1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if 0 39 #if defined(LIBC_SCCS) && !defined(lint) 40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 41 #endif /* LIBC_SCCS and not lint */ 42 #endif 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 56 #include <sys/ucred.h> 57 #include <sys/user.h> 58 #include <sys/proc.h> 59 #include <sys/exec.h> 60 #include <sys/stat.h> 61 #include <sys/sysent.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <sys/file.h> 65 #include <sys/conf.h> 66 #include <stdio.h> 67 #include <stdlib.h> 68 #include <unistd.h> 69 #include <nlist.h> 70 #include <kvm.h> 71 72 #include <vm/vm.h> 73 #include <vm/vm_param.h> 74 75 #include <sys/sysctl.h> 76 77 #include <limits.h> 78 #include <memory.h> 79 #include <paths.h> 80 81 #include "kvm_private.h" 82 83 #define KREAD(kd, addr, obj) \ 84 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 85 86 /* 87 * Read proc's from memory file into buffer bp, which has space to hold 88 * at most maxcnt procs. 89 */ 90 static int 91 kvm_proclist(kd, what, arg, p, bp, maxcnt) 92 kvm_t *kd; 93 int what, arg; 94 struct proc *p; 95 struct kinfo_proc *bp; 96 int maxcnt; 97 { 98 int cnt = 0; 99 struct kinfo_proc kinfo_proc, *kp; 100 struct pgrp pgrp; 101 struct session sess; 102 struct cdev t_cdev; 103 struct tty tty; 104 struct vmspace vmspace; 105 struct sigacts sigacts; 106 struct pstats pstats; 107 struct ucred ucred; 108 struct thread mtd; 109 /*struct kse mke;*/ 110 struct ksegrp mkg; 111 struct proc proc; 112 struct proc pproc; 113 struct timeval tv; 114 struct sysentvec sysent; 115 char svname[KI_EMULNAMELEN]; 116 117 kp = &kinfo_proc; 118 kp->ki_structsize = sizeof(kinfo_proc); 119 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 120 memset(kp, 0, sizeof *kp); 121 if (KREAD(kd, (u_long)p, &proc)) { 122 _kvm_err(kd, kd->program, "can't read proc at %x", p); 123 return (-1); 124 } 125 if (proc.p_state != PRS_ZOMBIE) { 126 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 127 &mtd)) { 128 _kvm_err(kd, kd->program, 129 "can't read thread at %x", 130 TAILQ_FIRST(&proc.p_threads)); 131 return (-1); 132 } 133 if ((proc.p_flag & P_SA) == 0) { 134 if (KREAD(kd, 135 (u_long)TAILQ_FIRST(&proc.p_ksegrps), 136 &mkg)) { 137 _kvm_err(kd, kd->program, 138 "can't read ksegrp at %x", 139 TAILQ_FIRST(&proc.p_ksegrps)); 140 return (-1); 141 } 142 #if 0 143 if (KREAD(kd, 144 (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) { 145 _kvm_err(kd, kd->program, 146 "can't read kse at %x", 147 TAILQ_FIRST(&mkg.kg_kseq)); 148 return (-1); 149 } 150 #endif 151 } 152 } 153 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 154 kp->ki_ruid = ucred.cr_ruid; 155 kp->ki_svuid = ucred.cr_svuid; 156 kp->ki_rgid = ucred.cr_rgid; 157 kp->ki_svgid = ucred.cr_svgid; 158 kp->ki_ngroups = ucred.cr_ngroups; 159 bcopy(ucred.cr_groups, kp->ki_groups, 160 NGROUPS * sizeof(gid_t)); 161 kp->ki_uid = ucred.cr_uid; 162 } 163 164 switch(what & ~KERN_PROC_INC_THREAD) { 165 166 case KERN_PROC_GID: 167 if (kp->ki_groups[0] != (gid_t)arg) 168 continue; 169 break; 170 171 case KERN_PROC_PID: 172 if (proc.p_pid != (pid_t)arg) 173 continue; 174 break; 175 176 case KERN_PROC_RGID: 177 if (kp->ki_rgid != (gid_t)arg) 178 continue; 179 break; 180 181 case KERN_PROC_UID: 182 if (kp->ki_uid != (uid_t)arg) 183 continue; 184 break; 185 186 case KERN_PROC_RUID: 187 if (kp->ki_ruid != (uid_t)arg) 188 continue; 189 break; 190 } 191 /* 192 * We're going to add another proc to the set. If this 193 * will overflow the buffer, assume the reason is because 194 * nprocs (or the proc list) is corrupt and declare an error. 