xref: /freebsd/lib/libkvm/kvm_proc.c (revision b3aaa0cc21c63d388230c7ef2a80abd631ff20d5)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 #if 0
35 #if defined(LIBC_SCCS) && !defined(lint)
36 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
37 #endif /* LIBC_SCCS and not lint */
38 #endif
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49 
50 #include <sys/param.h>
51 #define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
52 #include <sys/ucred.h>
53 #include <sys/queue.h>
54 #include <sys/_lock.h>
55 #include <sys/_mutex.h>
56 #include <sys/_task.h>
57 #include <sys/cpuset.h>
58 #include <sys/user.h>
59 #include <sys/proc.h>
60 #define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
61 #include <sys/jail.h>
62 #include <sys/exec.h>
63 #include <sys/stat.h>
64 #include <sys/sysent.h>
65 #include <sys/ioctl.h>
66 #include <sys/tty.h>
67 #include <sys/file.h>
68 #include <sys/conf.h>
69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <unistd.h>
72 #include <nlist.h>
73 #include <kvm.h>
74 
75 #include <vm/vm.h>
76 #include <vm/vm_param.h>
77 
78 #include <sys/sysctl.h>
79 
80 #include <limits.h>
81 #include <memory.h>
82 #include <paths.h>
83 
84 #include "kvm_private.h"
85 
86 #define KREAD(kd, addr, obj) \
87 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
88 
89 static int ticks;
90 static int hz;
91 
92 /*
93  * Read proc's from memory file into buffer bp, which has space to hold
94  * at most maxcnt procs.
95  */
96 static int
97 kvm_proclist(kd, what, arg, p, bp, maxcnt)
98 	kvm_t *kd;
99 	int what, arg;
100 	struct proc *p;
101 	struct kinfo_proc *bp;
102 	int maxcnt;
103 {
104 	int cnt = 0;
105 	struct kinfo_proc kinfo_proc, *kp;
106 	struct pgrp pgrp;
107 	struct session sess;
108 	struct cdev t_cdev;
109 	struct tty tty;
110 	struct vmspace vmspace;
111 	struct sigacts sigacts;
112 	struct pstats pstats;
113 	struct ucred ucred;
114 	struct prison pr;
115 	struct thread mtd;
116 	struct proc proc;
117 	struct proc pproc;
118 	struct timeval tv;
119 	struct sysentvec sysent;
120 	char svname[KI_EMULNAMELEN];
121 
122 	kp = &kinfo_proc;
123 	kp->ki_structsize = sizeof(kinfo_proc);
124 	/*
125 	 * Loop on the processes. this is completely broken because we need to be
126 	 * able to loop on the threads and merge the ones that are the same process some how.
127 	 */
128 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
129 		memset(kp, 0, sizeof *kp);
130 		if (KREAD(kd, (u_long)p, &proc)) {
131 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
132 			return (-1);
133 		}
134 		if (proc.p_state != PRS_ZOMBIE) {
135 			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
136 			    &mtd)) {
137 				_kvm_err(kd, kd->program,
138 				    "can't read thread at %x",
139 				    TAILQ_FIRST(&proc.p_threads));
140 				return (-1);
141 			}
142 		}
143 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
144 			kp->ki_ruid = ucred.cr_ruid;
145 			kp->ki_svuid = ucred.cr_svuid;
146 			kp->ki_rgid = ucred.cr_rgid;
147 			kp->ki_svgid = ucred.cr_svgid;
148 			kp->ki_ngroups = ucred.cr_ngroups;
149 			bcopy(ucred.cr_groups, kp->ki_groups,
150 			    NGROUPS * sizeof(gid_t));
151 			kp->ki_uid = ucred.cr_uid;
152 			if (ucred.cr_prison != NULL) {
153 				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
154 					_kvm_err(kd, kd->program,
155 					    "can't read prison at %x",
156 					    ucred.cr_prison);
157 					return (-1);
158 				}
159 				kp->ki_jid = pr.pr_id;
160 			}
161 		}
162 
163 		switch(what & ~KERN_PROC_INC_THREAD) {
164 
165 		case KERN_PROC_GID:
166 			if (kp->ki_groups[0] != (gid_t)arg)
167 				continue;
168 			break;
169 
170 		case KERN_PROC_PID:
171 			if (proc.p_pid != (pid_t)arg)
172 				continue;
173 			break;
174 
175 		case KERN_PROC_RGID:
176 			if (kp->ki_rgid != (gid_t)arg)
177 				continue;
178 			break;
179 
180 		case KERN_PROC_UID:
181 			if (kp->ki_uid != (uid_t)arg)
182 				continue;
183 			break;
184 
185 		case KERN_PROC_RUID:
186 			if (kp->ki_ruid != (uid_t)arg)
187 				continue;
188 			break;
189 		}
190 		/*
191 		 * We're going to add another proc to the set.  If this
192 		 * will overflow the buffer, assume the reason is because
193 		 * nprocs (or the proc list) is corrupt and declare an error.
