1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software developed by the Computer Systems 8 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 9 * BG 91-66 and contributed to Berkeley. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 __SCCSID("@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"); 39 40 /* 41 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 42 * users of this code, so we've factored it out into a separate module. 43 * Thus, we keep this grunge out of the other kvm applications (i.e., 44 * most other applications are interested only in open/close/read/nlist). 45 */ 46 47 #include <sys/param.h> 48 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 49 #include <sys/ucred.h> 50 #include <sys/queue.h> 51 #include <sys/_lock.h> 52 #include <sys/_mutex.h> 53 #include <sys/_task.h> 54 #include <sys/cpuset.h> 55 #include <sys/user.h> 56 #include <sys/proc.h> 57 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 58 #include <sys/jail.h> 59 #include <sys/exec.h> 60 #include <sys/stat.h> 61 #include <sys/sysent.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <sys/file.h> 65 #include <sys/conf.h> 66 #define _WANT_KW_EXITCODE 67 #include <sys/wait.h> 68 #include <stdio.h> 69 #include <stdlib.h> 70 #include <stdbool.h> 71 #include <unistd.h> 72 #include <nlist.h> 73 #include <kvm.h> 74 75 #include <sys/sysctl.h> 76 77 #include <limits.h> 78 #include <memory.h> 79 #include <paths.h> 80 81 #include "kvm_private.h" 82 83 #define KREAD(kd, addr, obj) \ 84 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 85 86 static int ticks; 87 static int hz; 88 static uint64_t cpu_tick_frequency; 89 90 /* 91 * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is 92 * read/initialized before this function is ever called. 93 */ 94 static uint64_t 95 cputick2usec(uint64_t tick) 96 { 97 98 if (cpu_tick_frequency == 0) 99 return (0); 100 if (tick > 18446744073709551) /* floor(2^64 / 1000) */ 101 return (tick / (cpu_tick_frequency / 1000000)); 102 else if (tick > 18446744073709) /* floor(2^64 / 1000000) */ 103 return ((tick * 1000) / (cpu_tick_frequency / 1000)); 104 else 105 return ((tick * 1000000) / cpu_tick_frequency); 106 } 107 108 /* 109 * Read proc's from memory file into buffer bp, which has space to hold 110 * at most maxcnt procs. 111 */ 112 static int 113 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 114 struct kinfo_proc *bp, int maxcnt) 115 { 116 int cnt = 0; 117 struct kinfo_proc kinfo_proc, *kp; 118 struct pgrp pgrp; 119 struct session sess; 120 struct cdev t_cdev; 121 struct tty tty; 122 struct vmspace vmspace; 123 struct sigacts sigacts; 124 #if 0 125 struct pstats pstats; 126 #endif 127 struct ucred ucred; 128 struct prison pr; 129 struct thread mtd; 130 struct proc proc; 131 struct proc pproc; 132 struct sysentvec sysent; 133 char svname[KI_EMULNAMELEN]; 134 struct thread *td = NULL; 135 bool first_thread; 136 137 kp = &kinfo_proc; 138 kp->ki_structsize = sizeof(kinfo_proc); 139 /* 140 * Loop on the processes, then threads within the process if requested. 