195 */ 196 if (cnt >= maxcnt) { 197 _kvm_err(kd, kd->program, "nprocs corrupt"); 198 return (-1); 199 } 200 /* 201 * gather kinfo_proc 202 */ 203 kp->ki_paddr = p; 204 kp->ki_addr = 0; /* XXX uarea */ 205 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 206 kp->ki_args = proc.p_args; 207 kp->ki_tracep = proc.p_tracevp; 208 kp->ki_textvp = proc.p_textvp; 209 kp->ki_fd = proc.p_fd; 210 kp->ki_vmspace = proc.p_vmspace; 211 if (proc.p_sigacts != NULL) { 212 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 213 _kvm_err(kd, kd->program, 214 "can't read sigacts at %x", proc.p_sigacts); 215 return (-1); 216 } 217 kp->ki_sigignore = sigacts.ps_sigignore; 218 kp->ki_sigcatch = sigacts.ps_sigcatch; 219 } 220 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 221 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 222 _kvm_err(kd, kd->program, 223 "can't read stats at %x", proc.p_stats); 224 return (-1); 225 } 226 kp->ki_start = pstats.p_start; 227 228 /* 229 * XXX: The times here are probably zero and need 230 * to be calculated from the raw data in p_rux and 231 * p_crux. 232 */ 233 kp->ki_rusage = pstats.p_ru; 234 kp->ki_childstime = pstats.p_cru.ru_stime; 235 kp->ki_childutime = pstats.p_cru.ru_utime; 236 /* Some callers want child-times in a single value */ 237 timeradd(&kp->ki_childstime, &kp->ki_childutime, 238 &kp->ki_childtime); 239 } 240 if (proc.p_oppid) 241 kp->ki_ppid = proc.p_oppid; 242 else if (proc.p_pptr) { 243 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 244 _kvm_err(kd, kd->program, 245 "can't read pproc at %x", proc.p_pptr); 246 return (-1); 247 } 248 kp->ki_ppid = pproc.p_pid; 249 } else 250 kp->ki_ppid = 0; 251 if (proc.p_pgrp == NULL) 252 goto nopgrp; 253 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 254 _kvm_err(kd, kd->program, "can't read pgrp at %x", 255 proc.p_pgrp); 256 return (-1); 257 } 258 kp->ki_pgid = pgrp.pg_id; 259 kp->ki_jobc = pgrp.pg_jobc; 260 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 261 _kvm_err(kd, kd->program, "can't read session at %x", 262 pgrp.pg_session); 263 return (-1); 264 } 265 kp->ki_sid = sess.s_sid; 266 (void)memcpy(kp->ki_login, sess.s_login, 267 sizeof(kp->ki_login)); 268 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 269 if (sess.s_leader == p) 270 kp->ki_kiflag |= KI_SLEADER; 271 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 272 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 273 _kvm_err(kd, kd->program, 274 "can't read tty at %x", sess.s_ttyp); 275 return (-1); 276 } 277 if (tty.t_dev != NULL) { 278 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 279 _kvm_err(kd, kd->program, 280 "can't read cdev at %x", 281 tty.t_dev); 282 return (-1); 283 } 284 #if 0 285 kp->ki_tdev = t_cdev.si_udev; 286 #else 287 kp->ki_tdev = NULL; 288 #endif 289 } 290 if (tty.t_pgrp != NULL) { 291 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 292 _kvm_err(kd, kd->program, 293 "can't read tpgrp at %x", 294 tty.t_pgrp); 295 return (-1); 296 } 297 kp->ki_tpgid = pgrp.pg_id; 298 } else 299 kp->ki_tpgid = -1; 300 if (tty.t_session != NULL) { 301 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 302 _kvm_err(kd, kd->program, 303 "can't read session at %x", 304 tty.t_session); 305 return (-1); 306 } 307 kp->ki_tsid = sess.s_sid; 308 } 309 } else { 310 nopgrp: 311 kp->ki_tdev = NODEV; 312 } 313 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 314 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 315 kp->ki_wmesg, WMESGLEN); 316 317 (void)kvm_read(kd, (u_long)proc.p_vmspace, 318 (char *)&vmspace, sizeof(vmspace)); 319 kp->ki_size = vmspace.vm_map.size; 320 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 321 kp->ki_swrss = vmspace.vm_swrss; 322 kp->ki_tsize = vmspace.vm_tsize; 323 kp->ki_dsize = vmspace.vm_dsize; 324 kp->ki_ssize = vmspace.vm_ssize; 325 326 switch (what & ~KERN_PROC_INC_THREAD) { 327 328 case KERN_PROC_PGRP: 329 if (kp->ki_pgid != (pid_t)arg) 330 continue; 331 break; 332 333 case KERN_PROC_SESSION: 334 if (kp->ki_sid != (pid_t)arg) 335 continue; 336 break; 337 338 case KERN_PROC_TTY: 339 if ((proc.p_flag & P_CONTROLT) == 0 || 340 kp->ki_tdev != (dev_t)arg) 341 continue; 342 break; 343 } 344 if (proc.p_comm[0] != 0) 345 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 346 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 347 sizeof(sysent)); 348 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 349 sizeof(svname)); 350 if (svname[0] != 0) 351 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 352 if ((proc.p_state != PRS_ZOMBIE) && 353 (mtd.td_blocked != 0)) { 354 kp->ki_kiflag |= KI_LOCKBLOCK; 355 if (mtd.td_lockname) 356 (void)kvm_read(kd, 357 (u_long)mtd.td_lockname, 358 kp->ki_lockname, LOCKNAMELEN); 359 kp->ki_lockname[LOCKNAMELEN] = 0; 360 } 361 bintime2timeval(&proc.p_rux.rux_runtime, &tv); 362 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 363 kp->ki_pid = proc.p_pid; 364 kp->ki_siglist = proc.p_siglist; 365 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 366 kp->ki_sigmask = mtd.td_sigmask; 367 kp->ki_xstat = proc.p_xstat; 368 kp->ki_acflag = proc.p_acflag; 369 kp->ki_lock = proc.p_lock; 370 if (proc.p_state != PRS_ZOMBIE) { 371 kp->ki_swtime = proc.p_swtime; 372 kp->ki_flag = proc.p_flag; 373 kp->ki_sflag = proc.p_sflag; 374 kp->ki_nice = proc.p_nice; 375 kp->ki_traceflag = proc.p_traceflag; 376 if (proc.p_state == PRS_NORMAL) { 377 if (TD_ON_RUNQ(&mtd) || 378 TD_CAN_RUN(&mtd) || 379 TD_IS_RUNNING(&mtd)) { 380 kp->ki_stat = SRUN; 381 } else if (mtd.td_state == 382 TDS_INHIBITED) { 383 if (P_SHOULDSTOP(&proc)) { 384 kp->ki_stat = SSTOP; 385 } else if ( 386 TD_IS_SLEEPING(&mtd)) { 387 kp->ki_stat = SSLEEP; 388 } else if (TD_ON_LOCK(&mtd)) { 389 kp->ki_stat = SLOCK; 390 } else { 391 kp->ki_stat = SWAIT; 392 } 393 } 394 } else { 395 kp->ki_stat = SIDL; 396 } 397 /* Stuff from the thread */ 398 kp->ki_pri.pri_level = mtd.td_priority; 399 kp->ki_pri.pri_native = mtd.td_base_pri; 400 kp->ki_lastcpu = mtd.td_lastcpu; 401 kp->ki_wchan = mtd.td_wchan; 402 kp->ki_oncpu = mtd.td_oncpu; 403 404 if (!(proc.p_flag & P_SA)) { 405 /* stuff from the ksegrp */ 406 kp->ki_slptime = mkg.kg_slptime; 407 kp->ki_pri.pri_class = mkg.kg_pri_class; 408 kp->ki_pri.pri_user = mkg.kg_user_pri; 409 kp->ki_estcpu = mkg.kg_estcpu; 410 411 #if 0 412 /* Stuff from the kse */ 413 kp->ki_pctcpu = mke.ke_pctcpu; 414 kp->ki_rqindex = mke.ke_rqindex; 415 #else 416 kp->ki_pctcpu = 0; 417 kp->ki_rqindex = 0; 418 #endif 419 } else { 420 kp->ki_tdflags = -1; 421 /* All the rest are 0 for now */ 422 } 423 } else { 424 kp->ki_stat = SZOMB; 425 } 426 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 427 ++bp; 428 ++cnt; 429 } 430 return (cnt); 431 } 432 433 /* 434 * Build proc info array by reading in proc list from a crash dump. 435 * Return number of procs read. maxcnt is the max we will read. 436 */ 437 static int 438 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 439 kvm_t *kd; 440 int what, arg; 441 u_long a_allproc; 442 u_long a_zombproc; 443 int maxcnt; 444 { 445 struct kinfo_proc *bp = kd->procbase; 446 int acnt, zcnt; 447 struct proc *p; 448 449 if (KREAD(kd, a_allproc, &p)) { 450 _kvm_err(kd, kd->program, "cannot read allproc"); 451 return (-1); 452 } 453 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 454 if (acnt < 0) 455 return (acnt); 456 457 if (KREAD(kd, a_zombproc, &p)) { 458 _kvm_err(kd, kd->program, "cannot read zombproc"); 459 return (-1); 460 } 461 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 462 if (zcnt < 0) 463 zcnt = 0; 464 465 return (acnt + zcnt); 466 } 467 468 struct kinfo_proc * 469 kvm_getprocs(kd, op, arg, cnt) 470 kvm_t *kd; 471 int op, arg; 472 int *cnt; 473 { 474 int mib[4], st, nprocs; 475 size_t size; 476 int temp_op; 477 478 if (kd->procbase != 0) { 479 free((void *)kd->procbase); 480 /* 481 * Clear this pointer in case this call fails. Otherwise, 482 * kvm_close() will free it again. 483 */ 484 kd->procbase = 0; 485 } 486 if (ISALIVE(kd)) { 487 size = 0; 488 mib[0] = CTL_KERN; 489 mib[1] = KERN_PROC; 490 mib[2] = op; 491 mib[3] = arg; 492 temp_op = op & ~KERN_PROC_INC_THREAD; 493 st = sysctl(mib, 494 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 495 3 : 4, NULL, &size, NULL, 0); 496 if (st == -1) { 497 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 498 return (0); 499 } 500 /* 501 * We can't continue with a size of 0 because we pass 502 * it to realloc() (via _kvm_realloc()), and passing 0 503 * to realloc() results in undefined behavior. 504 */ 505 if (size == 0) { 506 /* 507 * XXX: We should probably return an invalid, 508 * but non-NULL, pointer here so any client 509 * program trying to dereference it will 510 * crash. However, _kvm_freeprocs() calls 511 * free() on kd->procbase if it isn't NULL, 512 * and free()'ing a junk pointer isn't good. 513 * Then again, _kvm_freeprocs() isn't used 514 * anywhere . . . 515 */ 516 kd->procbase = _kvm_malloc(kd, 1); 517 goto liveout; 518 } 519 do { 520 size += size / 10; 521 kd->procbase = (struct kinfo_proc *) 522 _kvm_realloc(kd, kd->procbase, size); 523 if (kd->procbase == 0) 524 return (0); 525 st = sysctl(mib, temp_op == KERN_PROC_ALL || 526 temp_op == KERN_PROC_PROC ? 3 : 4, 527 kd->procbase, &size, NULL, 0); 528 } while (st == -1 && errno == ENOMEM); 529 if (st == -1) { 530 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 531 return (0); 532 } 533 /* 534 * We have to check the size again because sysctl() 535 * may "round up" oldlenp if oldp is NULL; hence it 536 * might've told us that there was data to get when 537 * there really isn't any. 538 */ 539 if (size > 0 && 540 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 541 _kvm_err(kd, kd->program, 542 "kinfo_proc size mismatch (expected %d, got %d)", 543 sizeof(struct kinfo_proc), 544 kd->procbase->ki_structsize); 545 return (0); 546 } 547 liveout: 548 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 549 } else { 550 struct nlist nl[4], *p; 551 552 nl[0].n_name = "_nprocs"; 553 nl[1].n_name = "_allproc"; 554 nl[2].n_name = "_zombproc"; 555 nl[3].n_name = 0; 556 557 if (kvm_nlist(kd, nl) != 0) { 558 for (p = nl; p->n_type != 0; ++p) 559 ; 560 _kvm_err(kd, kd->program, 561 "%s: no such symbol", p->n_name); 562 return (0); 563 } 564 if (KREAD(kd, nl[0].n_value, &nprocs)) { 565 _kvm_err(kd, kd->program, "can't read nprocs"); 566 return (0); 567 } 568 size = nprocs * sizeof(struct kinfo_proc); 569 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 570 if (kd->procbase == 0) 571 return (0); 572 573 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 574 nl[2].n_value, nprocs); 575 #ifdef notdef 576 size = nprocs * sizeof(struct kinfo_proc); 577 (void)realloc(kd->procbase, size); 578 #endif 579 } 580 *cnt = nprocs; 581 return (kd->procbase); 582 } 583 584 void 585 _kvm_freeprocs(kd) 586 kvm_t *kd; 587 { 588 if (kd->procbase) { 589 free(kd->procbase); 590 kd->procbase = 0; 591 } 592 } 593 594 void * 595 _kvm_realloc(kd, p, n) 596 kvm_t *kd; 597 void *p; 598 size_t n; 599 { 600 void *np = (void *)realloc(p, n); 601 602 if (np == 0) { 603 free(p); 604 _kvm_err(kd, kd->program, "out of memory"); 605 } 606 return (np); 607 } 608 609 #ifndef MAX 610 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 611 #endif 612 613 /* 614 * Read in an argument vector from the user address space of process kp. 615 * addr if the user-space base address of narg null-terminated contiguous 616 * strings. This is used to read in both the command arguments and 617 * environment strings. Read at most maxcnt characters of strings. 618 */ 619 static char ** 620 kvm_argv(kd, kp, addr, narg, maxcnt) 621 kvm_t *kd; 622 struct kinfo_proc *kp; 623 u_long addr; 624 int narg; 625 int maxcnt; 626 { 627 char *np, *cp, *ep, *ap; 628 u_long oaddr = -1; 629 int len, cc; 630 char **argv; 631 632 /* 633 * Check that there aren't an unreasonable number of agruments, 634 * and that the address is in user space. 635 */ 636 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 637 return (0); 638 639 /* 640 * kd->argv : work space for fetching the strings from the target 641 * process's space, and is converted for returning to caller 642 */ 643 if (kd->argv == 0) { 644 /* 645 * Try to avoid reallocs. 646 */ 647 kd->argc = MAX(narg + 1, 32); 648 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 649 sizeof(*kd->argv)); 650 if (kd->argv == 0) 651 return (0); 652 } else if (narg + 1 > kd->argc) { 653 kd->argc = MAX(2 * kd->argc, narg + 1); 654 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 655 sizeof(*kd->argv)); 656 if (kd->argv == 0) 657 return (0); 658 } 659 /* 660 * kd->argspc : returned to user, this is where the kd->argv 661 * arrays are left pointing to the collected strings. 662 */ 663 if (kd->argspc == 0) { 664 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 665 if (kd->argspc == 0) 666 return (0); 667 kd->arglen = PAGE_SIZE; 668 } 669 /* 670 * kd->argbuf : used to pull in pages from the target process. 671 * the strings are copied out of here. 672 */ 673 if (kd->argbuf == 0) { 674 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 675 if (kd->argbuf == 0) 676 return (0); 677 } 678 679 /* Pull in the target process'es argv vector */ 680 cc = sizeof(char *) * narg; 681 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 682 return (0); 683 /* 684 * ap : saved start address of string we're working on in kd->argspc 685 * np : pointer to next place to write in kd->argspc 686 * len: length of data in kd->argspc 687 * argv: pointer to the argv vector that we are hunting around the 688 * target process space for, and converting to addresses in 689 * our address space (kd->argspc). 690 */ 691 ap = np = kd->argspc; 692 argv = kd->argv; 693 len = 0; 694 /* 695 * Loop over pages, filling in the argument vector. 696 * Note that the argv strings could be pointing *anywhere* in 697 * the user address space and are no longer contiguous. 698 * Note that *argv is modified when we are going to fetch a string 699 * that crosses a page boundary. We copy the next part of the string 700 * into to "np" and eventually convert the pointer. 