194 		 */
195 		if (cnt >= maxcnt) {
196 			_kvm_err(kd, kd->program, "nprocs corrupt");
197 			return (-1);
198 		}
199 		/*
200 		 * gather kinfo_proc
201 		 */
202 		kp->ki_paddr = p;
203 		kp->ki_addr = 0;	/* XXX uarea */
204 		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
205 		kp->ki_args = proc.p_args;
206 		kp->ki_tracep = proc.p_tracevp;
207 		kp->ki_textvp = proc.p_textvp;
208 		kp->ki_fd = proc.p_fd;
209 		kp->ki_vmspace = proc.p_vmspace;
210 		if (proc.p_sigacts != NULL) {
211 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
212 				_kvm_err(kd, kd->program,
213 				    "can't read sigacts at %x", proc.p_sigacts);
214 				return (-1);
215 			}
216 			kp->ki_sigignore = sigacts.ps_sigignore;
217 			kp->ki_sigcatch = sigacts.ps_sigcatch;
218 		}
219 #if 0
220 		if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
221 			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
222 				_kvm_err(kd, kd->program,
223 				    "can't read stats at %x", proc.p_stats);
224 				return (-1);
225 			}
226 			kp->ki_start = pstats.p_start;
227 
228 			/*
229 			 * XXX: The times here are probably zero and need
230 			 * to be calculated from the raw data in p_rux and
231 			 * p_crux.
232 			 */
233 			kp->ki_rusage = pstats.p_ru;
234 			kp->ki_childstime = pstats.p_cru.ru_stime;
235 			kp->ki_childutime = pstats.p_cru.ru_utime;
236 			/* Some callers want child-times in a single value */
237 			timeradd(&kp->ki_childstime, &kp->ki_childutime,
238 			    &kp->ki_childtime);
239 		}
240 #endif
241 		if (proc.p_oppid)
242 			kp->ki_ppid = proc.p_oppid;
243 		else if (proc.p_pptr) {
244 			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
245 				_kvm_err(kd, kd->program,
246 				    "can't read pproc at %x", proc.p_pptr);
247 				return (-1);
248 			}
249 			kp->ki_ppid = pproc.p_pid;
250 		} else
251 			kp->ki_ppid = 0;
252 		if (proc.p_pgrp == NULL)
253 			goto nopgrp;
254 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
255 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
256 				 proc.p_pgrp);
257 			return (-1);
258 		}
259 		kp->ki_pgid = pgrp.pg_id;
260 		kp->ki_jobc = pgrp.pg_jobc;
261 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
262 			_kvm_err(kd, kd->program, "can't read session at %x",
263 				pgrp.pg_session);
264 			return (-1);
265 		}
266 		kp->ki_sid = sess.s_sid;
267 		(void)memcpy(kp->ki_login, sess.s_login,
268 						sizeof(kp->ki_login));
269 		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
270 		if (sess.s_leader == p)
271 			kp->ki_kiflag |= KI_SLEADER;
272 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
273 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
274 				_kvm_err(kd, kd->program,
275 					 "can't read tty at %x", sess.s_ttyp);
276 				return (-1);
277 			}
278 			if (tty.t_dev != NULL) {
