1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $FreeBSD$ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #if defined(LIBC_SCCS) && !defined(lint) 44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 45 #endif /* LIBC_SCCS and not lint */ 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #define _KERNEL 56 #include <sys/ucred.h> 57 #undef _KERNEL 58 #include <sys/user.h> 59 #include <sys/proc.h> 60 #include <sys/exec.h> 61 #include <sys/stat.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <sys/file.h> 65 #include <stdio.h> 66 #include <stdlib.h> 67 #include <unistd.h> 68 #include <nlist.h> 69 #include <kvm.h> 70 71 #include <vm/vm.h> 72 #include <vm/vm_param.h> 73 #include <vm/swap_pager.h> 74 75 #include <sys/sysctl.h> 76 77 #include <limits.h> 78 #include <memory.h> 79 #include <paths.h> 80 81 #include "kvm_private.h" 82 83 #if used 84 static char * 85 kvm_readswap(kd, p, va, cnt) 86 kvm_t *kd; 87 const struct proc *p; 88 u_long va; 89 u_long *cnt; 90 { 91 #ifdef __FreeBSD__ 92 /* XXX Stubbed out, our vm system is differnet */ 93 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 94 return(0); 95 #endif /* __FreeBSD__ */ 96 } 97 #endif 98 99 #define KREAD(kd, addr, obj) \ 100 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 101 102 /* 103 * Read proc's from memory file into buffer bp, which has space to hold 104 * at most maxcnt procs. 105 */ 106 static int 107 kvm_proclist(kd, what, arg, p, bp, maxcnt) 108 kvm_t *kd; 109 int what, arg; 110 struct proc *p; 111 struct kinfo_proc *bp; 112 int maxcnt; 113 { 114 int cnt = 0; 115 struct kinfo_proc kinfo_proc, *kp; 116 struct pgrp pgrp; 117 struct session sess; 118 struct tty tty; 119 struct vmspace vmspace; 120 struct procsig procsig; 121 struct pstats pstats; 122 struct ucred ucred; 123 struct thread mainthread; 124 struct proc proc; 125 struct proc pproc; 126 struct timeval tv; 127 128 kp = &kinfo_proc; 129 kp->ki_structsize = sizeof(kinfo_proc); 130 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 131 memset(kp, 0, sizeof *kp); 132 if (KREAD(kd, (u_long)p, &proc)) { 133 _kvm_err(kd, kd->program, "can't read proc at %x", p); 134 return (-1); 135 } 136 if (proc.p_state != PRS_ZOMBIE) { 137 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 138 &mainthread)) { 139 _kvm_err(kd, kd->program, 140 "can't read thread at %x", 141 TAILQ_FIRST(&proc.p_threads)); 142 return (-1); 143 } 144 } 145 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 146 kp->ki_ruid = ucred.cr_ruid; 147 kp->ki_svuid = ucred.cr_svuid; 148 kp->ki_rgid = ucred.cr_rgid; 149 kp->ki_svgid = ucred.cr_svgid; 150 kp->ki_ngroups = ucred.cr_ngroups; 151 bcopy(ucred.cr_groups, kp->ki_groups, 152 NGROUPS * sizeof(gid_t)); 153 kp->ki_uid = ucred.cr_uid; 154 } 155 156 switch(what) { 157 158 case KERN_PROC_PID: 159 if (proc.p_pid != (pid_t)arg) 160 continue; 161 break; 162 163 case KERN_PROC_UID: 164 if (kp->ki_uid != (uid_t)arg) 165 continue; 166 break; 167 168 case KERN_PROC_RUID: 169 if (kp->ki_ruid != (uid_t)arg) 170 continue; 171 break; 172 } 173 /* 174 * We're going to add another proc to the set. If this 175 * will overflow the buffer, assume the reason is because 176 * nprocs (or the proc list) is corrupt and declare an error. 