xref: /freebsd/lib/libkvm/kvm_proc.c (revision ce4946daa5ce852d28008dac492029500ab2ee95)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD$
38  */
39 
40 #if defined(LIBC_SCCS) && !defined(lint)
41 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
42 #endif /* LIBC_SCCS and not lint */
43 
44 /*
45  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
46  * users of this code, so we've factored it out into a separate module.
47  * Thus, we keep this grunge out of the other kvm applications (i.e.,
48  * most other applications are interested only in open/close/read/nlist).
49  */
50 
51 #include <sys/param.h>
52 #include <sys/lock.h>
53 #include <sys/mutex.h>
54 #include <sys/user.h>
55 #include <sys/proc.h>
56 #include <sys/exec.h>
57 #include <sys/stat.h>
58 #include <sys/ioctl.h>
59 #include <sys/tty.h>
60 #include <sys/file.h>
61 #include <stdio.h>
62 #include <stdlib.h>
63 #include <unistd.h>
64 #include <nlist.h>
65 #include <kvm.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <vm/swap_pager.h>
70 
71 #include <sys/sysctl.h>
72 
73 #include <limits.h>
74 #include <memory.h>
75 #include <paths.h>
76 
77 #include "kvm_private.h"
78 
79 #if used
80 static char *
81 kvm_readswap(kd, p, va, cnt)
82 	kvm_t *kd;
83 	const struct proc *p;
84 	u_long va;
85 	u_long *cnt;
86 {
87 #ifdef __FreeBSD__
88 	/* XXX Stubbed out, our vm system is differnet */
89 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
90 	return(0);
91 #endif	/* __FreeBSD__ */
92 }
93 #endif
94 
95 #define KREAD(kd, addr, obj) \
96 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
97 
98 /*
99  * Read proc's from memory file into buffer bp, which has space to hold
100  * at most maxcnt procs.
101  */
102 static int
103 kvm_proclist(kd, what, arg, p, bp, maxcnt)
104 	kvm_t *kd;
105 	int what, arg;
106 	struct proc *p;
107 	struct kinfo_proc *bp;
108 	int maxcnt;
109 {
110 	register int cnt = 0;
111 	struct kinfo_proc kinfo_proc, *kp;
112 	struct pgrp pgrp;
113 	struct session sess;
114 	struct tty tty;
115 	struct vmspace vmspace;
116 	struct procsig procsig;
117 	struct pcred pcred;
118 	struct pstats pstats;
119 	struct ucred ucred;
120 	struct proc proc;
121 	struct proc pproc;
122 
123 	kp = &kinfo_proc;
124 	kp->ki_structsize = sizeof(kinfo_proc);
125 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
126 		if (KREAD(kd, (u_long)p, &proc)) {
127 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
128 			return (-1);
129 		}
130 		if (KREAD(kd, (u_long)proc.p_cred, &pcred) == 0) {
131 			kp->ki_ruid = pcred.p_ruid;
132 			kp->ki_svuid = pcred.p_svuid;
133 			kp->ki_rgid = pcred.p_rgid;
134 			kp->ki_svgid = pcred.p_svgid;
135 			(void)(KREAD(kd, (u_long)pcred.pc_ucred, &ucred));
136 			kp->ki_ngroups = ucred.cr_ngroups;
137 			bcopy(ucred.cr_groups, kp->ki_groups,
138 			    NGROUPS * sizeof(gid_t));
139 			kp->ki_uid = ucred.cr_uid;
140 		}
141 
142 		switch(what) {
143 
144 		case KERN_PROC_PID:
145 			if (proc.p_pid != (pid_t)arg)
146 				continue;
147 			break;
148 
149 		case KERN_PROC_UID:
150 			if (kp->ki_uid != (uid_t)arg)
151 				continue;
152 			break;
153 
154 		case KERN_PROC_RUID:
155 			if (kp->ki_ruid != (uid_t)arg)
156 				continue;
157 			break;
158 		}
159 		/*
160 		 * We're going to add another proc to the set.  If this
161 		 * will overflow the buffer, assume the reason is because
162 		 * nprocs (or the proc list) is corrupt and declare an error.