701 */ 702 while (argv < kd->argv + narg && *argv != 0) { 703 704 /* get the address that the current argv string is on */ 705 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 706 707 /* is it the same page as the last one? */ 708 if (addr != oaddr) { 709 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 710 PAGE_SIZE) 711 return (0); 712 oaddr = addr; 713 } 714 715 /* offset within the page... kd->argbuf */ 716 addr = (u_long)*argv & (PAGE_SIZE - 1); 717 718 /* cp = start of string, cc = count of chars in this chunk */ 719 cp = kd->argbuf + addr; 720 cc = PAGE_SIZE - addr; 721 722 /* dont get more than asked for by user process */ 723 if (maxcnt > 0 && cc > maxcnt - len) 724 cc = maxcnt - len; 725 726 /* pointer to end of string if we found it in this page */ 727 ep = memchr(cp, '\0', cc); 728 if (ep != 0) 729 cc = ep - cp + 1; 730 /* 731 * at this point, cc is the count of the chars that we are 732 * going to retrieve this time. we may or may not have found 733 * the end of it. (ep points to the null if the end is known) 734 */ 735 736 /* will we exceed the malloc/realloced buffer? */ 737 if (len + cc > kd->arglen) { 738 int off; 739 char **pp; 740 char *op = kd->argspc; 741 742 kd->arglen *= 2; 743 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 744 kd->arglen); 745 if (kd->argspc == 0) 746 return (0); 747 /* 748 * Adjust argv pointers in case realloc moved 749 * the string space. 750 */ 751 off = kd->argspc - op; 752 for (pp = kd->argv; pp < argv; pp++) 753 *pp += off; 754 ap += off; 755 np += off; 756 } 757 /* np = where to put the next part of the string in kd->argspc*/ 758 /* np is kinda redundant.. could use "kd->argspc + len" */ 759 memcpy(np, cp, cc); 760 np += cc; /* inc counters */ 761 len += cc; 762 763 /* 764 * if end of string found, set the *argv pointer to the 765 * saved beginning of string, and advance. argv points to 766 * somewhere in kd->argv.. This is initially relative 767 * to the target process, but when we close it off, we set 768 * it to point in our address space. 769 */ 770 if (ep != 0) { 771 *argv++ = ap; 772 ap = np; 773 } else { 774 /* update the address relative to the target process */ 775 *argv += cc; 776 } 777 778 if (maxcnt > 0 && len >= maxcnt) { 779 /* 780 * We're stopping prematurely. Terminate the 781 * current string. 782 */ 783 if (ep == 0) { 784 *np = '\0'; 785 *argv++ = ap; 786 } 787 break; 788 } 789 } 790 /* Make sure argv is terminated. */ 791 *argv = 0; 792 return (kd->argv); 793 } 794 795 static void 796 ps_str_a(p, addr, n) 797 struct ps_strings *p; 798 u_long *addr; 799 int *n; 800 { 801 *addr = (u_long)p->ps_argvstr; 802 *n = p->ps_nargvstr; 803 } 804 805 static void 806 ps_str_e(p, addr, n) 807 struct ps_strings *p; 808 u_long *addr; 809 int *n; 810 { 811 *addr = (u_long)p->ps_envstr; 812 *n = p->ps_nenvstr; 813 } 814 815 /* 816 * Determine if the proc indicated by p is still active. 817 * This test is not 100% foolproof in theory, but chances of 818 * being wrong are very low. 819 */ 820 static int 821 proc_verify(curkp) 822 struct kinfo_proc *curkp; 823 { 824 struct kinfo_proc newkp; 825 int mib[4]; 826 size_t len; 827 828 mib[0] = CTL_KERN; 829 mib[1] = KERN_PROC; 830 mib[2] = KERN_PROC_PID; 831 mib[3] = curkp->ki_pid; 832 len = sizeof(newkp); 833 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 834 return (0); 835 return (curkp->ki_pid == newkp.ki_pid && 836 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 837 } 838 839 static char ** 840 kvm_doargv(kd, kp, nchr, info) 841 kvm_t *kd; 842 struct kinfo_proc *kp; 843 int nchr; 844 void (*info)(struct ps_strings *, u_long *, int *); 845 { 846 char **ap; 847 u_long addr; 848 int cnt; 849 static struct ps_strings arginfo; 850 static u_long ps_strings; 851 size_t len; 852 853 if (ps_strings == 0) { 854 len = sizeof(ps_strings); 855 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 856 0) == -1) 857 ps_strings = PS_STRINGS; 858 } 859 860 /* 861 * Pointers are stored at the top of the user stack. 