x",
175 				pgrp.pg_session);
176 			return (-1);
177 		}
178 		(void)memcpy(eproc.e_login, sess.s_login,
179 						sizeof(eproc.e_login));
180 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
181 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
182 				_kvm_err(kd, kd->program,
183 					 "can't read tty at %x", sess.s_ttyp);
184 				return (-1);
185 			}
186 			eproc.e_tdev = tty.t_dev;
187 			eproc.e_tsess = tty.t_session;
188 			if (tty.t_pgrp != NULL) {
189 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
190 					_kvm_err(kd, kd->program,
191 						 "can't read tpgrp at &x",
192 						tty.t_pgrp);
193 					return (-1);
194 				}
195 				eproc.e_tpgid = pgrp.pg_id;
196 			} else
197 				eproc.e_tpgid = -1;
198 		} else
199 			eproc.e_tdev = NODEV;
200 		eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
201 		if (sess.s_leader == p)
202 			eproc.e_flag |= EPROC_SLEADER;
203 		if (proc.p_wmesg)
204 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
205 			    eproc.e_wmesg, WMESGLEN);
206 
207 #ifdef sparc
208 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
209 		    (char *)&eproc.e_vm.vm_rssize,
210 		    sizeof(eproc.e_vm.vm_rssize));
211 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
212 		    (char *)&eproc.e_vm.vm_tsize,
213 		    3 * sizeof(eproc.e_vm.vm_rssize));	/* XXX */
214 #else
215 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
216 		    (char *)&eproc.e_vm, sizeof(eproc.e_vm));
217 #endif
218 		eproc.e_xsize = eproc.e_xrssize = 0;
219 		eproc.e_xccount = eproc.e_xswrss = 0;
220 
221 		switch (what) {
222 
223 		case KERN_PROC_PGRP:
224 			if (eproc.e_pgid != (pid_t)arg)
225 				continue;
226 			break;
227 
228 		case KERN_PROC_TTY:
229 			if ((proc.p_flag & P_CONTROLT) == 0 ||
230 			     eproc.e_tdev != (dev_t)arg)
231 				continue;
232 			break;
233 		}
234 		bcopy(&proc, &bp->kp_proc, sizeof(proc));
235 		bcopy(&eproc, &bp->kp_eproc, sizeof(eproc));
236 		++bp;
237 		++cnt;
238 	}
239 	return (cnt);
240 }
241 
242 /*
243  * Build proc info array by reading in proc list from a crash dump.
244  * Return number of procs read.  maxcnt is the max we will read.
245  */
246 static int
247 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
248 	kvm_t *kd;
249 	int what, arg;
250 	u_long a_allproc;
251 	u_long a_zombproc;
252 	int maxcnt;
253 {
254 	register struct kinfo_proc *bp = kd->procbase;
255 	register int acnt, zcnt;
256 	struct proc *p;
257 
258 	if (KREAD(kd, a_allproc, &p)) {
259 		_kvm_err(kd, kd->program, "cannot read allproc");
260 		return (-1);
261 	}
262 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
263 	if (acnt < 0)
264 		return (acnt);
265 
266 	if (KREAD(kd, a_zombproc, &p)) {
267 		_kvm_err(kd, kd->program, "cannot read zombproc");
268 		return (-1);
269 	}
270 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
271 	if (zcnt < 0)
272 		zcnt = 0;
273 
274 	return (acnt + zcnt);
275 }
276 
277 struct kinfo_proc *
278 kvm_getprocs(kd, op, arg, cnt)
279 	kvm_t *kd;
280 	int op, arg;
281 	int *cnt;
282 {
283 	int mib[4], size, st, nprocs;
284 
285 	if (kd->procbase != 0) {
286 		free((void *)kd->procbase);
287 		/*
288 		 * Clear this pointer in case this call fails.  Otherwise,
289 		 * kvm_close() will free it again.