279 				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
280 					_kvm_err(kd, kd->program,
281 						 "can't read cdev at %x",
282 						tty.t_dev);
283 					return (-1);
284 				}
285 #if 0
286 				kp->ki_tdev = t_cdev.si_udev;
287 #else
288 				kp->ki_tdev = NODEV;
289 #endif
290 			}
291 			if (tty.t_pgrp != NULL) {
292 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
293 					_kvm_err(kd, kd->program,
294 						 "can't read tpgrp at %x",
295 						tty.t_pgrp);
296 					return (-1);
297 				}
298 				kp->ki_tpgid = pgrp.pg_id;
299 			} else
300 				kp->ki_tpgid = -1;
301 			if (tty.t_session != NULL) {
302 				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
303 					_kvm_err(kd, kd->program,
304 					    "can't read session at %x",
305 					    tty.t_session);
306 					return (-1);
307 				}
308 				kp->ki_tsid = sess.s_sid;
309 			}
310 		} else {
311 nopgrp:
312 			kp->ki_tdev = NODEV;
313 		}
314 		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
315 			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
316 			    kp->ki_wmesg, WMESGLEN);
317 
318 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
319 		    (char *)&vmspace, sizeof(vmspace));
320 		kp->ki_size = vmspace.vm_map.size;
321 		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
322 		kp->ki_swrss = vmspace.vm_swrss;
323 		kp->ki_tsize = vmspace.vm_tsize;
324 		kp->ki_dsize = vmspace.vm_dsize;
325 		kp->ki_ssize = vmspace.vm_ssize;
326 
327 		switch (what & ~KERN_PROC_INC_THREAD) {
328 
329 		case KERN_PROC_PGRP:
330 			if (kp->ki_pgid != (pid_t)arg)
331 				continue;
332 			break;
333 
334 		case KERN_PROC_SESSION:
335 			if (kp->ki_sid != (pid_t)arg)
336 				continue;
337 			break;
338 
339 		case KERN_PROC_TTY:
340 			if ((proc.p_flag & P_CONTROLT) == 0 ||
341 			     kp->ki_tdev != (dev_t)arg)
342 				continue;
343 			break;
344 		}
345 		if (proc.p_comm[0] != 0)
346 			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
347 		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
348 		    sizeof(sysent));
349 		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
350 		    sizeof(svname));
351 		if (svname[0] != 0)
352 			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
353 		if ((proc.p_state != PRS_ZOMBIE) &&
354 		    (mtd.td_blocked != 0)) {
355 			kp->ki_kiflag |= KI_LOCKBLOCK;
356 			if (mtd.td_lockname)
357 				(void)kvm_read(kd,
358 				    (u_long)mtd.td_lockname,
359 				    kp->ki_lockname, LOCKNAMELEN);
360 			kp->ki_lockname[LOCKNAMELEN] = 0;
361 		}
362 		/*
363 		 * XXX: This is plain wrong, rux_runtime has nothing
364 		 * to do with struct bintime, rux_runtime is just a 64-bit
365 		 * integer counter of cputicks.  What we need here is a way
366 		 * to convert cputicks to usecs.  The kernel does it in
367 		 * kern/kern_tc.c, but the function can't be just copied.
