1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #if 0 35 #if defined(LIBC_SCCS) && !defined(lint) 36 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 37 #endif /* LIBC_SCCS and not lint */ 38 #endif 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 /* 44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 45 * users of this code, so we've factored it out into a separate module. 46 * Thus, we keep this grunge out of the other kvm applications (i.e., 47 * most other applications are interested only in open/close/read/nlist). 48 */ 49 50 #include <sys/param.h> 51 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 52 #include <sys/ucred.h> 53 #include <sys/queue.h> 54 #include <sys/_lock.h> 55 #include <sys/_mutex.h> 56 #include <sys/_task.h> 57 #include <sys/cpuset.h> 58 #include <sys/user.h> 59 #include <sys/proc.h> 60 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 61 #include <sys/jail.h> 62 #include <sys/exec.h> 63 #include <sys/stat.h> 64 #include <sys/sysent.h> 65 #include <sys/ioctl.h> 66 #include <sys/tty.h> 67 #include <sys/file.h> 68 #include <sys/conf.h> 69 #include <stdio.h> 70 #include <stdlib.h> 71 #include <unistd.h> 72 #include <nlist.h> 73 #include <kvm.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_param.h> 77 78 #include <sys/sysctl.h> 79 80 #include <limits.h> 81 #include <memory.h> 82 #include <paths.h> 83 84 #include "kvm_private.h" 85 86 #define KREAD(kd, addr, obj) \ 87 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 88 89 static int ticks; 90 static int hz; 91 92 /* 93 * Read proc's from memory file into buffer bp, which has space to hold 94 * at most maxcnt procs. 95 */ 96 static int 97 kvm_proclist(kd, what, arg, p, bp, maxcnt) 98 kvm_t *kd; 99 int what, arg; 100 struct proc *p; 101 struct kinfo_proc *bp; 102 int maxcnt; 103 { 104 int cnt = 0; 105 struct kinfo_proc kinfo_proc, *kp; 106 struct pgrp pgrp; 107 struct session sess; 108 struct cdev t_cdev; 109 struct tty tty; 110 struct vmspace vmspace; 111 struct sigacts sigacts; 112 struct pstats pstats; 113 struct ucred ucred; 114 struct prison pr; 115 struct thread mtd; 116 struct proc proc; 117 struct proc pproc; 118 struct timeval tv; 119 struct sysentvec sysent; 120 char svname[KI_EMULNAMELEN]; 121 122 kp = &kinfo_proc; 123 kp->ki_structsize = sizeof(kinfo_proc); 124 /* 125 * Loop on the processes. this is completely broken because we need to be 126 * able to loop on the threads and merge the ones that are the same process some how. 127 */ 128 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 129 memset(kp, 0, sizeof *kp); 130 if (KREAD(kd, (u_long)p, &proc)) { 131 _kvm_err(kd, kd->program, "can't read proc at %x", p); 132 return (-1); 133 } 134 if (proc.p_state != PRS_ZOMBIE) { 135 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 136 &mtd)) { 137 _kvm_err(kd, kd->program, 138 "can't read thread at %x", 139 TAILQ_FIRST(&proc.p_threads)); 140 return (-1); 141 } 142 } 143 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 144 kp->ki_ruid = ucred.cr_ruid; 145 kp->ki_svuid = ucred.cr_svuid; 146 kp->ki_rgid = ucred.cr_rgid; 147 kp->ki_svgid = ucred.cr_svgid; 148 kp->ki_ngroups = ucred.cr_ngroups; 149 bcopy(ucred.cr_groups, kp->ki_groups, 150 NGROUPS * sizeof(gid_t)); 151 kp->ki_uid = ucred.cr_uid; 152 if (ucred.cr_prison != NULL) { 153 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 154 _kvm_err(kd, kd->program, 155 "can't read prison at %x", 156 ucred.cr_prison); 157 