1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $FreeBSD$ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #if defined(LIBC_SCCS) && !defined(lint) 44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 45 #endif /* LIBC_SCCS and not lint */ 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #include <sys/user.h> 56 #include <sys/proc.h> 57 #include <sys/exec.h> 58 #include <sys/stat.h> 59 #include <sys/ioctl.h> 60 #include <sys/tty.h> 61 #include <sys/file.h> 62 #include <stdio.h> 63 #include <stdlib.h> 64 #include <unistd.h> 65 #include <nlist.h> 66 #include <kvm.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_param.h> 70 #include <vm/swap_pager.h> 71 72 #include <sys/sysctl.h> 73 74 #include <limits.h> 75 #include <memory.h> 76 #include <paths.h> 77 78 #include "kvm_private.h" 79 80 #if used 81 static char * 82 kvm_readswap(kd, p, va, cnt) 83 kvm_t *kd; 84 const struct proc *p; 85 u_long va; 86 u_long *cnt; 87 { 88 #ifdef __FreeBSD__ 89 /* XXX Stubbed out, our vm system is differnet */ 90 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 91 return(0); 92 #endif /* __FreeBSD__ */ 93 } 94 #endif 95 96 #define KREAD(kd, addr, obj) \ 97 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 98 99 /* 100 * Read proc's from memory file into buffer bp, which has space to hold 101 * at most maxcnt procs. 102 */ 103 static int 104 kvm_proclist(kd, what, arg, p, bp, maxcnt) 105 kvm_t *kd; 106 int what, arg; 107 struct proc *p; 108 struct kinfo_proc *bp; 109 int maxcnt; 110 { 111 int cnt = 0; 112 struct kinfo_proc kinfo_proc, *kp; 113 struct pgrp pgrp; 114 struct session sess; 115 struct tty tty; 116 struct vmspace vmspace; 117 struct procsig procsig; 118 struct pstats pstats; 119 struct ucred ucred; 120 struct thread mainthread; 121 struct proc proc; 122 struct proc pproc; 123 struct timeval tv; 124 125 kp = &kinfo_proc; 126 kp->ki_structsize = sizeof(kinfo_proc); 127 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 128 memset(kp, 0, sizeof *kp); 129 if (KREAD(kd, (u_long)p, &proc)) { 130 _kvm_err(kd, kd->program, "can't read proc at %x", p); 131 return (-1); 132 } 133 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 134 &mainthread)) { 135 _kvm_err(kd, kd->program, "can't read thread at %x", 136 TAILQ_FIRST(&proc.p_threads)); 137 return (-1); 138 } 139 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 140 kp->ki_ruid = ucred.cr_ruid; 141 kp->ki_svuid = ucred.cr_svuid; 142 kp->ki_rgid = ucred.cr_rgid; 143 kp->ki_svgid = ucred.cr_svgid; 144 kp->ki_ngroups = ucred.cr_ngroups; 145 bcopy(ucred.cr_groups, kp->ki_groups, 146 NGROUPS * sizeof(gid_t)); 147 kp->ki_uid = ucred.cr_uid; 148 } 149 150 switch(what) { 151 152 case KERN_PROC_PID: 153 if (proc.p_pid != (pid_t)arg) 154 continue; 155 break; 156 157 case KERN_PROC_UID: 158 if (kp->ki_uid != (uid_t)arg) 159 continue; 160 break; 161 162 case KERN_PROC_RUID: 163 if (kp->ki_ruid != (uid_t)arg) 164 continue; 165 break; 166 } 167 /* 168 * We're going to add another proc to the set. If this 169 * will overflow the buffer, assume the reason is because 170 * nprocs (or the proc list) is corrupt and declare an error. 171 */ 172 if (cnt >= maxcnt) { 173 _kvm_err(kd, kd->program, "nprocs corrupt"); 174 return (-1); 175 } 176 /* 177 * gather kinfo_proc 178 */ 179 kp->ki_paddr = p; 180 kp->ki_addr = proc.p_uarea; 181 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 182 kp->ki_args = proc.p_args; 183 kp->ki_tracep = proc.p_tracep; 184 kp->ki_textvp = proc.p_textvp; 185 kp->ki_fd = proc.p_fd; 186 kp->ki_vmspace = proc.p_vmspace; 187 if (proc.p_procsig != NULL) { 188 if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) { 189 _kvm_err(kd, kd->program, 190 "can't read procsig at %x", proc.p_procsig); 191 return (-1); 192 } 193 kp->ki_sigignore = procsig.ps_sigignore; 194 kp->ki_sigcatch = procsig.ps_sigcatch; 195 } 196 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 197 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 198 _kvm_err(kd, kd->program, 199 "can't read stats at %x", proc.p_stats); 200 return (-1); 201 } 202 kp->ki_start = pstats.p_start; 203 kp->ki_rusage = pstats.p_ru; 204 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + 205 pstats.p_cru.ru_stime.tv_sec; 206 kp->ki_childtime.tv_usec = 207 pstats.p_cru.ru_utime.tv_usec + 208 pstats.p_cru.ru_stime.tv_usec; 209 } 210 if (proc.p_oppid) 211 kp->ki_ppid = proc.p_oppid; 212 else if (proc.p_pptr) { 213 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 214 _kvm_err(kd, kd->program, 215 "can't read pproc at %x", proc.p_pptr); 216 return (-1); 217 } 218 kp->ki_ppid = pproc.p_pid; 219 } else 220 kp->ki_ppid = 0; 221 if (proc.p_pgrp == NULL) 222 goto nopgrp; 223 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 224 _kvm_err(kd, kd->program, "can't read pgrp at %x", 225 proc.p_pgrp); 226 return (-1); 227 } 228 kp->ki_pgid = pgrp.pg_id; 229 kp->ki_jobc = pgrp.pg_jobc; 230 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 231 _kvm_err(kd, kd->program, "can't read session at %x", 232 pgrp.pg_session); 233 return (-1); 234 } 235 kp->ki_sid = sess.s_sid; 236 (void)memcpy(kp->ki_login, sess.s_login, 237 sizeof(kp->ki_login)); 238 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 239 if (sess.s_leader == p) 240 kp->ki_kiflag |= KI_SLEADER; 241 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 242 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 243 _kvm_err(kd, kd->program, 244 "can't read tty at %x", sess.s_ttyp); 245 return (-1); 246 } 247 kp->ki_tdev = tty.t_dev; 248 if (tty.t_pgrp != NULL) { 249 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 250 _kvm_err(kd, kd->program, 251 "can't read tpgrp at &x", 252 tty.t_pgrp); 253 return (-1); 254 } 255 kp->ki_tpgid = pgrp.pg_id; 256 } else 257 kp->ki_tpgid = -1; 258 if (tty.t_session != NULL) { 259 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 260 _kvm_err(kd, kd->program, 261 "can't read session at %x", 262 tty.t_session); 263 return (-1); 264 } 265 kp->ki_tsid = sess.s_sid; 266 } 267 } else { 268 nopgrp: 269 kp->ki_tdev = NODEV; 270 } 271 if (mainthread.td_wmesg) /* XXXKSE */ 272 (void)kvm_read(kd, (u_long)mainthread.td_wmesg, 273 kp->ki_wmesg, WMESGLEN); 274 275 #ifdef sparc 276 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 277 (char *)&kp->ki_rssize, 278 sizeof(kp->ki_rssize)); 279 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 280 (char *)&kp->ki_tsize, 281 3 * sizeof(kp->ki_rssize)); /* XXX */ 282 #else 283 (void)kvm_read(kd, (u_long)proc.p_vmspace, 284 (char *)&vmspace, sizeof(vmspace)); 285 kp->ki_size = vmspace.vm_map.size; 286 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 287 kp->ki_swrss = vmspace.vm_swrss; 288 kp->ki_tsize = vmspace.vm_tsize; 289 kp->ki_dsize = vmspace.vm_dsize; 290 kp->ki_ssize = vmspace.vm_ssize; 291 #endif 292 293 switch (what) { 294 295 case KERN_PROC_PGRP: 296 if (kp->ki_pgid != (pid_t)arg) 297 continue; 298 break; 299 300 case KERN_PROC_TTY: 301 if ((proc.p_flag & P_CONTROLT) == 0 || 302 kp->ki_tdev != (dev_t)arg) 303 continue; 304 break; 305 } 306 if (proc.p_comm[0] != 0) { 307 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 308 kp->ki_comm[MAXCOMLEN] = 0; 309 } 310 if (mainthread.td_blocked != 0) { /* XXXKSE */ 311 kp->ki_kiflag |= KI_MTXBLOCK; 312 if (mainthread.td_mtxname) /* XXXKSE */ 313 (void)kvm_read(kd, (u_long)mainthread.td_mtxname, 314 kp->ki_mtxname, MTXNAMELEN); 315 kp->ki_mtxname[MTXNAMELEN] = 0; 316 } 317 