163 		 */
164 		if (cnt >= maxcnt) {
165 			_kvm_err(kd, kd->program, "nprocs corrupt");
166 			return (-1);
167 		}
168 		/*
169 		 * gather kinfo_proc
170 		 */
171 		kp->ki_paddr = p;
172 		kp->ki_addr = proc.p_addr;
173 		kp->ki_args = proc.p_args;
174 		kp->ki_tracep = proc.p_tracep;
175 		kp->ki_textvp = proc.p_textvp;
176 		kp->ki_fd = proc.p_fd;
177 		kp->ki_vmspace = proc.p_vmspace;
178 		if (proc.p_procsig != NULL) {
179 			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
180 				_kvm_err(kd, kd->program,
181 				    "can't read procsig at %x", proc.p_procsig);
182 				return (-1);
183 			}
184 			kp->ki_sigignore = procsig.ps_sigignore;
185 			kp->ki_sigcatch = procsig.ps_sigcatch;
186 		}
187 		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
188 			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
189 				_kvm_err(kd, kd->program,
190 				    "can't read stats at %x", proc.p_stats);
191 				return (-1);
192 			}
193 			kp->ki_start = pstats.p_start;
194 			kp->ki_rusage = pstats.p_ru;
195 			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
196 			    pstats.p_cru.ru_stime.tv_sec;
197 			kp->ki_childtime.tv_usec =
198 			    pstats.p_cru.ru_utime.tv_usec +
199 			    pstats.p_cru.ru_stime.tv_usec;
200 		}
201 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
202 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
203 				 proc.p_pgrp);
204 			return (-1);
205 		}
206 		if (proc.p_oppid)
207 			kp->ki_ppid = proc.p_oppid;
208 		else if (proc.p_pptr) {
209 			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
210 				_kvm_err(kd, kd->program,
211 				    "can't read pproc at %x", proc.p_pptr);
212 				return (-1);
213 			}
214 			kp->ki_ppid = pproc.p_pid;
215 		} else
216 			kp->ki_ppid = 0;
217 		kp->ki_pgid = pgrp.pg_id;
218 		kp->ki_jobc = pgrp.pg_jobc;
219 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
220 			_kvm_err(kd, kd->program, "can't read session at %x",
221 				pgrp.pg_session);
222 			return (-1);
223 		}
224 		kp->ki_sid = sess.s_sid;
225 		(void)memcpy(kp->ki_login, sess.s_login,
226 						sizeof(kp->ki_login));
227 		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
228 		if (sess.s_leader == p)
229 			kp->ki_kiflag |= KI_SLEADER;
230 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
231 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
232 				_kvm_err(kd, kd->program,
233 					 "can't read tty at %x", sess.s_ttyp);
234 				return (-1);
235 			}
236 			kp->ki_tdev = tty.t_dev;
237 			if (tty.t_pgrp != NULL) {
238 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
239 					_kvm_err(kd, kd->program,
240 						 "can't read tpgrp at &x",
241 						tty.t_pgrp);
242 					return (-1);
243 				}
244 				kp->ki_tpgid = pgrp.pg_id;
245 			} else
246 				kp->ki_tpgid = -1;
247 			if (tty.t_session != NULL) {
248 				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
249 					_kvm_err(kd, kd->program,
250 					    "can't read session at %x",
251 					    tty.t_session);
252 					return (-1);
253 				}
254 				kp->ki_tsid = sess.s_sid;
255 			}
256 		} else
257 			kp->ki_tdev = NODEV;
258 		if (proc.p_wmesg)
259 			(void)kvm_read(kd, (u_long)proc.p_wmesg,
260 			    kp->ki_wmesg, WMESGLEN);
261 
262 #ifdef sparc
263 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
264 		    (char *)&kp->ki_rssize,