177 */ 178 if (cnt >= maxcnt) { 179 _kvm_err(kd, kd->program, "nprocs corrupt"); 180 return (-1); 181 } 182 /* 183 * gather kinfo_proc 184 */ 185 kp->ki_paddr = p; 186 kp->ki_addr = proc.p_uarea; 187 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 188 kp->ki_args = proc.p_args; 189 kp->ki_tracep = proc.p_tracep; 190 kp->ki_textvp = proc.p_textvp; 191 kp->ki_fd = proc.p_fd; 192 kp->ki_vmspace = proc.p_vmspace; 193 if (proc.p_procsig != NULL) { 194 if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) { 195 _kvm_err(kd, kd->program, 196 "can't read procsig at %x", proc.p_procsig); 197 return (-1); 198 } 199 kp->ki_sigignore = procsig.ps_sigignore; 200 kp->ki_sigcatch = procsig.ps_sigcatch; 201 } 202 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 203 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 204 _kvm_err(kd, kd->program, 205 "can't read stats at %x", proc.p_stats); 206 return (-1); 207 } 208 kp->ki_start = pstats.p_start; 209 kp->ki_rusage = pstats.p_ru; 210 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + 211 pstats.p_cru.ru_stime.tv_sec; 212 kp->ki_childtime.tv_usec = 213 pstats.p_cru.ru_utime.tv_usec + 214 pstats.p_cru.ru_stime.tv_usec; 215 } 216 if (proc.p_oppid) 217 kp->ki_ppid = proc.p_oppid; 218 else if (proc.p_pptr) { 219 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 220 _kvm_err(kd, kd->program, 221 "can't read pproc at %x", proc.p_pptr); 222 return (-1); 223 } 224 kp->ki_ppid = pproc.p_pid; 225 } else 226 kp->ki_ppid = 0; 227 if (proc.p_pgrp == NULL) 228 goto nopgrp; 229 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 230 _kvm_err(kd, kd->program, "can't read pgrp at %x", 231 proc.p_pgrp); 232 return (-1); 233 } 234 kp->ki_pgid = pgrp.pg_id; 235 kp->ki_jobc = pgrp.pg_jobc; 236 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 237 _kvm_err(kd, kd->program, "can't read session at %x", 238 pgrp.pg_session); 239 return (-1); 240 } 241 kp->ki_sid = sess.s_sid; 242 (void)memcpy(kp->ki_login, sess.s_login, 243 sizeof(kp->ki_login)); 244 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 245 if (sess.s_leader == p) 246 kp->ki_kiflag |= KI_SLEADER; 247 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 248 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 249 _kvm_err(kd, kd->program, 250 "can't read tty at %x", sess.s_ttyp); 251 return (-1); 252 } 253 kp->ki_tdev = tty.t_dev; 254 if (tty.t_pgrp != NULL) { 255 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 256 _kvm_err(kd, kd->program, 257 "can't read tpgrp at &x", 258 tty.t_pgrp); 259 return (-1); 260 } 261 kp->ki_tpgid = pgrp.pg_id; 262 } else 263 kp->ki_tpgid = -1; 264 if (tty.t_session != NULL) { 265 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 266 _kvm_err(kd, kd->program, 267 "can't read session at %x", 268 tty.t_session); 269 return (-1); 270 } 271 kp->ki_tsid = sess.s_sid; 272 } 273 } else { 274 nopgrp: 275 kp->ki_tdev = NODEV; 276 } 277 if ((proc.p_state != PRS_ZOMBIE) && mainthread.td_wmesg) 278 (void)kvm_read(kd, (u_long)mainthread.td_wmesg, 279 kp->ki_wmesg, WMESGLEN); 280 281 #ifdef sparc 282 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 283 (char *)&kp->ki_rssize, 284 sizeof(kp->ki_rssize)); 285 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 286 (char *)&kp->ki_tsize, 287 3 * sizeof(kp->ki_rssize)); /* XXX */ 288 #else 289 (void)kvm_read(kd, (u_long)proc.p_vmspace, 290 (char *)&vmspace, sizeof(vmspace)); 291 kp->ki_size = vmspace.vm_map.size; 292 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 293 