141 */ 142 if (what == KERN_PROC_ALL) 143 what |= KERN_PROC_INC_THREAD; 144 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 145 memset(kp, 0, sizeof *kp); 146 if (KREAD(kd, (u_long)p, &proc)) { 147 _kvm_err(kd, kd->program, "can't read proc at %p", p); 148 return (-1); 149 } 150 if (proc.p_state == PRS_NEW) 151 continue; 152 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 153 kp->ki_ruid = ucred.cr_ruid; 154 kp->ki_svuid = ucred.cr_svuid; 155 kp->ki_rgid = ucred.cr_rgid; 156 kp->ki_svgid = ucred.cr_svgid; 157 kp->ki_cr_flags = ucred.cr_flags; 158 if (ucred.cr_ngroups > KI_NGROUPS) { 159 kp->ki_ngroups = KI_NGROUPS; 160 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 161 } else 162 kp->ki_ngroups = ucred.cr_ngroups; 163 kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, 164 kp->ki_ngroups * sizeof(gid_t)); 165 kp->ki_uid = ucred.cr_uid; 166 if (ucred.cr_prison != NULL) { 167 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 168 _kvm_err(kd, kd->program, 169 "can't read prison at %p", 170 ucred.cr_prison); 171 return (-1); 172 } 173 kp->ki_jid = pr.pr_id; 174 } 175 } 176 177 switch(what & ~KERN_PROC_INC_THREAD) { 178 179 case KERN_PROC_GID: 180 if (kp->ki_groups[0] != (gid_t)arg) 181 continue; 182 break; 183 184 case KERN_PROC_PID: 185 if (proc.p_pid != (pid_t)arg) 186 continue; 187 break; 188 189 case KERN_PROC_RGID: 190 if (kp->ki_rgid != (gid_t)arg) 191 continue; 192 break; 193 194 case KERN_PROC_UID: 195 if (kp->ki_uid != (uid_t)arg) 196 continue; 197 break; 198 199 case KERN_PROC_RUID: 200 if (kp->ki_ruid != (uid_t)arg) 201 continue; 202 break; 203 } 204 /* 205 * We're going to add another proc to the set. If this 206 * will overflow the buffer, assume the reason is because 207 * nprocs (or the proc list) is corrupt and declare an error. 208 */ 209 if (cnt >= maxcnt) { 210 _kvm_err(kd, kd->program, "nprocs corrupt"); 211 return (-1); 212 } 213 /* 214 * gather kinfo_proc 215 */ 216 kp->ki_paddr = p; 217 kp->ki_addr = 0; /* XXX uarea */ 218 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 219 kp->ki_args = proc.p_args; 220 kp->ki_numthreads = proc.p_numthreads; 221 kp->ki_tracep = proc.p_tracevp; 222 kp->ki_textvp = proc.p_textvp; 223 kp->ki_fd = proc.p_fd; 224 kp->ki_pd = proc.p_pd; 225 kp->ki_vmspace = proc.p_vmspace; 226 if (proc.p_sigacts != NULL) { 227 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 228 _kvm_err(kd, kd->program, 229 "can't read sigacts at %p", proc.p_sigacts); 230 return (-1); 231 } 232 kp->ki_sigignore = sigacts.ps_sigignore; 233 kp->ki_sigcatch = sigacts.ps_sigcatch; 234 } 235 #if 0 236 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 237 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 238 _kvm_err(kd, kd->program, 239 "can't read stats at %x", proc.p_stats); 240 return (-1); 241 } 242 kp->ki_start = pstats.p_start; 243 244 /* 245 * XXX: The times here are probably zero and need 246 * to be calculated from the raw data in p_rux and 247 * p_crux. 248 */ 249 kp->ki_rusage = pstats.p_ru; 250 kp->ki_childstime = pstats.p_cru.ru_stime; 251 kp->ki_childutime = pstats.p_cru.ru_utime; 252 /* Some callers want child-times in a single value */ 253 timeradd(&kp->ki_childstime, &kp->ki_childutime, 254 &kp->ki_childtime); 255 } 256 #endif 257 if (proc.p_oppid) 258 kp->ki_ppid = proc.p_oppid; 259 else if (proc.p_pptr) { 260 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 261 _kvm_err(kd, kd->program, 262 "can't read pproc at %p", proc.p_pptr); 263 return (-1); 264 } 265 kp->ki_ppid = pproc.p_pid; 266 } else 267 kp->ki_ppid = 0; 268 if (proc.p_pgrp == NULL) 269 goto nopgrp; 270 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 271 _kvm_err(kd, kd->program, "can't read pgrp at %p", 272 proc.p_pgrp); 273 return (-1); 274 } 275 kp->ki_pgid = pgrp.pg_id; 276 kp->ki_jobc = pgrp.pg_jobc; 277 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 278 _kvm_err(kd, kd->program, "can't read session at %p", 279 pgrp.pg_session); 280 return (-1); 281 } 282 kp->ki_sid = sess.s_sid; 283 (void)memcpy(kp->ki_login, sess.s_login, 284 sizeof(kp->ki_login)); 285 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 286 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 287 _kvm_err(kd, kd->program, 288 "can't read tty at %p", sess.s_ttyp); 289 return (-1); 290 } 291 if (tty.t_dev != NULL) { 292 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 293 _kvm_err(kd, kd->program, 294 "can't read cdev at %p", 295 tty.t_dev); 296 return (-1); 297 } 298 #if 0 299 kp->ki_tdev = t_cdev.si_udev; 300 #else 301 kp->ki_tdev = NODEV; 302 #endif 303 } 304 if (tty.t_pgrp != NULL) { 305 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 306 _kvm_err(kd, kd->program, 307 "can't read tpgrp at %p", 308 tty.t_pgrp); 309 return (-1); 310 } 311 kp->ki_tpgid = pgrp.pg_id; 312 } else 313 kp->ki_tpgid = -1; 314 if (tty.t_session != NULL) { 315 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 316 _kvm_err(kd, kd->program, 317 "can't read session at %p", 318 tty.t_session); 319 return (-1); 320 } 321 kp->ki_tsid = sess.s_sid; 322 } 323 } else { 324 nopgrp: 325 kp->ki_tdev = NODEV; 326 } 327 328 (void)kvm_read(kd, (u_long)proc.p_vmspace, 329 (char *)&vmspace, sizeof(vmspace)); 330 kp->ki_size = vmspace.vm_map.size; 331 /* 332 * Approximate the kernel's method of calculating 333 * this field. 334 */ 335 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) 336 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); 337 kp->ki_swrss = vmspace.vm_swrss; 338 kp->ki_tsize = vmspace.vm_tsize; 339 kp->ki_dsize = vmspace.vm_dsize; 340 kp->ki_ssize = vmspace.vm_ssize; 341 342 switch (what & ~KERN_PROC_INC_THREAD) { 343 344 case KERN_PROC_PGRP: 345 if (kp->ki_pgid != (pid_t)arg) 346 continue; 347 break; 348 349 case KERN_PROC_SESSION: 350 if (kp->ki_sid != (pid_t)arg) 351 continue; 352 break; 353 354 case KERN_PROC_TTY: 355 if ((proc.p_flag & P_CONTROLT) == 0 || 356 kp->ki_tdev != (dev_t)arg) 357 continue; 358 break; 359 } 360 if (proc.p_comm[0] != 0) 361 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 362 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 363 sizeof(sysent)); 364 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 365 sizeof(svname)); 366 if (svname[0] != 0) 367 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 368 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); 369 kp->ki_pid = proc.p_pid; 370 kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig); 371 kp->ki_acflag = proc.p_acflag; 372 kp->ki_lock = proc.p_lock; 373 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 374 375 /* Per-thread items; iterate as appropriate. */ 376 td = TAILQ_FIRST(&proc.p_threads); 377 for (first_thread = true; cnt < maxcnt && td != NULL && 378 (first_thread || (what & KERN_PROC_INC_THREAD)); 379 first_thread = false) { 380 if (proc.p_state != PRS_ZOMBIE) { 381 if (KREAD(kd, (u_long)td, &mtd)) { 382 _kvm_err(kd, kd->program, 383 "can't read thread at %p", td); 384 return (-1); 385 } 386 if (what & KERN_PROC_INC_THREAD) 387 td = TAILQ_NEXT(&mtd, td_plist); 388 } else 389 td = NULL; 390 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 391 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 392 