265 		    sizeof(kp->ki_rssize));
266 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
267 		    (char *)&kp->ki_tsize,
268 		    3 * sizeof(kp->ki_rssize));	/* XXX */
269 #else
270 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
271 		    (char *)&vmspace, sizeof(vmspace));
272 		kp->ki_size = vmspace.vm_map.size;
273 		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
274 		kp->ki_swrss = vmspace.vm_swrss;
275 		kp->ki_tsize = vmspace.vm_tsize;
276 		kp->ki_dsize = vmspace.vm_dsize;
277 		kp->ki_ssize = vmspace.vm_ssize;
278 #endif
279 
280 		switch (what) {
281 
282 		case KERN_PROC_PGRP:
283 			if (kp->ki_pgid != (pid_t)arg)
284 				continue;
285 			break;
286 
287 		case KERN_PROC_TTY:
288 			if ((proc.p_flag & P_CONTROLT) == 0 ||
289 			     kp->ki_tdev != (dev_t)arg)
290 				continue;
291 			break;
292 		}
293 		if (proc.p_comm[0] != 0) {
294 			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
295 			kp->ki_comm[MAXCOMLEN] = 0;
296 		}
297 		if (proc.p_blocked != 0) {
298 			kp->ki_kiflag |= KI_MTXBLOCK;
299 			if (proc.p_mtxname)
300 				(void)kvm_read(kd, (u_long)proc.p_mtxname,
301 				    kp->ki_mtxname, MTXNAMELEN);
302 			kp->ki_mtxname[MTXNAMELEN] = 0;
303 		}
304 		kp->ki_runtime = proc.p_runtime;
305 		kp->ki_pid = proc.p_pid;
306 		kp->ki_siglist = proc.p_siglist;
307 		kp->ki_sigmask = proc.p_sigmask;
308 		kp->ki_xstat = proc.p_xstat;
309 		kp->ki_acflag = proc.p_acflag;
310 		kp->ki_pctcpu = proc.p_pctcpu;
311 		kp->ki_estcpu = proc.p_estcpu;
312 		kp->ki_slptime = proc.p_slptime;
313 		kp->ki_swtime = proc.p_swtime;
314 		kp->ki_flag = proc.p_flag;
315 		kp->ki_sflag = proc.p_sflag;
316 		kp->ki_wchan = proc.p_wchan;
317 		kp->ki_traceflag = proc.p_traceflag;
318 		kp->ki_stat = proc.p_stat;
319 		kp->ki_pri = proc.p_pri;
320 		kp->ki_nice = proc.p_nice;
321 		kp->ki_lock = proc.p_lock;
322 		kp->ki_rqindex = proc.p_rqindex;
323 		kp->ki_oncpu = proc.p_oncpu;
324 		kp->ki_lastcpu = proc.p_lastcpu;
325 		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
326 		++bp;
327 		++cnt;
328 	}
329 	return (cnt);
330 }
331 
332 /*
333  * Build proc info array by reading in proc list from a crash dump.
334  * Return number of procs read.  maxcnt is the max we will read.
335  */
336 static int
337 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
338 	kvm_t *kd;
339 	int what, arg;
340 	u_long a_allproc;
341 	u_long a_zombproc;
342 	int maxcnt;
343 {
344 	register struct kinfo_proc *bp = kd->procbase;
345 	register int acnt, zcnt;
346 	struct proc *p;
347 
348 	if (KREAD(kd, a_allproc, &p)) {
349 		_kvm_err(kd, kd->program, "cannot read allproc");
350 		return (-1);
351 	}
352 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
353 	if (acnt < 0)
354 		return (acnt);
355 
356 	if (KREAD(kd, a_zombproc, &p)) {
357 		_kvm_err(kd, kd->program, "cannot read zombproc");
358 		return (-1);
359 	}
360 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
361 	if (zcnt < 0)
362 		zcnt = 0;
363 
364 	return (acnt + zcnt);
365 }
366 
367 struct kinfo_proc *
368 kvm_getprocs(kd, op, arg, cnt)
369 	kvm_t *kd;
370 	int op, arg;
371 	int *cnt;
372 {
373 	int mib[4], st, nprocs;
374 	size_t size;
375 
376 	if (kd->procbase != 0) {
377 		free((void *)kd->procbase);
378 		/*
379 		 * Clear this pointer in case this call fails.  Otherwise,
380 		 * kvm_close() will free it again.