kp->ki_swrss = vmspace.vm_swrss; 294 kp->ki_tsize = vmspace.vm_tsize; 295 kp->ki_dsize = vmspace.vm_dsize; 296 kp->ki_ssize = vmspace.vm_ssize; 297 #endif 298 299 switch (what) { 300 301 case KERN_PROC_PGRP: 302 if (kp->ki_pgid != (pid_t)arg) 303 continue; 304 break; 305 306 case KERN_PROC_TTY: 307 if ((proc.p_flag & P_CONTROLT) == 0 || 308 kp->ki_tdev != (dev_t)arg) 309 continue; 310 break; 311 } 312 if (proc.p_comm[0] != 0) { 313 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 314 kp->ki_comm[MAXCOMLEN] = 0; 315 } 316 if ((proc.p_state != PRS_ZOMBIE) && 317 (mainthread.td_blocked != 0)) { 318 kp->ki_kiflag |= KI_MTXBLOCK; 319 if (mainthread.td_mtxname) 320 (void)kvm_read(kd, 321 (u_long)mainthread.td_mtxname, 322 kp->ki_mtxname, MTXNAMELEN); 323 kp->ki_mtxname[MTXNAMELEN] = 0; 324 } 325 bintime2timeval(&proc.p_runtime, &tv); 326 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 327 kp->ki_pid = proc.p_pid; 328 kp->ki_siglist = proc.p_siglist; 329 kp->ki_sigmask = proc.p_sigmask; 330 kp->ki_xstat = proc.p_xstat; 331 kp->ki_acflag = proc.p_acflag; 332 if (proc.p_state != PRS_ZOMBIE) { 333 kp->ki_pctcpu = proc.p_kse.ke_pctcpu; 334 kp->ki_estcpu = proc.p_ksegrp.kg_estcpu; 335 kp->ki_slptime = proc.p_kse.ke_slptime; 336 kp->ki_swtime = proc.p_swtime; 337 kp->ki_flag = proc.p_flag; 338 kp->ki_sflag = proc.p_sflag; 339 kp->ki_wchan = mainthread.td_wchan; 340 kp->ki_traceflag = proc.p_traceflag; 341 if (proc.p_state == PRS_NORMAL) { 342 if ((mainthread.td_state == TDS_RUNQ) || 343 (mainthread.td_state == TDS_RUNNING)) { 344 kp->ki_stat = SRUN; 345 } else if (mainthread.td_state == TDS_SLP) { 346 kp->ki_stat = SSLEEP; 347 } else if (P_SHOULDSTOP(&proc)) { 348 kp->ki_stat = SSTOP; 349 } else if (mainthread.td_state == TDS_MTX) { 350 kp->ki_stat = SMTX; 351 } else { 352 kp->ki_stat = SWAIT; 353 } 354 } else { 355 kp->ki_stat = SIDL; 356 } 357 kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class; 358 kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri; 359 kp->ki_pri.pri_level = mainthread.td_priority; 360 kp->ki_pri.pri_native = mainthread.td_base_pri; 361 kp->ki_nice = proc.p_ksegrp.kg_nice; 362 kp->ki_lock = proc.p_lock; 363 kp->ki_rqindex = proc.p_kse.ke_rqindex; 364 kp->ki_oncpu = proc.p_kse.ke_oncpu; 365 kp->ki_lastcpu = mainthread.td_lastcpu; 366 } else { 367 kp->ki_stat = SZOMB; 368 } 369 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 370 ++bp; 371 ++cnt; 372 } 373 return (cnt); 374 } 375 376 /* 377 * Build proc info array by reading in proc list from a crash dump. 378 * Return number of procs read. maxcnt is the max we will read. 379 */ 380 static int 381 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 382 kvm_t *kd; 383 int what, arg; 384 u_long a_allproc; 385 u_long a_zombproc; 386 int maxcnt; 387 { 388 struct kinfo_proc *bp = kd->procbase; 389 int acnt, zcnt; 390 struct proc *p; 391 392 if (KREAD(kd, a_allproc, &p)) { 393 _kvm_err(kd, kd->program, "cannot read allproc"); 394 return (-1); 395 } 396 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 397 if (acnt < 0) 398 return (acnt); 399 400 if (KREAD(kd, a_zombproc, &p)) { 401 _kvm_err(kd, kd->program, "cannot read zombproc"); 402 return (-1); 403 } 404 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 405 if (zcnt < 0) 406 zcnt = 0; 407 408 return (acnt + zcnt); 409 } 410 411 struct kinfo_proc * 412 kvm_getprocs(kd, op, arg, cnt) 413 kvm_t *kd; 414 int op, arg; 415 int *cnt; 416 { 417 int mib[4], st, nprocs; 418 size_t size; 419 420 if (kd->procbase != 0) { 421 free((void *)kd->procbase); 422 /* 423 * Clear this pointer in case this call fails. Otherwise, 424 * kvm_close() will free it again. 