kp->ki_wmesg, WMESGLEN); 393 else 394 memset(kp->ki_wmesg, 0, WMESGLEN); 395 if (proc.p_pgrp == NULL) { 396 kp->ki_kiflag = 0; 397 } else { 398 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 399 if (sess.s_leader == p) 400 kp->ki_kiflag |= KI_SLEADER; 401 } 402 if ((proc.p_state != PRS_ZOMBIE) && 403 (mtd.td_blocked != 0)) { 404 kp->ki_kiflag |= KI_LOCKBLOCK; 405 if (mtd.td_lockname) 406 (void)kvm_read(kd, 407 (u_long)mtd.td_lockname, 408 kp->ki_lockname, LOCKNAMELEN); 409 else 410 memset(kp->ki_lockname, 0, 411 LOCKNAMELEN); 412 kp->ki_lockname[LOCKNAMELEN] = 0; 413 } else 414 kp->ki_kiflag &= ~KI_LOCKBLOCK; 415 kp->ki_siglist = proc.p_siglist; 416 if (proc.p_state != PRS_ZOMBIE) { 417 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 418 kp->ki_sigmask = mtd.td_sigmask; 419 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 420 kp->ki_flag = proc.p_flag; 421 kp->ki_sflag = 0; 422 kp->ki_nice = proc.p_nice; 423 kp->ki_traceflag = proc.p_traceflag; 424 if (proc.p_state == PRS_NORMAL) { 425 if (TD_ON_RUNQ(&mtd) || 426 TD_CAN_RUN(&mtd) || 427 TD_IS_RUNNING(&mtd)) { 428 kp->ki_stat = SRUN; 429 } else if (mtd.td_state == 430 TDS_INHIBITED) { 431 if (P_SHOULDSTOP(&proc)) { 432 kp->ki_stat = SSTOP; 433 } else if ( 434 TD_IS_SLEEPING(&mtd)) { 435 kp->ki_stat = SSLEEP; 436 } else if (TD_ON_LOCK(&mtd)) { 437 kp->ki_stat = SLOCK; 438 } else { 439 kp->ki_stat = SWAIT; 440 } 441 } 442 } else { 443 kp->ki_stat = SIDL; 444 } 445 /* Stuff from the thread */ 446 kp->ki_pri.pri_level = mtd.td_priority; 447 kp->ki_pri.pri_native = mtd.td_base_pri; 448 kp->ki_lastcpu = mtd.td_lastcpu; 449 kp->ki_wchan = mtd.td_wchan; 450 kp->ki_oncpu = mtd.td_oncpu; 451 if (mtd.td_name[0] != '\0') 452 strlcpy(kp->ki_tdname, mtd.td_name, 453 sizeof(kp->ki_tdname)); 454 else 455 memset(kp->ki_tdname, 0, 456 sizeof(kp->ki_tdname)); 457 kp->ki_pctcpu = 0; 458 kp->ki_rqindex = 0; 459 460 /* 461 * Note: legacy fields; wraps at NO_CPU_OLD 462 * or the old max CPU value as appropriate 463 */ 464 if (mtd.td_lastcpu == NOCPU) 465 kp->ki_lastcpu_old = NOCPU_OLD; 466 else if (mtd.td_lastcpu > MAXCPU_OLD) 467 kp->ki_lastcpu_old = MAXCPU_OLD; 468 else 469 kp->ki_lastcpu_old = mtd.td_lastcpu; 470 471 if (mtd.td_oncpu == NOCPU) 472 kp->ki_oncpu_old = NOCPU_OLD; 473 else if (mtd.td_oncpu > MAXCPU_OLD) 474 kp->ki_oncpu_old = MAXCPU_OLD; 475 else 476 kp->ki_oncpu_old = mtd.td_oncpu; 477 kp->ki_tid = mtd.td_tid; 478 } else { 479 memset(&kp->ki_sigmask, 0, 480 sizeof(kp->ki_sigmask)); 481 kp->ki_stat = SZOMB; 482 kp->ki_tid = 0; 483 } 484 485 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 486 ++bp; 487 ++cnt; 488 } 489 } 490 return (cnt); 491 } 492 493 /* 494 * Build proc info array by reading in proc list from a crash dump. 495 * Return number of procs read. maxcnt is the max we will read. 496 */ 497 static int 498 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 499 u_long a_zombproc, int maxcnt) 500 { 501 struct kinfo_proc *bp = kd->procbase; 502 int acnt, zcnt = 0; 503 struct proc *p; 504 505 if (KREAD(kd, a_allproc, &p)) { 506 _kvm_err(kd, kd->program, "cannot read allproc"); 507 return (-1); 508 } 509 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 510 if (acnt < 0) 511 return (acnt); 512 513 if (a_zombproc != 0) { 514 if (KREAD(kd, a_zombproc, &p)) { 515 _kvm_err(kd, kd->program, "cannot read zombproc"); 516 return (-1); 517 } 518 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 519 if (zcnt < 0) 520 zcnt = 0; 521 } 522 523 return (acnt + zcnt); 524 } 525 526 struct kinfo_proc * 527 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 528 { 529 int mib[4], st, nprocs; 530 size_t size, osize; 531 int temp_op; 532 533 if (kd->procbase != 0) { 534 free((void *)kd->procbase); 535 /* 536 * Clear this pointer in case this call fails. Otherwise, 537 * kvm_close() will free it again. 