290 		 */
291 		kd->procbase = 0;
292 	}
293 	if (ISALIVE(kd)) {
294 		size = 0;
295 		mib[0] = CTL_KERN;
296 		mib[1] = KERN_PROC;
297 		mib[2] = op;
298 		mib[3] = arg;
299 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
300 		if (st == -1) {
301 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
302 			return (0);
303 		}
304 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
305 		if (kd->procbase == 0)
306 			return (0);
307 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, kd->procbase, &size, NULL, 0);
308 		if (st == -1) {
309 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
310 			return (0);
311 		}
312 		if (size % sizeof(struct kinfo_proc) != 0) {
313 			_kvm_err(kd, kd->program,
314 				"proc size mismatch (%d total, %d chunks)",
315 				size, sizeof(struct kinfo_proc));
316 			return (0);
317 		}
318 		nprocs = size / sizeof(struct kinfo_proc);
319 	} else {
320 		struct nlist nl[4], *p;
321 
322 		nl[0].n_name = "_nprocs";
323 		nl[1].n_name = "_allproc";
324 		nl[2].n_name = "_zombproc";
325 		nl[3].n_name = 0;
326 
327 		if (kvm_nlist(kd, nl) != 0) {
328 			for (p = nl; p->n_type != 0; ++p)
329 				;
330 			_kvm_err(kd, kd->program,
331 				 "%s: no such symbol", p->n_name);
332 			return (0);
333 		}
334 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
335 			_kvm_err(kd, kd->program, "can't read nprocs");
336 			return (0);
337 		}
338 		size = nprocs * sizeof(struct kinfo_proc);
339 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
340 		if (kd->procbase == 0)
341 			return (0);
342 
343 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
344 				      nl[2].n_value, nprocs);
345 #ifdef notdef
346 		size = nprocs * sizeof(struct kinfo_proc);
347 		(void)realloc(kd->procbase, size);
348 #endif
349 	}
350 	*cnt = nprocs;
351 	return (kd->procbase);
352 }
353 
354 void
355 _kvm_freeprocs(kd)
356 	kvm_t *kd;
357 {
358 	if (kd->procbase) {
359 		free(kd->procbase);
360 		kd->procbase = 0;
361 	}
362 }
363 
364 void *
365 _kvm_realloc(kd, p, n)
366 	kvm_t *kd;
367 	void *p;
368 	size_t n;
369 {
370 	void *np = (void *)realloc(p, n);
371 
372 	if (np == 0)
373 		_kvm_err(kd, kd->program, "out of memory");
374 	return (np);
375 }
376 
377 #ifndef MAX
378 #define MAX(a, b) ((a) > (b) ? (a) : (b))
379 #endif
380 
381 /*
382  * Read in an argument vector from the user address space of process p.
383  * addr if the user-space base address of narg null-terminated contiguous
384  * strings.  This is used to read in both the command arguments and
385  * environment strings.  Read at most maxcnt characters of strings.
386  */
387 static char **
388 kvm_argv(kd, p, addr, narg, maxcnt)
389 	kvm_t *kd;
390 	const struct proc *p;
391 	register u_long addr;
392 	register int narg;
393 	register int maxcnt;
394 {
395 	register char *np, *cp, *ep, *ap;
396 	register u_long oaddr = -1;
397 	register int len, cc;
398 	register char **argv;
399 
400 	/*
401 	 * Check that there aren't an unreasonable number of agruments,
402 	 * and that the address is in user space.
403 	 */
404 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
405 		return (0);
406 
407 	/*
408 	 * kd->argv : work space for fetching the strings from the target
409 	 *            process's space, and is converted for returning to caller
410 	 */
411 	if (kd->argv == 0) {
412 		/*
413 		 * Try to avoid reallocs.
414 		 */
415 		kd->argc = MAX(narg + 1, 32);
416 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
417 						sizeof(*kd->argv));
418 		if (kd->argv == 0)
419 			return (0);
420 	} else if (narg + 1 > kd->argc) {
421 		kd->argc = MAX(2 * kd->argc, narg + 1);
422 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
423 						sizeof(*kd->argv));
424 		if (kd->argv == 0)
425 			return (0);
426 	}
427 	/*
428 	 * kd->argspc : returned to user, this is where the kd->argv
429 	 *              arrays are left pointing to the collected strings.
430 	 */
431 	if (kd->argspc == 0) {
432 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
433 		if (kd->argspc == 0)
434 			return (0);
435 		kd->arglen = PAGE_SIZE;
436 	}
437 	/*
438 	 * kd->argbuf : used to pull in pages from the target process.
439 	 *              the strings are copied out of here.