return (-1); 158 } 159 kp->ki_jid = pr.pr_id; 160 } 161 } 162 163 switch(what & ~KERN_PROC_INC_THREAD) { 164 165 case KERN_PROC_GID: 166 if (kp->ki_groups[0] != (gid_t)arg) 167 continue; 168 break; 169 170 case KERN_PROC_PID: 171 if (proc.p_pid != (pid_t)arg) 172 continue; 173 break; 174 175 case KERN_PROC_RGID: 176 if (kp->ki_rgid != (gid_t)arg) 177 continue; 178 break; 179 180 case KERN_PROC_UID: 181 if (kp->ki_uid != (uid_t)arg) 182 continue; 183 break; 184 185 case KERN_PROC_RUID: 186 if (kp->ki_ruid != (uid_t)arg) 187 continue; 188 break; 189 } 190 /* 191 * We're going to add another proc to the set. If this 192 * will overflow the buffer, assume the reason is because 193 * nprocs (or the proc list) is corrupt and declare an error. 194 */ 195 if (cnt >= maxcnt) { 196 _kvm_err(kd, kd->program, "nprocs corrupt"); 197 return (-1); 198 } 199 /* 200 * gather kinfo_proc 201 */ 202 kp->ki_paddr = p; 203 kp->ki_addr = 0; /* XXX uarea */ 204 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 205 kp->ki_args = proc.p_args; 206 kp->ki_tracep = proc.p_tracevp; 207 kp->ki_textvp = proc.p_textvp; 208 kp->ki_fd = proc.p_fd; 209 kp->ki_vmspace = proc.p_vmspace; 210 if (proc.p_sigacts != NULL) { 211 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 212 _kvm_err(kd, kd->program, 213 "can't read sigacts at %x", proc.p_sigacts); 214 return (-1); 215 } 216 kp->ki_sigignore = sigacts.ps_sigignore; 217 kp->ki_sigcatch = sigacts.ps_sigcatch; 218 } 219 #if 0 220 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 221 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 222 _kvm_err(kd, kd->program, 223 "can't read stats at %x", proc.p_stats); 224 return (-1); 225 } 226 kp->ki_start = pstats.p_start; 227 228 /* 229 * XXX: The times here are probably zero and need 230 * to be calculated from the raw data in p_rux and 231 * p_crux. 232 */ 233 kp->ki_rusage = pstats.p_ru; 234 kp->ki_childstime = pstats.p_cru.ru_stime; 235 kp->ki_childutime = pstats.p_cru.ru_utime; 236 /* Some callers want child-times in a single value */ 237 timeradd(&kp->ki_childstime, &kp->ki_childutime, 238 &kp->ki_childtime); 239 } 240 #endif 241 if (proc.p_oppid) 242 kp->ki_ppid = proc.p_oppid; 243 else if (proc.p_pptr) { 244 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 245 _kvm_err(kd, kd->program, 246 "can't read pproc at %x", proc.p_pptr); 247 return (-1); 248 } 249 kp->ki_ppid = pproc.p_pid; 250 } else 251 kp->ki_ppid = 0; 252 if (proc.p_pgrp == NULL) 253 goto nopgrp; 254 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 255 _kvm_err(kd, kd->program, "can't read pgrp at %x", 256 proc.p_pgrp); 257 return (-1); 258 } 259 kp->ki_pgid = pgrp.pg_id; 260 kp->ki_jobc = pgrp.pg_jobc; 261 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 262 _kvm_err(kd, kd->program, "can't read session at %x", 263 pgrp.pg_session); 264 return (-1); 265 } 266 kp->ki_sid = sess.s_sid; 267 (void)memcpy(kp->ki_login, sess.s_login, 268 sizeof(kp->ki_login)); 269 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 270 if (sess.s_leader == p) 271 kp->ki_kiflag |= KI_SLEADER; 272 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 273 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 274 _kvm_err(kd, kd->program, 275 "can't read tty at %x", sess.s_ttyp); 276 return (-1); 277 } 278 if (tty.t_dev != NULL) { 279 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 280 _kvm_err(kd, kd->program, 281 "can't read cdev at %x", 282 tty.t_dev); 283 