bintime2timeval(&proc.p_runtime, &tv); 318 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 319 kp->ki_pid = proc.p_pid; 320 kp->ki_siglist = proc.p_siglist; 321 kp->ki_sigmask = proc.p_sigmask; 322 kp->ki_xstat = proc.p_xstat; 323 kp->ki_acflag = proc.p_acflag; 324 kp->ki_pctcpu = proc.p_kse.ke_pctcpu; /* XXXKSE */ 325 kp->ki_estcpu = proc.p_ksegrp.kg_estcpu; /* XXXKSE */ 326 kp->ki_slptime = proc.p_kse.ke_slptime; /* XXXKSE */ 327 kp->ki_swtime = proc.p_swtime; 328 kp->ki_flag = proc.p_flag; 329 kp->ki_sflag = proc.p_sflag; 330 kp->ki_wchan = mainthread.td_wchan; /* XXXKSE */ 331 kp->ki_traceflag = proc.p_traceflag; 332 kp->ki_stat = proc.p_stat; 333 kp->ki_pri.pri_class = proc.p_ksegrp.kg_pri_class; /* XXXKSE */ 334 kp->ki_pri.pri_user = proc.p_ksegrp.kg_user_pri; /* XXXKSE */ 335 kp->ki_pri.pri_level = mainthread.td_priority; /* XXXKSE */ 336 kp->ki_pri.pri_native = mainthread.td_base_pri; /* XXXKSE */ 337 kp->ki_nice = proc.p_ksegrp.kg_nice; /* XXXKSE */ 338 kp->ki_lock = proc.p_lock; 339 kp->ki_rqindex = proc.p_kse.ke_rqindex; /* XXXKSE */ 340 kp->ki_oncpu = proc.p_kse.ke_oncpu; /* XXXKSE */ 341 kp->ki_lastcpu = mainthread.td_lastcpu; /* XXXKSE */ 342 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 343 ++bp; 344 ++cnt; 345 } 346 return (cnt); 347 } 348 349 /* 350 * Build proc info array by reading in proc list from a crash dump. 351 * Return number of procs read. maxcnt is the max we will read. 352 */ 353 static int 354 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 355 kvm_t *kd; 356 int what, arg; 357 u_long a_allproc; 358 u_long a_zombproc; 359 int maxcnt; 360 { 361 struct kinfo_proc *bp = kd->procbase; 362 int acnt, zcnt; 363 struct proc *p; 364 365 if (KREAD(kd, a_allproc, &p)) { 366 _kvm_err(kd, kd->program, "cannot read allproc"); 367 return (-1); 368 } 369 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 370 if (acnt < 0) 371 return (acnt); 372 373 if (KREAD(kd, a_zombproc, &p)) { 374 _kvm_err(kd, kd->program, "cannot read zombproc"); 375 return (-1); 376 } 377 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 378 if (zcnt < 0) 379 zcnt = 0; 380 381 return (acnt + zcnt); 382 } 383 384 struct kinfo_proc * 385 kvm_getprocs(kd, op, arg, cnt) 386 kvm_t *kd; 387 int op, arg; 388 int *cnt; 389 { 390 int mib[4], st, nprocs; 391 size_t size; 392 393 if (kd->procbase != 0) { 394 free((void *)kd->procbase); 395 /* 396 * Clear this pointer in case this call fails. Otherwise, 397 * kvm_close() will free it again. 398 */ 399 kd->procbase = 0; 400 } 401 if (ISALIVE(kd)) { 402 size = 0; 403 mib[0] = CTL_KERN; 404 mib[1] = KERN_PROC; 405 mib[2] = op; 406 mib[3] = arg; 407 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 408 if (st == -1) { 409 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 410 return (0); 411 } 412 do { 413 size += size / 10; 414 kd->procbase = (struct kinfo_proc *) 415 _kvm_realloc(kd, kd->procbase, size); 416 if (kd->procbase == 0) 417 return (0); 418 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 419 kd->procbase, &size, NULL, 0); 420 } while (st == -1 && errno == ENOMEM); 421 if (st == -1) { 422 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 423 return (0); 424 } 425 if (size > 0 && 426 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 427 _kvm_err(kd, kd->program, 428 "kinfo_proc size mismatch (expected %d, got %d)", 429 sizeof(struct kinfo_proc), 430 kd->procbase->ki_structsize); 431 return (0); 432 } 433 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 434 } else { 435 struct nlist nl[4], *p; 436 437 nl[0].n_name = "_nprocs"; 438 nl[1].n_name = "_allproc"; 439 nl[2].n_name = "_zombproc"; 440 nl[3].n_name = 0; 441 442 if (kvm_nlist(kd, nl) != 0) { 443 for (p = nl; p->n_type != 