862 */ 863 if (kp->ki_stat == SZOMB || 864 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 865 sizeof(arginfo)) != sizeof(arginfo)) 866 return (0); 867 868 (*info)(&arginfo, &addr, &cnt); 869 if (cnt == 0) 870 return (0); 871 ap = kvm_argv(kd, kp, addr, cnt, nchr); 872 /* 873 * For live kernels, make sure this process didn't go away. 874 */ 875 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 876 ap = 0; 877 return (ap); 878 } 879 880 /* 881 * Get the command args. This code is now machine independent. 882 */ 883 char ** 884 kvm_getargv(kd, kp, nchr) 885 kvm_t *kd; 886 const struct kinfo_proc *kp; 887 int nchr; 888 { 889 int oid[4]; 890 int i; 891 size_t bufsz; 892 static unsigned long buflen; 893 static char *buf, *p; 894 static char **bufp; 895 static int argc; 896 897 if (!ISALIVE(kd)) { 898 _kvm_err(kd, kd->program, 899 "cannot read user space from dead kernel"); 900 return (0); 901 } 902 903 if (!buflen) { 904 bufsz = sizeof(buflen); 905 i = sysctlbyname("kern.ps_arg_cache_limit", 906 &buflen, &bufsz, NULL, 0); 907 if (i == -1) { 908 buflen = 0; 909 } else { 910 buf = malloc(buflen); 911 if (buf == NULL) 912 buflen = 0; 913 argc = 32; 914 bufp = malloc(sizeof(char *) * argc); 915 } 916 } 917 if (buf != NULL) { 918 oid[0] = CTL_KERN; 919 oid[1] = KERN_PROC; 920 oid[2] = KERN_PROC_ARGS; 921 oid[3] = kp->ki_pid; 922 bufsz = buflen; 923 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 924 if (i == 0 && bufsz > 0) { 925 i = 0; 926 p = buf; 927 do { 928 bufp[i++] = p; 929 p += strlen(p) + 1; 930 if (i >= argc) { 931 argc += argc; 932 bufp = realloc(bufp, 933 sizeof(char *) * argc); 934 } 935 } while (p < buf + bufsz); 936 bufp[i++] = 0; 937 return (bufp); 938 } 939 } 940 if (kp->ki_flag & P_SYSTEM) 941 return (NULL); 942 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 943 } 944 945 char ** 946 kvm_getenvv(kd, kp, nchr) 947 kvm_t *kd; 948 const struct kinfo_proc *kp; 949 int nchr; 950 { 951 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 952 } 953 954 /* 955 * Read from user space. The user context is given by p. 956 */ 957 ssize_t 958 kvm_uread(kd, kp, uva, buf, len) 959 kvm_t *kd; 960 struct kinfo_proc *kp; 961 u_long uva; 962 char *buf; 963 size_t len; 964 { 965 char *cp; 966 char procfile[MAXPATHLEN]; 967 ssize_t amount; 968 int fd; 969 970 if (!ISALIVE(kd)) { 971 _kvm_err(kd, kd->program, 972 "cannot read user space from dead kernel"); 973 return (0); 974 } 975 976 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 977 fd = open(procfile, O_RDONLY, 0); 978 if (fd < 0) { 979 _kvm_err(kd, kd->program, "cannot open %s", procfile); 980 return (0); 981 } 982 983 cp = buf; 984 while (len > 0) { 985 errno = 0; 986 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 987 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 988 uva, procfile); 989 break; 990 } 991 amount = read(fd, cp, len); 992 if (amount < 0) { 993 _kvm_syserr(kd, kd->program, "error reading %s", 994 procfile); 995 break; 996 } 997 if (amount == 0) { 998 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 999 break; 1000 } 1001 cp += amount; 1002 uva += amount; 1003 len -= amount; 1004 } 1005 1006 close(fd); 1007 return ((ssize_t)(cp - buf)); 1008 } 1009