return (-1); 284 } 285 #if 0 286 kp->ki_tdev = t_cdev.si_udev; 287 #else 288 kp->ki_tdev = NODEV; 289 #endif 290 } 291 if (tty.t_pgrp != NULL) { 292 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 293 _kvm_err(kd, kd->program, 294 "can't read tpgrp at %x", 295 tty.t_pgrp); 296 return (-1); 297 } 298 kp->ki_tpgid = pgrp.pg_id; 299 } else 300 kp->ki_tpgid = -1; 301 if (tty.t_session != NULL) { 302 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 303 _kvm_err(kd, kd->program, 304 "can't read session at %x", 305 tty.t_session); 306 return (-1); 307 } 308 kp->ki_tsid = sess.s_sid; 309 } 310 } else { 311 nopgrp: 312 kp->ki_tdev = NODEV; 313 } 314 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 315 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 316 kp->ki_wmesg, WMESGLEN); 317 318 (void)kvm_read(kd, (u_long)proc.p_vmspace, 319 (char *)&vmspace, sizeof(vmspace)); 320 kp->ki_size = vmspace.vm_map.size; 321 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 322 kp->ki_swrss = vmspace.vm_swrss; 323 kp->ki_tsize = vmspace.vm_tsize; 324 kp->ki_dsize = vmspace.vm_dsize; 325 kp->ki_ssize = vmspace.vm_ssize; 326 327 switch (what & ~KERN_PROC_INC_THREAD) { 328 329 case KERN_PROC_PGRP: 330 if (kp->ki_pgid != (pid_t)arg) 331 continue; 332 break; 333 334 case KERN_PROC_SESSION: 335 if (kp->ki_sid != (pid_t)arg) 336 continue; 337 break; 338 339 case KERN_PROC_TTY: 340 if ((proc.p_flag & P_CONTROLT) == 0 || 341 kp->ki_tdev != (dev_t)arg) 342 continue; 343 break; 344 } 345 if (proc.p_comm[0] != 0) 346 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 347 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 348 sizeof(sysent)); 349 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 350 sizeof(svname)); 351 if (svname[0] != 0) 352 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 353 if ((proc.p_state != PRS_ZOMBIE) && 354 (mtd.td_blocked != 0)) { 355 kp->ki_kiflag |= KI_LOCKBLOCK; 356 if (mtd.td_lockname) 357 (void)kvm_read(kd, 358 (u_long)mtd.td_lockname, 359 kp->ki_lockname, LOCKNAMELEN); 360 kp->ki_lockname[LOCKNAMELEN] = 0; 361 } 362 /* 363 * XXX: This is plain wrong, rux_runtime has nothing 364 * to do with struct bintime, rux_runtime is just a 64-bit 365 * integer counter of cputicks. What we need here is a way 366 * to convert cputicks to usecs. The kernel does it in 367 * kern/kern_tc.c, but the function can't be just copied. 368 */ 369 bintime2timeval(&proc.p_rux.rux_runtime, &tv); 370 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 371 kp->ki_pid = proc.p_pid; 372 kp->ki_siglist = proc.p_siglist; 373 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 374 kp->ki_sigmask = mtd.td_sigmask; 375 kp->ki_xstat = proc.p_xstat; 376 kp->ki_acflag = proc.p_acflag; 377 kp->ki_lock = proc.p_lock; 378 if (proc.p_state != PRS_ZOMBIE) { 379 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 380 kp->ki_flag = proc.p_flag; 381 kp->ki_sflag = 0; 382 kp->ki_nice = proc.p_nice; 383 kp->ki_traceflag = proc.p_traceflag; 384 if (proc.p_state == PRS_NORMAL) { 385 if (TD_ON_RUNQ(&mtd) || 386 TD_CAN_RUN(&mtd) || 387 TD_IS_RUNNING(&mtd)) { 388 kp->ki_stat = SRUN; 389 } else if (mtd.td_state == 390 TDS_INHIBITED) { 391 if (P_SHOULDSTOP(&proc)) { 392 kp->ki_stat = SSTOP; 393 } else if ( 394 TD_IS_SLEEPING(&mtd)) { 395 kp->ki_stat = SSLEEP; 396 } else if (TD_ON_LOCK(&mtd)) { 397 kp->ki_stat = SLOCK; 398 } else { 399 kp->ki_stat = SWAIT; 400 } 401 } 402 } else { 403 kp->ki_stat = SIDL; 404 } 405 /* Stuff from the thread */ 406 kp->ki_pri.pri_level = mtd.td_priority; 407 kp->ki_pri.pri_native = mtd.td_base_pri; 408 kp->ki_lastcpu = mtd.td_lastcpu; 409 kp->ki_wchan = mtd.td_wchan; 410 if (mtd.td_name[0] != 0) 411 strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN); 412 kp->ki_oncpu = mtd.td_oncpu; 413 if (mtd.td_name[0] != '\0') 414 strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm)); 415 kp->ki_pctcpu = 0; 416 kp->ki_rqindex = 0; 417 } else { 418 kp->ki_stat = SZOMB; 419 } 420 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 421 ++bp; 422 ++cnt; 423 } 424 return (cnt); 425 } 426 427 /* 428 * Build proc info array by reading in proc list from a crash dump. 429 * Return number of procs read. maxcnt is the max we will read. 430 */ 431 static int 432 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 433 kvm_t *kd; 434 int what, arg; 435 u_long a_allproc; 436 u_long a_zombproc; 437 int maxcnt; 438 { 439 struct kinfo_proc *bp = kd->procbase; 440 int acnt, zcnt; 441 struct proc *p; 442 443 if (KREAD(kd, a_allproc, &p)) { 444 _kvm_err(kd, kd->program, "cannot read allproc"); 445 return (-1); 446 } 447 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 448 if (acnt < 0) 449 return (acnt); 450 451 if (KREAD(kd, a_zombproc, &p)) { 452 _kvm_err(kd, kd->program, "cannot read zombproc"); 453 return (-1); 454 } 455 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 456 if (zcnt < 0) 457 zcnt = 0; 458 459 return (acnt + zcnt); 460 } 461 462 struct kinfo_proc * 463 kvm_getprocs(kd, op, arg, cnt) 464 kvm_t *kd; 465 int op, arg; 466 int *cnt; 467 { 468 int mib[4], st, nprocs; 469 size_t size; 470 int temp_op; 471 472 if (kd->procbase != 0) { 473 free((void *)kd->procbase); 474 /* 475 * Clear this pointer in case this call fails. Otherwise, 476 * kvm_close() will free it again. 477 */ 478 kd->procbase = 0; 479 } 480 if (ISALIVE(kd)) { 481 size = 0; 482 mib[0] = CTL_KERN; 483 mib[1] = KERN_PROC; 484 mib[2] = op; 485 mib[3] = arg; 486 temp_op = op & ~KERN_PROC_INC_THREAD; 487 st = sysctl(mib, 488 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 489 3 : 4, NULL, &size, NULL, 0); 490 if (st == -1) { 491 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 492 return (0); 493 } 494 /* 495 * We can't continue with a size of 0 because we pass 496 * it to realloc() (via _kvm_realloc()), and passing 0 497 * to realloc() results in undefined behavior. 498 */ 499 if (size == 0) { 500 /* 501 * XXX: We should probably return an invalid, 502 * but non-NULL, pointer here so any client 503 * program trying to dereference it will 504 * crash. However, _kvm_freeprocs() calls 505 * free() on kd->procbase if it isn't NULL, 506 * and free()'ing a junk pointer isn't good. 507 * Then again, _kvm_freeprocs() isn't used 508 * anywhere . . . 509 */ 510 kd->procbase = _kvm_malloc(kd, 1); 511 goto liveout; 512 } 513 do { 514 size += size / 10; 515 kd->procbase = (struct kinfo_proc *) 516 _kvm_realloc(kd, kd->procbase, size); 517 if (kd->procbase == 0) 518 return (0); 519 st = sysctl(mib, temp_op == KERN_PROC_ALL || 520 temp_op == KERN_PROC_PROC ? 