0; ++p) 444 ; 445 _kvm_err(kd, kd->program, 446 "%s: no such symbol", p->n_name); 447 return (0); 448 } 449 if (KREAD(kd, nl[0].n_value, &nprocs)) { 450 _kvm_err(kd, kd->program, "can't read nprocs"); 451 return (0); 452 } 453 size = nprocs * sizeof(struct kinfo_proc); 454 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 455 if (kd->procbase == 0) 456 return (0); 457 458 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 459 nl[2].n_value, nprocs); 460 #ifdef notdef 461 size = nprocs * sizeof(struct kinfo_proc); 462 (void)realloc(kd->procbase, size); 463 #endif 464 } 465 *cnt = nprocs; 466 return (kd->procbase); 467 } 468 469 void 470 _kvm_freeprocs(kd) 471 kvm_t *kd; 472 { 473 if (kd->procbase) { 474 free(kd->procbase); 475 kd->procbase = 0; 476 } 477 } 478 479 void * 480 _kvm_realloc(kd, p, n) 481 kvm_t *kd; 482 void *p; 483 size_t n; 484 { 485 void *np = (void *)realloc(p, n); 486 487 if (np == 0) { 488 free(p); 489 _kvm_err(kd, kd->program, "out of memory"); 490 } 491 return (np); 492 } 493 494 #ifndef MAX 495 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 496 #endif 497 498 /* 499 * Read in an argument vector from the user address space of process kp. 500 * addr if the user-space base address of narg null-terminated contiguous 501 * strings. This is used to read in both the command arguments and 502 * environment strings. Read at most maxcnt characters of strings. 503 */ 504 static char ** 505 kvm_argv(kd, kp, addr, narg, maxcnt) 506 kvm_t *kd; 507 struct kinfo_proc *kp; 508 u_long addr; 509 int narg; 510 int maxcnt; 511 { 512 char *np, *cp, *ep, *ap; 513 u_long oaddr = -1; 514 int len, cc; 515 char **argv; 516 517 /* 518 * Check that there aren't an unreasonable number of agruments, 519 * and that the address is in user space. 520 */ 521 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 522 return (0); 523 524 /* 525 * kd->argv : work space for fetching the strings from the target 526 * process's space, and is converted for returning to caller 527 */ 528 if (kd->argv == 0) { 529 /* 530 * Try to avoid reallocs. 531 */ 532 kd->argc = MAX(narg + 1, 32); 533 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 534 sizeof(*kd->argv)); 535 if (kd->argv == 0) 536 return (0); 537 } else if (narg + 1 > kd->argc) { 538 kd->argc = MAX(2 * kd->argc, narg + 1); 539 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 540 sizeof(*kd->argv)); 541 if (kd->argv == 0) 542 return (0); 543 } 544 /* 545 * kd->argspc : returned to user, this is where the kd->argv 546 * arrays are left pointing to the collected strings. 547 */ 548 if (kd->argspc == 0) { 549 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 550 if (kd->argspc == 0) 551 return (0); 552 kd->arglen = PAGE_SIZE; 553 } 554 /* 555 * kd->argbuf : used to pull in pages from the target process. 556 * the strings are copied out of here. 557 */ 558 if (kd->argbuf == 0) { 559 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 560 if (kd->argbuf == 0) 561 return (0); 562 } 563 564 /* Pull in the target process'es argv vector */ 565 cc = sizeof(char *) * narg; 566 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 567 return (0); 568 /* 569 * ap : saved start address of string we're working on in kd->argspc 570 * np : pointer to next place to write in kd->argspc 571 * len: length of data in kd->argspc 572 * argv: pointer to the argv vector that we are hunting around the 573 * target process space for, and converting to addresses in 574 * our address space (kd->argspc). 575 */ 576 ap = np = kd->argspc; 577 argv = kd->argv; 578 len = 0; 579 /* 580 * Loop over pages, filling in the argument vector. 581 * Note that the argv strings could be pointing *anywhere* in 582 * the user address space and are no longer contiguous. 