381 		 */
382 		kd->procbase = 0;
383 	}
384 	if (ISALIVE(kd)) {
385 		size = 0;
386 		mib[0] = CTL_KERN;
387 		mib[1] = KERN_PROC;
388 		mib[2] = op;
389 		mib[3] = arg;
390 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
391 		if (st == -1) {
392 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
393 			return (0);
394 		}
395 		do {
396 			size += size / 10;
397 			kd->procbase = (struct kinfo_proc *)
398 			    _kvm_realloc(kd, kd->procbase, size);
399 			if (kd->procbase == 0)
400 				return (0);
401 			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
402 			    kd->procbase, &size, NULL, 0);
403 		} while (st == -1 && errno == ENOMEM);
404 		if (st == -1) {
405 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
406 			return (0);
407 		}
408 		if (size > 0 &&
409 		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
410 			_kvm_err(kd, kd->program,
411 			    "kinfo_proc size mismatch (expected %d, got %d)",
412 			    sizeof(struct kinfo_proc),
413 			    kd->procbase->ki_structsize);
414 			return (0);
415 		}
416 		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
417 	} else {
418 		struct nlist nl[4], *p;
419 
420 		nl[0].n_name = "_nprocs";
421 		nl[1].n_name = "_allproc";
422 		nl[2].n_name = "_zombproc";
423 		nl[3].n_name = 0;
424 
425 		if (kvm_nlist(kd, nl) != 0) {
426 			for (p = nl; p->n_type != 0; ++p)
427 				;
428 			_kvm_err(kd, kd->program,
429 				 "%s: no such symbol", p->n_name);
430 			return (0);
431 		}
432 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
433 			_kvm_err(kd, kd->program, "can't read nprocs");
434 			return (0);
435 		}
436 		size = nprocs * sizeof(struct kinfo_proc);
437 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
438 		if (kd->procbase == 0)
439 			return (0);
440 
441 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
442 				      nl[2].n_value, nprocs);
443 #ifdef notdef
444 		size = nprocs * sizeof(struct kinfo_proc);
445 		(void)realloc(kd->procbase, size);
446 #endif
447 	}
448 	*cnt = nprocs;
449 	return (kd->procbase);
450 }
451 
452 void
453 _kvm_freeprocs(kd)
454 	kvm_t *kd;
455 {
456 	if (kd->procbase) {
457 		free(kd->procbase);
458 		kd->procbase = 0;
459 	}
460 }
461 
462 void *
463 _kvm_realloc(kd, p, n)
464 	kvm_t *kd;
465 	void *p;
466 	size_t n;
467 {
468 	void *np = (void *)realloc(p, n);
469 
470 	if (np == 0) {
471 		free(p);
472 		_kvm_err(kd, kd->program, "out of memory");
473 	}
474 	return (np);
475 }
476 
477 #ifndef MAX
478 #define MAX(a, b) ((a) > (b) ? (a) : (b))
479 #endif
480 
481 /*
482  * Read in an argument vector from the user address space of process kp.
483  * addr if the user-space base address of narg null-terminated contiguous
484  * strings.  This is used to read in both the command arguments and
485  * environment strings.  Read at most maxcnt characters of strings.