3 : 4, 521 kd->procbase, &size, NULL, 0); 522 } while (st == -1 && errno == ENOMEM); 523 if (st == -1) { 524 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 525 return (0); 526 } 527 /* 528 * We have to check the size again because sysctl() 529 * may "round up" oldlenp if oldp is NULL; hence it 530 * might've told us that there was data to get when 531 * there really isn't any. 532 */ 533 if (size > 0 && 534 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 535 _kvm_err(kd, kd->program, 536 "kinfo_proc size mismatch (expected %d, got %d)", 537 sizeof(struct kinfo_proc), 538 kd->procbase->ki_structsize); 539 return (0); 540 } 541 liveout: 542 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 543 } else { 544 struct nlist nl[6], *p; 545 546 nl[0].n_name = "_nprocs"; 547 nl[1].n_name = "_allproc"; 548 nl[2].n_name = "_zombproc"; 549 nl[3].n_name = "_ticks"; 550 nl[4].n_name = "_hz"; 551 nl[5].n_name = 0; 552 553 if (kvm_nlist(kd, nl) != 0) { 554 for (p = nl; p->n_type != 0; ++p) 555 ; 556 _kvm_err(kd, kd->program, 557 "%s: no such symbol", p->n_name); 558 return (0); 559 } 560 if (KREAD(kd, nl[0].n_value, &nprocs)) { 561 _kvm_err(kd, kd->program, "can't read nprocs"); 562 return (0); 563 } 564 if (KREAD(kd, nl[3].n_value, &ticks)) { 565 _kvm_err(kd, kd->program, "can't read ticks"); 566 return (0); 567 } 568 if (KREAD(kd, nl[4].n_value, &hz)) { 569 _kvm_err(kd, kd->program, "can't read hz"); 570 return (0); 571 } 572 size = nprocs * sizeof(struct kinfo_proc); 573 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 574 if (kd->procbase == 0) 575 return (0); 576 577 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 578 nl[2].n_value, nprocs); 579 #ifdef notdef 580 size = nprocs * sizeof(struct kinfo_proc); 581 (void)realloc(kd->procbase, size); 582 #endif 583 } 584 *cnt = nprocs; 585 return (kd->procbase); 586 } 587 588 void 589 _kvm_freeprocs(kd) 590 kvm_t *kd; 591 { 592 if (kd->procbase) { 593 free(kd->procbase); 594 kd->procbase = 0; 595 } 596 } 597 598 void * 599 _kvm_realloc(kd, p, n) 600 kvm_t *kd; 601 void *p; 602 size_t n; 603 { 604 void *np = (void *)realloc(p, n); 605 606 if (np == 0) { 607 free(p); 608 _kvm_err(kd, kd->program, "out of memory"); 609 } 610 return (np); 611 } 612 613 #ifndef MAX 614 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 615 #endif 616 617 /* 618 * Read in an argument vector from the user address space of process kp. 619 * addr if the user-space base address of narg null-terminated contiguous 620 * strings. This is used to read in both the command arguments and 621 * environment strings. Read at most maxcnt characters of strings. 622 */ 623 static char ** 624 kvm_argv(kd, kp, addr, narg, maxcnt) 625 kvm_t *kd; 626 struct kinfo_proc *kp; 627 u_long addr; 628 int narg; 629 int maxcnt; 630 { 631 char *np, *cp, *ep, *ap; 632 u_long oaddr = -1; 633 int len, cc; 634 char **argv; 635 636 /* 637 * Check that there aren't an unreasonable number of agruments, 638 * and that the address is in user space. 639 */ 640 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 641 return (0); 642 643 /* 644 * kd->argv : work space for fetching the strings from the target 645 * process's space, and is converted for returning to caller 646 */ 647 if (kd->argv == 0) { 648 /* 649 * Try to avoid reallocs. 650 */ 651 kd->argc = MAX(narg + 1, 32); 652 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 653 sizeof(*kd->argv)); 654 if (kd->argv == 0) 655 return (0); 656 } else if (narg + 1 > kd->argc) { 657 kd->argc = MAX(2 * kd->argc, narg + 1); 658 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 659 sizeof(*kd->argv)); 660 if (kd->argv == 0) 661 return (0); 662 } 663 /* 664 * kd->argspc : returned to user, this is where the kd->argv 665 * arrays are left pointing to the collected strings. 