538 */ 539 kd->procbase = 0; 540 } 541 if (ISALIVE(kd)) { 542 size = 0; 543 mib[0] = CTL_KERN; 544 mib[1] = KERN_PROC; 545 mib[2] = op; 546 mib[3] = arg; 547 temp_op = op & ~KERN_PROC_INC_THREAD; 548 st = sysctl(mib, 549 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 550 3 : 4, NULL, &size, NULL, 0); 551 if (st == -1) { 552 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 553 return (0); 554 } 555 /* 556 * We can't continue with a size of 0 because we pass 557 * it to realloc() (via _kvm_realloc()), and passing 0 558 * to realloc() results in undefined behavior. 559 */ 560 if (size == 0) { 561 /* 562 * XXX: We should probably return an invalid, 563 * but non-NULL, pointer here so any client 564 * program trying to dereference it will 565 * crash. However, _kvm_freeprocs() calls 566 * free() on kd->procbase if it isn't NULL, 567 * and free()'ing a junk pointer isn't good. 568 * Then again, _kvm_freeprocs() isn't used 569 * anywhere . . . 570 */ 571 kd->procbase = _kvm_malloc(kd, 1); 572 goto liveout; 573 } 574 do { 575 size += size / 10; 576 kd->procbase = (struct kinfo_proc *) 577 _kvm_realloc(kd, kd->procbase, size); 578 if (kd->procbase == NULL) 579 return (0); 580 osize = size; 581 st = sysctl(mib, temp_op == KERN_PROC_ALL || 582 temp_op == KERN_PROC_PROC ? 3 : 4, 583 kd->procbase, &size, NULL, 0); 584 } while (st == -1 && errno == ENOMEM && size == osize); 585 if (st == -1) { 586 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 587 return (0); 588 } 589 /* 590 * We have to check the size again because sysctl() 591 * may "round up" oldlenp if oldp is NULL; hence it 592 * might've told us that there was data to get when 593 * there really isn't any. 594 */ 595 if (size > 0 && 596 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 597 _kvm_err(kd, kd->program, 598 "kinfo_proc size mismatch (expected %zu, got %d)", 599 sizeof(struct kinfo_proc), 600 kd->procbase->ki_structsize); 601 return (0); 602 } 603 liveout: 604 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 605 } else { 606 struct nlist nl[6], *p; 607 struct nlist nlz[2]; 608 609 nl[0].n_name = "_nprocs"; 610 nl[1].n_name = "_allproc"; 611 nl[2].n_name = "_ticks"; 612 nl[3].n_name = "_hz"; 613 nl[4].n_name = "_cpu_tick_frequency"; 614 nl[5].n_name = 0; 615 616 nlz[0].n_name = "_zombproc"; 617 nlz[1].n_name = 0; 618 619 if (!kd->arch->ka_native(kd)) { 620 _kvm_err(kd, kd->program, 621 "cannot read procs from non-native core"); 622 return (0); 623 } 624 625 if (kvm_nlist(kd, nl) != 0) { 626 for (p = nl; p->n_type != 0; ++p) 627 ; 628 _kvm_err(kd, kd->program, 629 "%s: no such symbol", p->n_name); 630 return (0); 631 } 632 (void) kvm_nlist(kd, nlz); /* attempt to get zombproc */ 633 if (KREAD(kd, nl[0].n_value, &nprocs)) { 634 _kvm_err(kd, kd->program, "can't read nprocs"); 635 return (0); 636 } 637 /* 638 * If returning all threads, we don't know how many that 639 * might be. Presume that there are, on average, no more 640 * than 10 threads per process. 