425 */ 426 kd->procbase = 0; 427 } 428 if (ISALIVE(kd)) { 429 size = 0; 430 mib[0] = CTL_KERN; 431 mib[1] = KERN_PROC; 432 mib[2] = op; 433 mib[3] = arg; 434 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 435 if (st == -1) { 436 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 437 return (0); 438 } 439 /* 440 * We can't continue with a size of 0 because we pass 441 * it to realloc() (via _kvm_realloc()), and passing 0 442 * to realloc() results in undefined behavior. 443 */ 444 if (size == 0) { 445 /* 446 * XXX: We should probably return an invalid, 447 * but non-NULL, pointer here so any client 448 * program trying to dereference it will 449 * crash. However, _kvm_freeprocs() calls 450 * free() on kd->procbase if it isn't NULL, 451 * and free()'ing a junk pointer isn't good. 452 * Then again, _kvm_freeprocs() isn't used 453 * anywhere . . . 454 */ 455 kd->procbase = _kvm_malloc(kd, 1); 456 goto liveout; 457 } 458 do { 459 size += size / 10; 460 kd->procbase = (struct kinfo_proc *) 461 _kvm_realloc(kd, kd->procbase, size); 462 if (kd->procbase == 0) 463 return (0); 464 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 465 kd->procbase, &size, NULL, 0); 466 } while (st == -1 && errno == ENOMEM); 467 if (st == -1) { 468 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 469 return (0); 470 } 471 /* 472 * We have to check the size again because sysctl() 473 * may "round up" oldlenp if oldp is NULL; hence it 474 * might've told us that there was data to get when 475 * there really isn't any. 476 */ 477 if (size > 0 && 478 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 479 _kvm_err(kd, kd->program, 480 "kinfo_proc size mismatch (expected %d, got %d)", 481 sizeof(struct kinfo_proc), 482 kd->procbase->ki_structsize); 483 return (0); 484 } 485 liveout: 486 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 487 } else { 488 struct nlist nl[4], *p; 489 490 nl[0].n_name = "_nprocs"; 491 nl[1].n_name = "_allproc"; 492 nl[2].n_name = "_zombproc"; 493 nl[3].n_name = 0; 494 495 if (kvm_nlist(kd, nl) != 0) { 496 for (p = nl; p->n_type != 0; ++p) 497 ; 498 _kvm_err(kd, kd->program, 499 "%s: no such symbol", p->n_name); 500 return (0); 501 } 502 if (KREAD(kd, nl[0].n_value, &nprocs)) { 503 _kvm_err(kd, kd->program, "can't read nprocs"); 504 return (0); 505 } 506 size = nprocs * sizeof(struct kinfo_proc); 507 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 508 if (kd->procbase == 0) 509 return (0); 510 511 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 512 nl[2].n_value, nprocs); 513 #ifdef notdef 514 size = nprocs * sizeof(struct kinfo_proc); 515 (void)realloc(kd->procbase, size); 516 #endif 517 } 518 *cnt = nprocs; 519 return (kd->procbase); 520 } 521 522 void 523 _kvm_freeprocs(kd) 524 kvm_t *kd; 525 { 526 if (kd->procbase) { 527 free(kd->procbase); 528 kd->procbase = 0; 529 } 530 } 531 532 void * 533 _kvm_realloc(kd, p, n) 534 kvm_t *kd; 535 void *p; 536 size_t n; 537 { 538 void *np = (void *)realloc(p, n); 539 540 if (np == 0) { 541 free(p); 542 _kvm_err(kd, kd->program, "out of memory"); 543 } 544 return (np); 545 } 546 547 #ifndef MAX 548 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 549 #endif 550 551 /* 552 * Read in an argument vector from the user address space of process kp. 553 * addr if the user-space base address of narg null-terminated contiguous 554 * strings. This is used to read in both the command arguments and 555 * environment strings. Read at most maxcnt characters of strings. 