486  */
487 static char **
488 kvm_argv(kd, kp, addr, narg, maxcnt)
489 	kvm_t *kd;
490 	struct kinfo_proc *kp;
491 	register u_long addr;
492 	register int narg;
493 	register int maxcnt;
494 {
495 	register char *np, *cp, *ep, *ap;
496 	register u_long oaddr = -1;
497 	register int len, cc;
498 	register char **argv;
499 
500 	/*
501 	 * Check that there aren't an unreasonable number of agruments,
502 	 * and that the address is in user space.
503 	 */
504 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
505 		return (0);
506 
507 	/*
508 	 * kd->argv : work space for fetching the strings from the target
509 	 *            process's space, and is converted for returning to caller
510 	 */
511 	if (kd->argv == 0) {
512 		/*
513 		 * Try to avoid reallocs.
514 		 */
515 		kd->argc = MAX(narg + 1, 32);
516 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
517 						sizeof(*kd->argv));
518 		if (kd->argv == 0)
519 			return (0);
520 	} else if (narg + 1 > kd->argc) {
521 		kd->argc = MAX(2 * kd->argc, narg + 1);
522 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
523 						sizeof(*kd->argv));
524 		if (kd->argv == 0)
525 			return (0);
526 	}
527 	/*
528 	 * kd->argspc : returned to user, this is where the kd->argv
529 	 *              arrays are left pointing to the collected strings.
530 	 */
531 	if (kd->argspc == 0) {
532 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
533 		if (kd->argspc == 0)
534 			return (0);
535 		kd->arglen = PAGE_SIZE;
536 	}
537 	/*
538 	 * kd->argbuf : used to pull in pages from the target process.
539 	 *              the strings are copied out of here.
540 	 */
541 	if (kd->argbuf == 0) {
542 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
543 		if (kd->argbuf == 0)
544 			return (0);
545 	}
546 
547 	/* Pull in the target process'es argv vector */
548 	cc = sizeof(char *) * narg;
549 	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
550 		return (0);
551 	/*
552 	 * ap : saved start address of string we're working on in kd->argspc
553 	 * np : pointer to next place to write in kd->argspc
554 	 * len: length of data in kd->argspc
555 	 * argv: pointer to the argv vector that we are hunting around the
556 	 *       target process space for, and converting to addresses in
557 	 *       our address space (kd->argspc).
558 	 */
559 	ap = np = kd->argspc;
560 	argv = kd->argv;
561 	len = 0;
562 	/*
563 	 * Loop over pages, filling in the argument vector.
564 	 * Note that the argv strings could be pointing *anywhere* in
565 	 * the user address space and are no longer contiguous.
566 	 * Note that *argv is modified when we are going to fetch a string
567 	 * that crosses a page boundary.  We copy the next part of the string
568 	 * into to "np" and eventually convert the pointer.
569 	 */
570 	while (argv < kd->argv + narg && *argv != 0) {
571 
572 		/* get the address that the current argv string is on */
573 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
574 
575 		/* is it the same page as the last one? */
576 		if (addr != oaddr) {
577 			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
578 			    PAGE_SIZE)
579 				return (0);
580 			oaddr = addr;
581 		}
582 
583 		/* offset within the page... kd->argbuf */
584 		addr = (u_long)*argv & (PAGE_SIZE - 1);
585 
586 		/* cp = start of string, cc = count of chars in this chunk */
587 		cp = kd->argbuf + addr;
588 		cc = PAGE_SIZE - addr;
589 
590 		/* dont get more than asked for by user process */
591 		if (maxcnt > 0 && cc > maxcnt - len)
592 			cc = maxcnt - len;
593 
594 		/* pointer to end of string if we found it in this page */
595 		ep = memchr(cp, '\0', cc);
596 		if (ep != 0)
597 			cc = ep - cp + 1;
598 		/*
599 		 * at this point, cc is the count of the chars that we are
600 		 * going to retrieve this time. we may or may not have found
601 		 * the end of it.  (ep points to the null if the end is known)
602 		 */
603 
604 		/* will we exceed the malloc/realloced buffer? */
605 		if (len + cc > kd->arglen) {
606 			register int off;
607 			register char **pp;
608 			register char *op = kd->argspc;
609 
610 			kd->arglen *= 2;
611 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
612 							  kd->arglen);
613 			if (kd->argspc == 0)
614 				return (0);
615 			/*
616 			 * Adjust argv pointers in case realloc moved
617 			 * the string space.