440 	 */
441 	if (kd->argbuf == 0) {
442 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
443 		if (kd->argbuf == 0)
444 			return (0);
445 	}
446 
447 	/* Pull in the target process'es argv vector */
448 	cc = sizeof(char *) * narg;
449 	if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc)
450 		return (0);
451 	/*
452 	 * ap : saved start address of string we're working on in kd->argspc
453 	 * np : pointer to next place to write in kd->argspc
454 	 * len: length of data in kd->argspc
455 	 * argv: pointer to the argv vector that we are hunting around the
456 	 *       target process space for, and converting to addresses in
457 	 *       our address space (kd->argspc).
458 	 */
459 	ap = np = kd->argspc;
460 	argv = kd->argv;
461 	len = 0;
462 	/*
463 	 * Loop over pages, filling in the argument vector.
464 	 * Note that the argv strings could be pointing *anywhere* in
465 	 * the user address space and are no longer contiguous.
466 	 * Note that *argv is modified when we are going to fetch a string
467 	 * that crosses a page boundary.  We copy the next part of the string
468 	 * into to "np" and eventually convert the pointer.
469 	 */
470 	while (argv < kd->argv + narg && *argv != 0) {
471 
472 		/* get the address that the current argv string is on */
473 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
474 
475 		/* is it the same page as the last one? */
476 		if (addr != oaddr) {
477 			if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) !=
478 			    PAGE_SIZE)
479 				return (0);
480 			oaddr = addr;
481 		}
482 
483 		/* offset within the page... kd->argbuf */
484 		addr = (u_long)*argv & (PAGE_SIZE - 1);
485 
486 		/* cp = start of string, cc = count of chars in this chunk */
487 		cp = kd->argbuf + addr;
488 		cc = PAGE_SIZE - addr;
489 
490 		/* dont get more than asked for by user process */
491 		if (maxcnt > 0 && cc > maxcnt - len)
492 			cc = maxcnt - len;
493 
494 		/* pointer to end of string if we found it in this page */
495 		ep = memchr(cp, '\0', cc);
496 		if (ep != 0)
497 			cc = ep - cp + 1;
498 		/*
499 		 * at this point, cc is the count of the chars that we are
500 		 * going to retrieve this time. we may or may not have found
501 		 * the end of it.  (ep points to the null if the end is known)
502 		 */
503 
504 		/* will we exceed the malloc/realloced buffer? */
505 		if (len + cc > kd->arglen) {
506 			register int off;
507 			register char **pp;
508 			register char *op = kd->argspc;
509 
510 			kd->arglen *= 2;
511 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
512 							  kd->arglen);
513 			if (kd->argspc == 0)
514 				return (0);
515 			/*
516 			 * Adjust argv pointers in case realloc moved
517 			 * the string space.
518 			 */
519 			off = kd->argspc - op;
520 			for (pp = kd->argv; pp < argv; pp++)
521 				*pp += off;
522 			ap += off;
523 			np += off;
524 		}
525 		/* np = where to put the next part of the string in kd->argspc*/
526 		/* np is kinda redundant.. could use "kd->argspc + len" */
527 		memcpy(np, cp, cc);
528 		np += cc;	/* inc counters */
529 		len += cc;
530 
531 		/*
532 		 * if end of string found, set the *argv pointer to the
533 		 * saved beginning of string, and advance. argv points to
534 		 * somewhere in kd->argv..  This is initially relative
535 		 * to the target process, but when we close it off, we set
536 		 * it to point in our address space.
537 		 */
538 		if (ep != 0) {
539 			*argv++ = ap;
540 			ap = np;
541 		} else {
542 			/* update the address relative to the target process */
543 			*argv += cc;
544 		}
545 
546 		if (maxcnt > 0 && len >= maxcnt) {
547 			/*
548 			 * We're stopping prematurely.  Terminate the
549 			 * current string.
550 			 */
551 			if (ep == 0) {
552 				*np = '\0';
553 				*argv++ = ap;
554 			}
555 			break;
556 		}
557 	}
558 	/* Make sure argv is terminated. */
559 	*argv = 0;
560 	return (kd->argv);
561 }
562 
563 static void
564 ps_str_a(p, addr, n)
565 	struct ps_strings *p;
566 	u_long *addr;
567 	int *n;
568 {
569 	*addr = (u_long)p->ps_argvstr;
570 	*n = p->ps_nargvstr;
571 }
572 
573 static void
574 ps_str_e(p, addr, n)
575 	struct ps_strings *p;
576 	u_long *addr;
577 	int *n;
578 {
579 	*addr = (u_long)p->ps_envstr;
580 	*n = p->ps_nenvstr;
581 }
582 
583 /*
584  * Determine if the proc indicated by p is still active.