368 		 */
369 		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
370 		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
371 		kp->ki_pid = proc.p_pid;
372 		kp->ki_siglist = proc.p_siglist;
373 		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
374 		kp->ki_sigmask = mtd.td_sigmask;
375 		kp->ki_xstat = proc.p_xstat;
376 		kp->ki_acflag = proc.p_acflag;
377 		kp->ki_lock = proc.p_lock;
378 		if (proc.p_state != PRS_ZOMBIE) {
379 			kp->ki_swtime = (ticks - proc.p_swtick) / hz;
380 			kp->ki_flag = proc.p_flag;
381 			kp->ki_sflag = 0;
382 			kp->ki_nice = proc.p_nice;
383 			kp->ki_traceflag = proc.p_traceflag;
384 			if (proc.p_state == PRS_NORMAL) {
385 				if (TD_ON_RUNQ(&mtd) ||
386 				    TD_CAN_RUN(&mtd) ||
387 				    TD_IS_RUNNING(&mtd)) {
388 					kp->ki_stat = SRUN;
389 				} else if (mtd.td_state ==
390 				    TDS_INHIBITED) {
391 					if (P_SHOULDSTOP(&proc)) {
392 						kp->ki_stat = SSTOP;
393 					} else if (
394 					    TD_IS_SLEEPING(&mtd)) {
395 						kp->ki_stat = SSLEEP;
396 					} else if (TD_ON_LOCK(&mtd)) {
397 						kp->ki_stat = SLOCK;
398 					} else {
399 						kp->ki_stat = SWAIT;
400 					}
401 				}
402 			} else {
403 				kp->ki_stat = SIDL;
404 			}
405 			/* Stuff from the thread */
406 			kp->ki_pri.pri_level = mtd.td_priority;
407 			kp->ki_pri.pri_native = mtd.td_base_pri;
408 			kp->ki_lastcpu = mtd.td_lastcpu;
409 			kp->ki_wchan = mtd.td_wchan;
410 			if (mtd.td_name[0] != 0)
411 				strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN);
412 			kp->ki_oncpu = mtd.td_oncpu;
413 			if (mtd.td_name[0] != '\0')
414 				strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm));
415 			kp->ki_pctcpu = 0;
416 			kp->ki_rqindex = 0;
417 		} else {
418 			kp->ki_stat = SZOMB;
419 		}
420 		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
421 		++bp;
422 		++cnt;
423 	}
424 	return (cnt);
425 }
426 
427 /*
428  * Build proc info array by reading in proc list from a crash dump.
429  * Return number of procs read.  maxcnt is the max we will read.
430  */
431 static int
432 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
433 	kvm_t *kd;
434 	int what, arg;
435 	u_long a_allproc;
436 	u_long a_zombproc;
437 	int maxcnt;
438 {
439 	struct kinfo_proc *bp = kd->procbase;
440 	int acnt, zcnt;
441 	struct proc *p;
442 
443 	if (KREAD(kd, a_allproc, &p)) {
444 		_kvm_err(kd, kd->program, "cannot read allproc");
445 		return (-1);
446 	}
447 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
448 	if (acnt < 0)
449 		return (acnt);
450 
451 	if (KREAD(kd, a_zombproc, &p)) {
452 		_kvm_err(kd, kd->program, "cannot read zombproc");
453 		return (-1);
454 	}
455 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
456 	if (zcnt < 0)
457 		zcnt = 0;
458 
459 	return (acnt + zcnt);
460 }
461 
462 struct kinfo_proc *
463 kvm_getprocs(kd, op, arg, cnt)
464 	kvm_t *kd;
465 	int op, arg;
466 	int *cnt;
467 {
468 	int mib[4], st, nprocs;
469 	size_t size;
470 	int temp_op;
471 
472 	if (kd->procbase != 0) {
473 		free((void *)kd->procbase);
474 		/*
475 		 * Clear this pointer in case this call fails.  Otherwise,
476 		 * kvm_close() will free it again.
477 		 */
478 		kd->procbase = 0;
479 	}
480 	if (ISALIVE(kd)) {
481 		size = 0;
482 		mib[0] = CTL_KERN;
483 		mib[1] = KERN_PROC;
484 		mib[2] = op;
485 		mib[3] = arg;
486 		temp_op = op & ~KERN_PROC_INC_THREAD;
487 		st = sysctl(mib,
488 		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
489 		    3 : 4, NULL, &size, NULL, 0);
490 		if (st == -1) {
491 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
492 			return (0);
493 		}
494 		/*
495 		 * We can't continue with a size of 0 because we pass
496 		 * it to realloc() (via _kvm_realloc()), and passing 0
497 		 * to realloc() results in undefined behavior.