556 */ 557 static char ** 558 kvm_argv(kd, kp, addr, narg, maxcnt) 559 kvm_t *kd; 560 struct kinfo_proc *kp; 561 u_long addr; 562 int narg; 563 int maxcnt; 564 { 565 char *np, *cp, *ep, *ap; 566 u_long oaddr = -1; 567 int len, cc; 568 char **argv; 569 570 /* 571 * Check that there aren't an unreasonable number of agruments, 572 * and that the address is in user space. 573 */ 574 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 575 return (0); 576 577 /* 578 * kd->argv : work space for fetching the strings from the target 579 * process's space, and is converted for returning to caller 580 */ 581 if (kd->argv == 0) { 582 /* 583 * Try to avoid reallocs. 584 */ 585 kd->argc = MAX(narg + 1, 32); 586 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 587 sizeof(*kd->argv)); 588 if (kd->argv == 0) 589 return (0); 590 } else if (narg + 1 > kd->argc) { 591 kd->argc = MAX(2 * kd->argc, narg + 1); 592 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 593 sizeof(*kd->argv)); 594 if (kd->argv == 0) 595 return (0); 596 } 597 /* 598 * kd->argspc : returned to user, this is where the kd->argv 599 * arrays are left pointing to the collected strings. 600 */ 601 if (kd->argspc == 0) { 602 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 603 if (kd->argspc == 0) 604 return (0); 605 kd->arglen = PAGE_SIZE; 606 } 607 /* 608 * kd->argbuf : used to pull in pages from the target process. 609 * the strings are copied out of here. 610 */ 611 if (kd->argbuf == 0) { 612 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 613 if (kd->argbuf == 0) 614 return (0); 615 } 616 617 /* Pull in the target process'es argv vector */ 618 cc = sizeof(char *) * narg; 619 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 620 return (0); 621 /* 622 * ap : saved start address of string we're working on in kd->argspc 623 * np : pointer to next place to write in kd->argspc 624 * len: length of data in kd->argspc 625 * argv: pointer to the argv vector that we are hunting around the 626 * target process space for, and converting to addresses in 627 * our address space (kd->argspc). 628 */ 629 ap = np = kd->argspc; 630 argv = kd->argv; 631 len = 0; 632 /* 633 * Loop over pages, filling in the argument vector. 634 * Note that the argv strings could be pointing *anywhere* in 635 * the user address space and are no longer contiguous. 636 * Note that *argv is modified when we are going to fetch a string 637 * that crosses a page boundary. We copy the next part of the string 638 * into to "np" and eventually convert the pointer. 