618 			 */
619 			off = kd->argspc - op;
620 			for (pp = kd->argv; pp < argv; pp++)
621 				*pp += off;
622 			ap += off;
623 			np += off;
624 		}
625 		/* np = where to put the next part of the string in kd->argspc*/
626 		/* np is kinda redundant.. could use "kd->argspc + len" */
627 		memcpy(np, cp, cc);
628 		np += cc;	/* inc counters */
629 		len += cc;
630 
631 		/*
632 		 * if end of string found, set the *argv pointer to the
633 		 * saved beginning of string, and advance. argv points to
634 		 * somewhere in kd->argv..  This is initially relative
635 		 * to the target process, but when we close it off, we set
636 		 * it to point in our address space.
637 		 */
638 		if (ep != 0) {
639 			*argv++ = ap;
640 			ap = np;
641 		} else {
642 			/* update the address relative to the target process */
643 			*argv += cc;
644 		}
645 
646 		if (maxcnt > 0 && len >= maxcnt) {
647 			/*
648 			 * We're stopping prematurely.  Terminate the
649 			 * current string.
650 			 */
651 			if (ep == 0) {
652 				*np = '\0';
653 				*argv++ = ap;
654 			}
655 			break;
656 		}
657 	}
658 	/* Make sure argv is terminated. */
659 	*argv = 0;
660 	return (kd->argv);
661 }
662 
663 static void
664 ps_str_a(p, addr, n)
665 	struct ps_strings *p;
666 	u_long *addr;
667 	int *n;
668 {
669 	*addr = (u_long)p->ps_argvstr;
670 	*n = p->ps_nargvstr;
671 }
672 
673 static void
674 ps_str_e(p, addr, n)
675 	struct ps_strings *p;
676 	u_long *addr;
677 	int *n;
678 {
679 	*addr = (u_long)p->ps_envstr;
680 	*n = p->ps_nenvstr;
681 }
682 
683 /*
684  * Determine if the proc indicated by p is still active.
685  * This test is not 100% foolproof in theory, but chances of
686  * being wrong are very low.
687  */
688 static int
689 proc_verify(curkp)
690 	struct kinfo_proc *curkp;
691 {
692 	struct kinfo_proc newkp;
693 	int mib[4];
694 	size_t len;
695 
696 	mib[0] = CTL_KERN;
697 	mib[1] = KERN_PROC;
698 	mib[2] = KERN_PROC_PID;
699 	mib[3] = curkp->ki_pid;
700 	len = sizeof(newkp);
701 	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
702 		return (0);
703 	return (curkp->ki_pid == newkp.ki_pid &&
704 	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
705 }
706 
707 static char **
708 kvm_doargv(kd, kp, nchr, info)
709 	kvm_t *kd;
710 	struct kinfo_proc *kp;
711 	int nchr;
712 	void (*info)(struct ps_strings *, u_long *, int *);
713 {
714 	char **ap;
715 	u_long addr;
716 	int cnt;
717 	static struct ps_strings arginfo;
718 	static u_long ps_strings;
719 	size_t len;
720 
721 	if (ps_strings == NULL) {
722 		len = sizeof(ps_strings);
723 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
724 		    0) == -1)
725 			ps_strings = PS_STRINGS;
726 	}
727 
728 	/*
729 	 * Pointers are stored at the top of the user stack.