498 		 */
499 		if (size == 0) {
500 			/*
501 			 * XXX: We should probably return an invalid,
502 			 * but non-NULL, pointer here so any client
503 			 * program trying to dereference it will
504 			 * crash.  However, _kvm_freeprocs() calls
505 			 * free() on kd->procbase if it isn't NULL,
506 			 * and free()'ing a junk pointer isn't good.
507 			 * Then again, _kvm_freeprocs() isn't used
508 			 * anywhere . . .
509 			 */
510 			kd->procbase = _kvm_malloc(kd, 1);
511 			goto liveout;
512 		}
513 		do {
514 			size += size / 10;
515 			kd->procbase = (struct kinfo_proc *)
516 			    _kvm_realloc(kd, kd->procbase, size);
517 			if (kd->procbase == 0)
518 				return (0);
519 			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
520 			    temp_op == KERN_PROC_PROC ? 3 : 4,
521 			    kd->procbase, &size, NULL, 0);
522 		} while (st == -1 && errno == ENOMEM);
523 		if (st == -1) {
524 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
525 			return (0);
526 		}
527 		/*
528 		 * We have to check the size again because sysctl()
529 		 * may "round up" oldlenp if oldp is NULL; hence it
530 		 * might've told us that there was data to get when
531 		 * there really isn't any.
532 		 */
533 		if (size > 0 &&
534 		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
535 			_kvm_err(kd, kd->program,
536 			    "kinfo_proc size mismatch (expected %d, got %d)",
537 			    sizeof(struct kinfo_proc),
538 			    kd->procbase->ki_structsize);
539 			return (0);
540 		}
541 liveout:
542 		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
543 	} else {
544 		struct nlist nl[6], *p;
545 
546 		nl[0].n_name = "_nprocs";
547 		nl[1].n_name = "_allproc";
548 		nl[2].n_name = "_zombproc";
549 		nl[3].n_name = "_ticks";
550 		nl[4].n_name = "_hz";
551 		nl[5].n_name = 0;
552 
553 		if (kvm_nlist(kd, nl) != 0) {
554 			for (p = nl; p->n_type != 0; ++p)
555 				;
556 			_kvm_err(kd, kd->program,
557 				 "%s: no such symbol", p->n_name);
558 			return (0);
559 		}
560 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
561 			_kvm_err(kd, kd->program, "can't read nprocs");
562 			return (0);
563 		}
564 		if (KREAD(kd, nl[3].n_value, &ticks)) {
565 			_kvm_err(kd, kd->program, "can't read ticks");
566 			return (0);
567 		}
568 		if (KREAD(kd, nl[4].n_value, &hz)) {
569 			_kvm_err(kd, kd->program, "can't read hz");
570 			return (0);
571 		}
572 		size = nprocs * sizeof(struct kinfo_proc);
573 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
574 		if (kd->procbase == 0)
575 			return (0);
576 
577 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
578 				      nl[2].n_value, nprocs);
579 #ifdef notdef
580 		size = nprocs * sizeof(struct kinfo_proc);
581 		(void)realloc(kd->procbase, size);
582 #endif
583 	}
584 	*cnt = nprocs;
585 	return (kd->procbase);
586 }
587 
588 void
589 _kvm_freeprocs(kd)
590 	kvm_t *kd;
591 {
592 	if (kd->procbase) {
593 		free(kd->procbase);
594 		kd->procbase = 0;
595 	}
596 }
597 
598 void *
599 _kvm_realloc(kd, p, n)
600 	kvm_t *kd;
601 	void *p;
602 	size_t n;
603 {
604 	void *np = (void *)realloc(p, n);
605 
606 	if (np == 0) {
607 		free(p);
608 		_kvm_err(kd, kd->program, "out of memory");
609 	}
610 	return (np);
611 }
612 
613 #ifndef MAX
614 #define MAX(a, b) ((a) > (b) ? (a) : (b))
615 #endif
616 
617 /*
618  * Read in an argument vector from the user address space of process kp.