639 */ 640 while (argv < kd->argv + narg && *argv != 0) { 641 642 /* get the address that the current argv string is on */ 643 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 644 645 /* is it the same page as the last one? */ 646 if (addr != oaddr) { 647 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 648 PAGE_SIZE) 649 return (0); 650 oaddr = addr; 651 } 652 653 /* offset within the page... kd->argbuf */ 654 addr = (u_long)*argv & (PAGE_SIZE - 1); 655 656 /* cp = start of string, cc = count of chars in this chunk */ 657 cp = kd->argbuf + addr; 658 cc = PAGE_SIZE - addr; 659 660 /* dont get more than asked for by user process */ 661 if (maxcnt > 0 && cc > maxcnt - len) 662 cc = maxcnt - len; 663 664 /* pointer to end of string if we found it in this page */ 665 ep = memchr(cp, '\0', cc); 666 if (ep != 0) 667 cc = ep - cp + 1; 668 /* 669 * at this point, cc is the count of the chars that we are 670 * going to retrieve this time. we may or may not have found 671 * the end of it. (ep points to the null if the end is known) 672 */ 673 674 /* will we exceed the malloc/realloced buffer? */ 675 if (len + cc > kd->arglen) { 676 int off; 677 char **pp; 678 char *op = kd->argspc; 679 680 kd->arglen *= 2; 681 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 682 kd->arglen); 683 if (kd->argspc == 0) 684 return (0); 685 /* 686 * Adjust argv pointers in case realloc moved 687 * the string space. 688 */ 689 off = kd->argspc - op; 690 for (pp = kd->argv; pp < argv; pp++) 691 *pp += off; 692 ap += off; 693 np += off; 694 } 695 /* np = where to put the next part of the string in kd->argspc*/ 696 /* np is kinda redundant.. could use "kd->argspc + len" */ 697 memcpy(np, cp, cc); 698 np += cc; /* inc counters */ 699 len += cc; 700 701 /* 702 * if end of string found, set the *argv pointer to the 703 * saved beginning of string, and advance. argv points to 704 * somewhere in kd->argv.. This is initially relative 705 * to the target process, but when we close it off, we set 706 * it to point in our address space. 707 */ 708 if (ep != 0) { 709 *argv++ = ap; 710 ap = np; 711 } else { 712 /* update the address relative to the target process */ 713 *argv += cc; 714 } 715 716 if (maxcnt > 0 && len >= maxcnt) { 717 /* 718 * We're stopping prematurely. Terminate the 719 * current string. 720 */ 721 if (ep == 0) { 722 *np = '\0'; 723 *argv++ = ap; 724 } 725 break; 726 } 727 } 728 /* Make sure argv is terminated. */ 729 *argv = 0; 730 return (kd->argv); 731 } 732 733 static void 734 ps_str_a(p, addr, n) 735 struct ps_strings *p; 736 u_long *addr; 737 int *n; 738 { 739 *addr = (u_long)p->ps_argvstr; 740 *n = p->ps_nargvstr; 741 } 742 743 static void 744 ps_str_e(p, addr, n) 745 struct ps_strings *p; 746 u_long *addr; 747 int *n; 748 { 749 *addr = (u_long)p->ps_envstr; 750 *n = p->ps_nenvstr; 751 } 752 753 /* 754 * Determine if the proc indicated by p is still active. 755 * This test is not 100% foolproof in theory, but chances of 756 * being wrong are very low. 757 */ 758 static int 759 proc_verify(curkp) 760 struct kinfo_proc *curkp; 761 { 762 struct kinfo_proc newkp; 763 int mib[4]; 764 size_t len; 765 766 mib[0] = CTL_KERN; 767 mib[1] = KERN_PROC; 768 mib[2] = KERN_PROC_PID; 769 mib[3] = curkp->ki_pid; 770 len = sizeof(newkp); 771 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 772 return (0); 773 return (curkp->ki_pid == newkp.ki_pid && 774 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 775 } 776 777 static char ** 778 kvm_doargv(kd, kp, nchr, info) 779 kvm_t *kd; 780 struct kinfo_proc *kp; 781 int nchr; 782 void (*info)(struct ps_strings *, u_long *, int *); 783 { 784 char **ap; 785 u_long addr; 786 int cnt; 787 static struct ps_strings arginfo; 788 static u_long ps_strings; 789 size_t len; 790 791 if (ps_strings == NULL) { 792 len = sizeof(ps_strings); 793 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 794 0) == -1) 795 ps_strings = PS_STRINGS; 796 } 797 798 /* 799 * Pointers are stored at the top of the user stack. 