583 * Note that *argv is modified when we are going to fetch a string 584 * that crosses a page boundary. We copy the next part of the string 585 * into to "np" and eventually convert the pointer. 586 */ 587 while (argv < kd->argv + narg && *argv != 0) { 588 589 /* get the address that the current argv string is on */ 590 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 591 592 /* is it the same page as the last one? */ 593 if (addr != oaddr) { 594 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 595 PAGE_SIZE) 596 return (0); 597 oaddr = addr; 598 } 599 600 /* offset within the page... kd->argbuf */ 601 addr = (u_long)*argv & (PAGE_SIZE - 1); 602 603 /* cp = start of string, cc = count of chars in this chunk */ 604 cp = kd->argbuf + addr; 605 cc = PAGE_SIZE - addr; 606 607 /* dont get more than asked for by user process */ 608 if (maxcnt > 0 && cc > maxcnt - len) 609 cc = maxcnt - len; 610 611 /* pointer to end of string if we found it in this page */ 612 ep = memchr(cp, '\0', cc); 613 if (ep != 0) 614 cc = ep - cp + 1; 615 /* 616 * at this point, cc is the count of the chars that we are 617 * going to retrieve this time. we may or may not have found 618 * the end of it. (ep points to the null if the end is known) 619 */ 620 621 /* will we exceed the malloc/realloced buffer? */ 622 if (len + cc > kd->arglen) { 623 int off; 624 char **pp; 625 char *op = kd->argspc; 626 627 kd->arglen *= 2; 628 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 629 kd->arglen); 630 if (kd->argspc == 0) 631 return (0); 632 /* 633 * Adjust argv pointers in case realloc moved 634 * the string space. 635 */ 636 off = kd->argspc - op; 637 for (pp = kd->argv; pp < argv; pp++) 638 *pp += off; 639 ap += off; 640 np += off; 641 } 642 /* np = where to put the next part of the string in kd->argspc*/ 643 /* np is kinda redundant.. could use "kd->argspc + len" */ 644 memcpy(np, cp, cc); 645 np += cc; /* inc counters */ 646 len += cc; 647 648 /* 649 * if end of string found, set the *argv pointer to the 650 * saved beginning of string, and advance. argv points to 651 * somewhere in kd->argv.. This is initially relative 652 * to the target process, but when we close it off, we set 653 * it to point in our address space. 654 */ 655 if (ep != 0) { 656 *argv++ = ap; 657 ap = np; 658 } else { 659 /* update the address relative to the target process */ 660 *argv += cc; 661 } 662 663 if (maxcnt > 0 && len >= maxcnt) { 664 /* 665 * We're stopping prematurely. Terminate the 666 * current string. 667 */ 668 if (ep == 0) { 669 *np = '\0'; 670 *argv++ = ap; 671 } 672 break; 673 } 674 } 675 /* Make sure argv is terminated. */ 676 *argv = 0; 677 return (kd->argv); 678 } 679 680 static void 681 ps_str_a(p, addr, n) 682 struct ps_strings *p; 683 u_long *addr; 684 int *n; 685 { 686 *addr = (u_long)p->ps_argvstr; 687 *n = p->ps_nargvstr; 688 } 689 690 static void 691 ps_str_e(p, addr, n) 692 struct ps_strings *p; 693 u_long *addr; 694 int *n; 695 { 696 *addr = (u_long)p->ps_envstr; 697 *n = p->ps_nenvstr; 698 } 699 700 /* 701 * Determine if the proc indicated by p is still active. 702 * This test is not 100% foolproof in theory, but chances of 703 * being wrong are very low. 704 */ 705 static int 706 proc_verify(curkp) 707 struct kinfo_proc *curkp; 708 { 709 struct kinfo_proc newkp; 710 int mib[4]; 711 size_t len; 712 713 mib[0] = CTL_KERN; 714 mib[1] = KERN_PROC; 715 mib[2] = KERN_PROC_PID; 716 mib[3] = curkp->ki_pid; 717 len = sizeof(newkp); 718 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 719 return (0); 720 return (curkp->ki_pid == newkp.ki_pid && 721 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 722 } 723 724 static char ** 725 kvm_doargv(kd, kp, nchr, info) 726 kvm_t *kd; 727 struct kinfo_proc *kp; 728 int nchr; 729 void (*info)(struct ps_strings *, u_long *, int *); 730 { 731 char **ap; 732 u_long addr; 733 int cnt; 734 static struct ps_strings arginfo; 735 static u_long ps_strings; 736 size_t len; 737 738 if (ps_strings == NULL) { 739 len = sizeof(ps_strings); 740 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 741 0) == -1) 742 ps_strings = PS_STRINGS; 743 } 744 745 /* 746 * Pointers are stored at the top of the user stack. 