619  * addr if the user-space base address of narg null-terminated contiguous
620  * strings.  This is used to read in both the command arguments and
621  * environment strings.  Read at most maxcnt characters of strings.
622  */
623 static char **
624 kvm_argv(kd, kp, addr, narg, maxcnt)
625 	kvm_t *kd;
626 	struct kinfo_proc *kp;
627 	u_long addr;
628 	int narg;
629 	int maxcnt;
630 {
631 	char *np, *cp, *ep, *ap;
632 	u_long oaddr = -1;
633 	int len, cc;
634 	char **argv;
635 
636 	/*
637 	 * Check that there aren't an unreasonable number of agruments,
638 	 * and that the address is in user space.
639 	 */
640 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
641 		return (0);
642 
643 	/*
644 	 * kd->argv : work space for fetching the strings from the target
645 	 *            process's space, and is converted for returning to caller
646 	 */
647 	if (kd->argv == 0) {
648 		/*
649 		 * Try to avoid reallocs.
650 		 */
651 		kd->argc = MAX(narg + 1, 32);
652 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
653 						sizeof(*kd->argv));
654 		if (kd->argv == 0)
655 			return (0);
656 	} else if (narg + 1 > kd->argc) {
657 		kd->argc = MAX(2 * kd->argc, narg + 1);
658 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
659 						sizeof(*kd->argv));
660 		if (kd->argv == 0)
661 			return (0);
662 	}
663 	/*
664 	 * kd->argspc : returned to user, this is where the kd->argv
665 	 *              arrays are left pointing to the collected strings.
666 	 */
667 	if (kd->argspc == 0) {
668 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
669 		if (kd->argspc == 0)
670 			return (0);
671 		kd->arglen = PAGE_SIZE;
672 	}
673 	/*
674 	 * kd->argbuf : used to pull in pages from the target process.
675 	 *              the strings are copied out of here.
676 	 */
677 	if (kd->argbuf == 0) {
678 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
679 		if (kd->argbuf == 0)
680 			return (0);
681 	}
682 
683 	/* Pull in the target process'es argv vector */
684 	cc = sizeof(char *) * narg;
685 	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
686 		return (0);
687 	/*
688 	 * ap : saved start address of string we're working on in kd->argspc
689 	 * np : pointer to next place to write in kd->argspc
690 	 * len: length of data in kd->argspc
691 	 * argv: pointer to the argv vector that we are hunting around the
692 	 *       target process space for, and converting to addresses in
693 	 *       our address space (kd->argspc).
694 	 */
695 	ap = np = kd->argspc;
696 	argv = kd->argv;
697 	len = 0;
698 	/*
699 	 * Loop over pages, filling in the argument vector.
700 	 * Note that the argv strings could be pointing *anywhere* in
701 	 * the user address space and are no longer contiguous.
702 	 * Note that *argv is modified when we are going to fetch a string
703 	 * that crosses a page boundary.  We copy the next part of the string
704 	 * into to "np" and eventually convert the pointer.
705 	 */
706 	while (argv < kd->argv + narg && *argv != 0) {
707 
708 		/* get the address that the current argv string is on */
709 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
710 
711 		/* is it the same page as the last one? */
712 		if (addr != oaddr) {
713 			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
714 			    PAGE_SIZE)
715 				return (0);
716 			oaddr = addr;
717 		}
718 
719 		/* offset within the page... kd->argbuf */
720 		addr = (u_long)*argv & (PAGE_SIZE - 1);
721 
722 		/* cp = start of string, cc = count of chars in this chunk */
723 		cp = kd->argbuf + addr;
724 		cc = PAGE_SIZE - addr;
725 
726 		/* dont get more than asked for by user process */
727 		if (maxcnt > 0 && cc > maxcnt - len)
728 			cc = maxcnt - len;
729 
730 		/* pointer to end of string if we found it in this page */
731 		ep = memchr(cp, '\0', cc);
732 		if (ep != 0)
733 			cc = ep - cp + 1;
734 		/*
735 		 * at this point, cc is the count of the chars that we are
736 		 * going to retrieve this time. we may or may not have found
737 		 * the end of it.  (ep points to the null if the end is known)
738 		 */
739 
740 		/* will we exceed the malloc/realloced buffer? */
741 		if (len + cc > kd->arglen) {
742 			int off;
743 			char **pp;
744 			char *op = kd->argspc;
745 
746 			kd->arglen *= 2;
747 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
748 							  kd->arglen);
749 			if (kd->argspc == 0)
750 				return (0);
751 			/*
752 			 * Adjust argv pointers in case realloc moved
753 			 * the string space.