585  * This test is not 100% foolproof in theory, but chances of
586  * being wrong are very low.
587  */
588 static int
589 proc_verify(kd, kernp, p)
590 	kvm_t *kd;
591 	u_long kernp;
592 	const struct proc *p;
593 {
594 	struct proc kernproc;
595 
596 	/*
597 	 * Just read in the whole proc.  It's not that big relative
598 	 * to the cost of the read system call.
599 	 */
600 	if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) !=
601 	    sizeof(kernproc))
602 		return (0);
603 	return (p->p_pid == kernproc.p_pid &&
604 		(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
605 }
606 
607 static char **
608 kvm_doargv(kd, kp, nchr, info)
609 	kvm_t *kd;
610 	const struct kinfo_proc *kp;
611 	int nchr;
612 	void (*info)(struct ps_strings *, u_long *, int *);
613 {
614 	register const struct proc *p = &kp->kp_proc;
615 	register char **ap;
616 	u_long addr;
617 	int cnt;
618 	struct ps_strings arginfo, *ps_strings;
619 	int mib[2];
620 	size_t len;
621 
622 	ps_strings = NULL;
623 	mib[0] = CTL_KERN;
624 	mib[1] = KERN_PS_STRINGS;
625 	len = sizeof(ps_strings);
626 	if (sysctl(mib, 2, &ps_strings, &len, NULL, 0) < 0 ||
627 	    ps_strings == NULL)
628 		ps_strings = PS_STRINGS;
629 
630 	/*
631 	 * Pointers are stored at the top of the user stack.
632 	 */
633 	if (p->p_stat == SZOMB ||
634 	    kvm_uread(kd, p, ps_strings, (char *)&arginfo,
635 		      sizeof(arginfo)) != sizeof(arginfo))
636 		return (0);
637 
638 	(*info)(&arginfo, &addr, &cnt);
639 	if (cnt == 0)
640 		return (0);
641 	ap = kvm_argv(kd, p, addr, cnt, nchr);
642 	/*
643 	 * For live kernels, make sure this process didn't go away.
644 	 */
645 	if (ap != 0 && ISALIVE(kd) &&
646 	    !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p))
647 		ap = 0;
648 	return (ap);
649 }
650 
651 /*
652  * Get the command args.  This code is now machine independent.
653  */
654 char **
655 kvm_getargv(kd, kp, nchr)
656 	kvm_t *kd;
657 	const struct kinfo_proc *kp;
658 	int nchr;
659 {
660 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
661 }
662 
663 char **
664 kvm_getenvv(kd, kp, nchr)
665 	kvm_t *kd;
666 	const struct kinfo_proc *kp;
667 	int nchr;
668 {
669 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
670 }
671 
672 /*
673  * Read from user space.  The user context is given by p.
674  */
675 ssize_t
676 kvm_uread(kd, p, uva, buf, len)
677 	kvm_t *kd;
678 	register const struct proc *p;
679 	register u_long uva;
680 	register char *buf;
681 	register size_t len;
682 {
683 	register char *cp;
684 	char procfile[MAXPATHLEN];
685 	ssize_t amount;
686 	int fd;
687 
688 	if (!ISALIVE(kd)) {
689 		_kvm_err(kd, kd->program, "cannot read user space from dead kernel");
690 		return(0);
691 	}
692 
693 	cp = buf;
694 
695 	sprintf(procfile, "/proc/%d/mem", p->p_pid);
696 	fd = open(procfile, O_RDONLY, 0);
697 
698 	if (fd < 0) {
699 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
700 		close(fd);
701 		return (0);
702 	}
703 
704 
705 	while (len > 0) {
706 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
707 			_kvm_err(kd, kd->program, "invalid address (%x) in %s", uva, procfile);
708 			break;
709 		}
710 		amount = read(fd, cp, len);
711 		if (amount < 0) {
712 			_kvm_err(kd, kd->program, "error reading %s", procfile);
713 			break;
714 		}
715 		cp += amount;
716 		uva += amount;
717 		len -= amount;
718 	}
719 
720 	close(fd);
721 	return (ssize_t)(cp - buf);
722 }
723