747 */ 748 if (kp->ki_stat == SZOMB || 749 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 750 sizeof(arginfo)) != sizeof(arginfo)) 751 return (0); 752 753 (*info)(&arginfo, &addr, &cnt); 754 if (cnt == 0) 755 return (0); 756 ap = kvm_argv(kd, kp, addr, cnt, nchr); 757 /* 758 * For live kernels, make sure this process didn't go away. 759 */ 760 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 761 ap = 0; 762 return (ap); 763 } 764 765 /* 766 * Get the command args. This code is now machine independent. 767 */ 768 char ** 769 kvm_getargv(kd, kp, nchr) 770 kvm_t *kd; 771 const struct kinfo_proc *kp; 772 int nchr; 773 { 774 int oid[4]; 775 int i; 776 size_t bufsz; 777 static unsigned long buflen; 778 static char *buf, *p; 779 static char **bufp; 780 static int argc; 781 782 if (!ISALIVE(kd)) { 783 _kvm_err(kd, kd->program, 784 "cannot read user space from dead kernel"); 785 return (0); 786 } 787 788 if (!buflen) { 789 bufsz = sizeof(buflen); 790 i = sysctlbyname("kern.ps_arg_cache_limit", 791 &buflen, &bufsz, NULL, 0); 792 if (i == -1) { 793 buflen = 0; 794 } else { 795 buf = malloc(buflen); 796 if (buf == NULL) 797 buflen = 0; 798 argc = 32; 799 bufp = malloc(sizeof(char *) * argc); 800 } 801 } 802 if (buf != NULL) { 803 oid[0] = CTL_KERN; 804 oid[1] = KERN_PROC; 805 oid[2] = KERN_PROC_ARGS; 806 oid[3] = kp->ki_pid; 807 bufsz = buflen; 808 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 809 if (i == 0 && bufsz > 0) { 810 i = 0; 811 p = buf; 812 do { 813 bufp[i++] = p; 814 p += strlen(p) + 1; 815 if (i >= argc) { 816 argc += argc; 817 bufp = realloc(bufp, 818 sizeof(char *) * argc); 819 } 820 } while (p < buf + bufsz); 821 bufp[i++] = 0; 822 return (bufp); 823 } 824 } 825 if (kp->ki_flag & P_SYSTEM) 826 return (NULL); 827 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 828 } 829 830 char ** 831 kvm_getenvv(kd, kp, nchr) 832 kvm_t *kd; 833 const struct kinfo_proc *kp; 834 int nchr; 835 { 836 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 837 } 838 839 /* 840 * Read from user space. The user context is given by p. 841 */ 842 ssize_t 843 kvm_uread(kd, kp, uva, buf, len) 844 kvm_t *kd; 845 struct kinfo_proc *kp; 846 u_long uva; 847 char *buf; 848 size_t len; 849 { 850 char *cp; 851 char procfile[MAXPATHLEN]; 852 ssize_t amount; 853 int fd; 854 855 if (!ISALIVE(kd)) { 856 _kvm_err(kd, kd->program, 857 "cannot read user space from dead kernel"); 858 return (0); 859 } 860 861 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 862 fd = open(procfile, O_RDONLY, 0); 863 if (fd < 0) { 864 _kvm_err(kd, kd->program, "cannot open %s", procfile); 865 close(fd); 866 return (0); 867 } 868 869 cp = buf; 870 while (len > 0) { 871 errno = 0; 872 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 873 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 874 uva, procfile); 875 break; 876 } 877 amount = read(fd, cp, len); 878 if (amount < 0) { 879 _kvm_syserr(kd, kd->program, "error reading %s", 880 procfile); 881 break; 882 } 883 if (amount == 0) { 884 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 885 break; 886 } 887 cp += amount; 888 uva += amount; 889 len -= amount; 890 } 891 892 close(fd); 893 return ((ssize_t)(cp - buf)); 894 } 895