800 */ 801 if (kp->ki_stat == SZOMB || 802 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 803 sizeof(arginfo)) != sizeof(arginfo)) 804 return (0); 805 806 (*info)(&arginfo, &addr, &cnt); 807 if (cnt == 0) 808 return (0); 809 ap = kvm_argv(kd, kp, addr, cnt, nchr); 810 /* 811 * For live kernels, make sure this process didn't go away. 812 */ 813 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 814 ap = 0; 815 return (ap); 816 } 817 818 /* 819 * Get the command args. This code is now machine independent. 820 */ 821 char ** 822 kvm_getargv(kd, kp, nchr) 823 kvm_t *kd; 824 const struct kinfo_proc *kp; 825 int nchr; 826 { 827 int oid[4]; 828 int i; 829 size_t bufsz; 830 static unsigned long buflen; 831 static char *buf, *p; 832 static char **bufp; 833 static int argc; 834 835 if (!ISALIVE(kd)) { 836 _kvm_err(kd, kd->program, 837 "cannot read user space from dead kernel"); 838 return (0); 839 } 840 841 if (!buflen) { 842 bufsz = sizeof(buflen); 843 i = sysctlbyname("kern.ps_arg_cache_limit", 844 &buflen, &bufsz, NULL, 0); 845 if (i == -1) { 846 buflen = 0; 847 } else { 848 buf = malloc(buflen); 849 if (buf == NULL) 850 buflen = 0; 851 argc = 32; 852 bufp = malloc(sizeof(char *) * argc); 853 } 854 } 855 if (buf != NULL) { 856 oid[0] = CTL_KERN; 857 oid[1] = KERN_PROC; 858 oid[2] = KERN_PROC_ARGS; 859 oid[3] = kp->ki_pid; 860 bufsz = buflen; 861 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 862 if (i == 0 && bufsz > 0) { 863 i = 0; 864 p = buf; 865 do { 866 bufp[i++] = p; 867 p += strlen(p) + 1; 868 if (i >= argc) { 869 argc += argc; 870 bufp = realloc(bufp, 871 sizeof(char *) * argc); 872 } 873 } while (p < buf + bufsz); 874 bufp[i++] = 0; 875 return (bufp); 876 } 877 } 878 if (kp->ki_flag & P_SYSTEM) 879 return (NULL); 880 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 881 } 882 883 char ** 884 kvm_getenvv(kd, kp, nchr) 885 kvm_t *kd; 886 const struct kinfo_proc *kp; 887 int nchr; 888 { 889 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 890 } 891 892 /* 893 * Read from user space. The user context is given by p. 894 */ 895 ssize_t 896 kvm_uread(kd, kp, uva, buf, len) 897 kvm_t *kd; 898 struct kinfo_proc *kp; 899 u_long uva; 900 char *buf; 901 size_t len; 902 { 903 char *cp; 904 char procfile[MAXPATHLEN]; 905 ssize_t amount; 906 int fd; 907 908 if (!ISALIVE(kd)) { 909 _kvm_err(kd, kd->program, 910 "cannot read user space from dead kernel"); 911 return (0); 912 } 913 914 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 915 fd = open(procfile, O_RDONLY, 0); 916 if (fd < 0) { 917 _kvm_err(kd, kd->program, "cannot open %s", procfile); 918 close(fd); 919 return (0); 920 } 921 922 cp = buf; 923 while (len > 0) { 924 errno = 0; 925 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 926 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 927 uva, procfile); 928 break; 929 } 930 amount = read(fd, cp, len); 931 if (amount < 0) { 932 _kvm_syserr(kd, kd->program, "error reading %s", 933 procfile); 934 break; 935 } 936 if (amount == 0) { 937 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 938 break; 939 } 940 cp += amount; 941 uva += amount; 942 len -= amount; 943 } 944 945 close(fd); 946 return ((ssize_t)(cp - buf)); 947 } 948