754 			 */
755 			off = kd->argspc - op;
756 			for (pp = kd->argv; pp < argv; pp++)
757 				*pp += off;
758 			ap += off;
759 			np += off;
760 		}
761 		/* np = where to put the next part of the string in kd->argspc*/
762 		/* np is kinda redundant.. could use "kd->argspc + len" */
763 		memcpy(np, cp, cc);
764 		np += cc;	/* inc counters */
765 		len += cc;
766 
767 		/*
768 		 * if end of string found, set the *argv pointer to the
769 		 * saved beginning of string, and advance. argv points to
770 		 * somewhere in kd->argv..  This is initially relative
771 		 * to the target process, but when we close it off, we set
772 		 * it to point in our address space.
773 		 */
774 		if (ep != 0) {
775 			*argv++ = ap;
776 			ap = np;
777 		} else {
778 			/* update the address relative to the target process */
779 			*argv += cc;
780 		}
781 
782 		if (maxcnt > 0 && len >= maxcnt) {
783 			/*
784 			 * We're stopping prematurely.  Terminate the
785 			 * current string.
786 			 */
787 			if (ep == 0) {
788 				*np = '\0';
789 				*argv++ = ap;
790 			}
791 			break;
792 		}
793 	}
794 	/* Make sure argv is terminated. */
795 	*argv = 0;
796 	return (kd->argv);
797 }
798 
799 static void
800 ps_str_a(p, addr, n)
801 	struct ps_strings *p;
802 	u_long *addr;
803 	int *n;
804 {
805 	*addr = (u_long)p->ps_argvstr;
806 	*n = p->ps_nargvstr;
807 }
808 
809 static void
810 ps_str_e(p, addr, n)
811 	struct ps_strings *p;
812 	u_long *addr;
813 	int *n;
814 {
815 	*addr = (u_long)p->ps_envstr;
816 	*n = p->ps_nenvstr;
817 }
818 
819 /*
820  * Determine if the proc indicated by p is still active.
821  * This test is not 100% foolproof in theory, but chances of
822  * being wrong are very low.
823  */
824 static int
825 proc_verify(curkp)
826 	struct kinfo_proc *curkp;
827 {
828 	struct kinfo_proc newkp;
829 	int mib[4];
830 	size_t len;
831 
832 	mib[0] = CTL_KERN;
833 	mib[1] = KERN_PROC;
834 	mib[2] = KERN_PROC_PID;
835 	mib[3] = curkp->ki_pid;
836 	len = sizeof(newkp);
837 	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
838 		return (0);
839 	return (curkp->ki_pid == newkp.ki_pid &&
840 	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
841 }
842 
843 static char **
844 kvm_doargv(kd, kp, nchr, info)
845 	kvm_t *kd;
846 	struct kinfo_proc *kp;
847 	int nchr;
848 	void (*info)(struct ps_strings *, u_long *, int *);
849 {
850 	char **ap;
851 	u_long addr;
852 	int cnt;
853 	static struct ps_strings arginfo;
854 	static u_long ps_strings;
855 	size_t len;
856 
857 	if (ps_strings == 0) {
858 		len = sizeof(ps_strings);
859 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
860 		    0) == -1)
861 			ps_strings = PS_STRINGS;
862 	}
863 
864 	/*
865 	 * Pointers are stored at the top of the user stack.