641 */ 642 if (op == KERN_PROC_ALL || (op & KERN_PROC_INC_THREAD)) 643 nprocs *= 10; /* XXX */ 644 if (KREAD(kd, nl[2].n_value, &ticks)) { 645 _kvm_err(kd, kd->program, "can't read ticks"); 646 return (0); 647 } 648 if (KREAD(kd, nl[3].n_value, &hz)) { 649 _kvm_err(kd, kd->program, "can't read hz"); 650 return (0); 651 } 652 if (KREAD(kd, nl[4].n_value, &cpu_tick_frequency)) { 653 _kvm_err(kd, kd->program, 654 "can't read cpu_tick_frequency"); 655 return (0); 656 } 657 size = nprocs * sizeof(struct kinfo_proc); 658 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 659 if (kd->procbase == NULL) 660 return (0); 661 662 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 663 nlz[0].n_value, nprocs); 664 if (nprocs <= 0) { 665 _kvm_freeprocs(kd); 666 nprocs = 0; 667 } 668 #ifdef notdef 669 else { 670 size = nprocs * sizeof(struct kinfo_proc); 671 kd->procbase = realloc(kd->procbase, size); 672 } 673 #endif 674 } 675 *cnt = nprocs; 676 return (kd->procbase); 677 } 678 679 void 680 _kvm_freeprocs(kvm_t *kd) 681 { 682 683 free(kd->procbase); 684 kd->procbase = NULL; 685 } 686 687 void * 688 _kvm_realloc(kvm_t *kd, void *p, size_t n) 689 { 690 void *np; 691 692 np = reallocf(p, n); 693 if (np == NULL) 694 _kvm_err(kd, kd->program, "out of memory"); 695 return (np); 696 } 697 698 /* 699 * Get the command args or environment. 700 */ 701 static char ** 702 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr) 703 { 704 int oid[4]; 705 int i; 706 size_t bufsz; 707 static int buflen; 708 static char *buf, *p; 709 static char **bufp; 710 static int argc; 711 char **nbufp; 712 713 if (!ISALIVE(kd)) { 714 _kvm_err(kd, kd->program, 715 "cannot read user space from dead kernel"); 716 return (NULL); 717 } 718 719 if (nchr == 0 || nchr > ARG_MAX) 720 nchr = ARG_MAX; 721 if (buflen == 0) { 722 buf = malloc(nchr); 723 if (buf == NULL) { 724 _kvm_err(kd, kd->program, "cannot allocate memory"); 725 return (NULL); 726 } 727 argc = 32; 728 bufp = malloc(sizeof(char *) * argc); 729 if (bufp == NULL) { 730 free(buf); 731 buf = NULL; 732 _kvm_err(kd, kd->program, "cannot allocate memory"); 733 return (NULL); 734 } 735 buflen = nchr; 736 } else if (nchr > buflen) { 737 p = realloc(buf, nchr); 738 if (p != NULL) { 739 buf = p; 740 buflen = nchr; 741 } 742 } 743 oid[0] = CTL_KERN; 744 oid[1] = KERN_PROC; 745 oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 746 oid[3] = kp->ki_pid; 747 bufsz = buflen; 748 if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) { 749 /* 750 * If the supplied buf is too short to hold the requested 751 * value the sysctl returns with ENOMEM. The buf is filled 752 * with the truncated value and the returned bufsz is equal 753 * to the requested len. 754 */ 755 if (errno != ENOMEM || bufsz != (size_t)buflen) 756 return (NULL); 757 buf[bufsz - 1] = '\0'; 758 errno = 0; 759 } else if (bufsz == 0) 760 return (NULL); 761 i = 0; 762 p = buf; 763 do { 764 bufp[i++] = p; 765 p += strlen(p) + 1; 766 if (i >= argc) { 767 argc += argc; 768 nbufp = realloc(bufp, sizeof(char *) * argc); 769 if (nbufp == NULL) 770 return (NULL); 771 bufp = nbufp; 772 } 773 } while (p < buf + bufsz); 774 bufp[i++] = 0; 775 return (bufp); 776 } 777 778 char ** 779 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 780 { 781 return (kvm_argv(kd, kp, 0, nchr)); 782 } 783 784 char ** 785 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 786 { 787 return (kvm_argv(kd, kp, 1, nchr)); 788 } 789