730 	 */
731 	if (kp->ki_stat == SZOMB ||
732 	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
733 		      sizeof(arginfo)) != sizeof(arginfo))
734 		return (0);
735 
736 	(*info)(&arginfo, &addr, &cnt);
737 	if (cnt == 0)
738 		return (0);
739 	ap = kvm_argv(kd, kp, addr, cnt, nchr);
740 	/*
741 	 * For live kernels, make sure this process didn't go away.
742 	 */
743 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
744 		ap = 0;
745 	return (ap);
746 }
747 
748 /*
749  * Get the command args.  This code is now machine independent.
750  */
751 char **
752 kvm_getargv(kd, kp, nchr)
753 	kvm_t *kd;
754 	const struct kinfo_proc *kp;
755 	int nchr;
756 {
757 	int oid[4];
758 	int i;
759 	size_t bufsz;
760 	static int buflen;
761 	static char *buf, *p;
762 	static char **bufp;
763 	static int argc;
764 
765 	if (!ISALIVE(kd)) {
766 		_kvm_err(kd, kd->program,
767 		    "cannot read user space from dead kernel");
768 		return (0);
769 	}
770 
771 	if (!buflen) {
772 		bufsz = sizeof(buflen);
773 		i = sysctlbyname("kern.ps_arg_cache_limit",
774 		    &buflen, &bufsz, NULL, 0);
775 		if (i == -1) {
776 			buflen = 0;
777 		} else {
778 			buf = malloc(buflen);
779 			if (buf == NULL)
780 				buflen = 0;
781 			argc = 32;
782 			bufp = malloc(sizeof(char *) * argc);
783 		}
784 	}
785 	if (buf != NULL) {
786 		oid[0] = CTL_KERN;
787 		oid[1] = KERN_PROC;
788 		oid[2] = KERN_PROC_ARGS;
789 		oid[3] = kp->ki_pid;
790 		bufsz = buflen;
791 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
792 		if (i == 0 && bufsz > 0) {
793 			i = 0;
794 			p = buf;
795 			do {
796 				bufp[i++] = p;
797 				p += strlen(p) + 1;
798 				if (i >= argc) {
799 					argc += argc;
800 					bufp = realloc(bufp,
801 					    sizeof(char *) * argc);
802 				}
803 			} while (p < buf + bufsz);
804 			bufp[i++] = 0;
805 			return (bufp);
806 		}
807 	}
808 	if (kp->ki_flag & P_SYSTEM)
809 		return (NULL);
810 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
811 }
812 
813 char **
814 kvm_getenvv(kd, kp, nchr)
815 	kvm_t *kd;
816 	const struct kinfo_proc *kp;
817 	int nchr;
818 {
819 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
820 }
821 
822 /*
823  * Read from user space.  The user context is given by p.
824  */
825 ssize_t
826 kvm_uread(kd, kp, uva, buf, len)
827 	kvm_t *kd;
828 	struct kinfo_proc *kp;
829 	register u_long uva;
830 	register char *buf;
831 	register size_t len;
832 {
833 	register char *cp;
834 	char procfile[MAXPATHLEN];
835 	ssize_t amount;
836 	int fd;
837 
838 	if (!ISALIVE(kd)) {
839 		_kvm_err(kd, kd->program,
840 		    "cannot read user space from dead kernel");
841 		return (0);
842 	}
843 
844 	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
845 	fd = open(procfile, O_RDONLY, 0);
846 	if (fd < 0) {
847 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
848 		close(fd);
849 		return (0);
850 	}
851 
852 	cp = buf;
853 	while (len > 0) {
854 		errno = 0;
855 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
856 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
857 			    uva, procfile);
858 			break;
859 		}
860 		amount = read(fd, cp, len);
861 		if (amount < 0) {
862 			_kvm_syserr(kd, kd->program, "error reading %s",
863 			    procfile);
864 			break;
865 		}
866 		if (amount == 0) {
867 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
868 			break;
869 		}
870 		cp += amount;
871 		uva += amount;
872 		len -= amount;
873 	}
874 
875 	close(fd);
876 	return ((ssize_t)(cp - buf));
877 }
878