866 	 */
867 	if (kp->ki_stat == SZOMB ||
868 	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
869 		      sizeof(arginfo)) != sizeof(arginfo))
870 		return (0);
871 
872 	(*info)(&arginfo, &addr, &cnt);
873 	if (cnt == 0)
874 		return (0);
875 	ap = kvm_argv(kd, kp, addr, cnt, nchr);
876 	/*
877 	 * For live kernels, make sure this process didn't go away.
878 	 */
879 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
880 		ap = 0;
881 	return (ap);
882 }
883 
884 /*
885  * Get the command args.  This code is now machine independent.
886  */
887 char **
888 kvm_getargv(kd, kp, nchr)
889 	kvm_t *kd;
890 	const struct kinfo_proc *kp;
891 	int nchr;
892 {
893 	int oid[4];
894 	int i;
895 	size_t bufsz;
896 	static unsigned long buflen;
897 	static char *buf, *p;
898 	static char **bufp;
899 	static int argc;
900 
901 	if (!ISALIVE(kd)) {
902 		_kvm_err(kd, kd->program,
903 		    "cannot read user space from dead kernel");
904 		return (0);
905 	}
906 
907 	if (!buflen) {
908 		bufsz = sizeof(buflen);
909 		i = sysctlbyname("kern.ps_arg_cache_limit",
910 		    &buflen, &bufsz, NULL, 0);
911 		if (i == -1) {
912 			buflen = 0;
913 		} else {
914 			buf = malloc(buflen);
915 			if (buf == NULL)
916 				buflen = 0;
917 			argc = 32;
918 			bufp = malloc(sizeof(char *) * argc);
919 		}
920 	}
921 	if (buf != NULL) {
922 		oid[0] = CTL_KERN;
923 		oid[1] = KERN_PROC;
924 		oid[2] = KERN_PROC_ARGS;
925 		oid[3] = kp->ki_pid;
926 		bufsz = buflen;
927 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
928 		if (i == 0 && bufsz > 0) {
929 			i = 0;
930 			p = buf;
931 			do {
932 				bufp[i++] = p;
933 				p += strlen(p) + 1;
934 				if (i >= argc) {
935 					argc += argc;
936 					bufp = realloc(bufp,
937 					    sizeof(char *) * argc);
938 				}
939 			} while (p < buf + bufsz);
940 			bufp[i++] = 0;
941 			return (bufp);
942 		}
943 	}
944 	if (kp->ki_flag & P_SYSTEM)
945 		return (NULL);
946 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
947 }
948 
949 char **
950 kvm_getenvv(kd, kp, nchr)
951 	kvm_t *kd;
952 	const struct kinfo_proc *kp;
953 	int nchr;
954 {
955 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
956 }
957 
958 /*
959  * Read from user space.  The user context is given by p.
960  */
961 ssize_t
962 kvm_uread(kd, kp, uva, buf, len)
963 	kvm_t *kd;
964 	struct kinfo_proc *kp;
965 	u_long uva;
966 	char *buf;
967 	size_t len;
968 {
969 	char *cp;
970 	char procfile[MAXPATHLEN];
971 	ssize_t amount;
972 	int fd;
973 
974 	if (!ISALIVE(kd)) {
975 		_kvm_err(kd, kd->program,
976 		    "cannot read user space from dead kernel");
977 		return (0);
978 	}
979 
980 	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
981 	fd = open(procfile, O_RDONLY, 0);
982 	if (fd < 0) {
983 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
984 		return (0);
985 	}
986 
987 	cp = buf;
988 	while (len > 0) {
989 		errno = 0;
990 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
991 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
992 			    uva, procfile);
993 			break;
994 		}
995 		amount = read(fd, cp, len);
996 		if (amount < 0) {
997 			_kvm_syserr(kd, kd->program, "error reading %s",
998 			    procfile);
999 			break;
1000 		}
1001 		if (amount == 0) {
1002 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
1003 			break;
1004 		}
1005 		cp += amount;
1006 		uva += amount;
1007 		len -= amount;
1008 	}
1009 
1010 	close(fd);
1011 	return ((ssize_t)(cp - buf));
1012 }
1013