666 */ 667 if (kd->argspc == 0) { 668 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 669 if (kd->argspc == 0) 670 return (0); 671 kd->arglen = PAGE_SIZE; 672 } 673 /* 674 * kd->argbuf : used to pull in pages from the target process. 675 * the strings are copied out of here. 676 */ 677 if (kd->argbuf == 0) { 678 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 679 if (kd->argbuf == 0) 680 return (0); 681 } 682 683 /* Pull in the target process'es argv vector */ 684 cc = sizeof(char *) * narg; 685 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 686 return (0); 687 /* 688 * ap : saved start address of string we're working on in kd->argspc 689 * np : pointer to next place to write in kd->argspc 690 * len: length of data in kd->argspc 691 * argv: pointer to the argv vector that we are hunting around the 692 * target process space for, and converting to addresses in 693 * our address space (kd->argspc). 694 */ 695 ap = np = kd->argspc; 696 argv = kd->argv; 697 len = 0; 698 /* 699 * Loop over pages, filling in the argument vector. 700 * Note that the argv strings could be pointing *anywhere* in 701 * the user address space and are no longer contiguous. 702 * Note that *argv is modified when we are going to fetch a string 703 * that crosses a page boundary. We copy the next part of the string 704 * into to "np" and eventually convert the pointer. 705 */ 706 while (argv < kd->argv + narg && *argv != 0) { 707 708 /* get the address that the current argv string is on */ 709 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 710 711 /* is it the same page as the last one? */ 712 if (addr != oaddr) { 713 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 714 PAGE_SIZE) 715 return (0); 716 oaddr = addr; 717 } 718 719 /* offset within the page... kd->argbuf */ 720 addr = (u_long)*argv & (PAGE_SIZE - 1); 721 722 /* cp = start of string, cc = count of chars in this chunk */ 723 cp = kd->argbuf + addr; 724 cc = PAGE_SIZE - addr; 725 726 /* dont get more than asked for by user process */ 727 if (maxcnt > 0 && cc > maxcnt - len) 728 cc = maxcnt - len; 729 730 /* pointer to end of string if we found it in this page */ 731 ep = memchr(cp, '\0', cc); 732 if (ep != 0) 733 cc = ep - cp + 1; 734 /* 735 * at this point, cc is the count of the chars that we are 736 * going to retrieve this time. we may or may not have found 737 * the end of it. (ep points to the null if the end is known) 738 */ 739 740 /* will we exceed the malloc/realloced buffer? */ 741 if (len + cc > kd->arglen) { 742 int off; 743 char **pp; 744 char *op = kd->argspc; 745 746 kd->arglen *= 2; 747 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 748 kd->arglen); 749 if (kd->argspc == 0) 750 return (0); 751 /* 752 * Adjust argv pointers in case realloc moved 753 * the string space. 754 */ 755 off = kd->argspc - op; 756 for (pp = kd->argv; pp < argv; pp++) 757 *pp += off; 758 ap += off; 759 np += off; 760 } 761 /* np = where to put the next part of the string in kd->argspc*/ 762 /* np is kinda redundant.. could use "kd->argspc + len" */ 763 memcpy(np, cp, cc); 764 np += cc; /* inc counters */ 765 len += cc; 766 767 /* 768 * if end of string found, set the *argv pointer to the 769 * saved beginning of string, and advance. argv points to 770 * somewhere in kd->argv.. This is initially relative 771 * to the target process, but when we close it off, we set 772 * it to point in our address space. 773 */ 774 if (ep != 0) { 775 *argv++ = ap; 776 ap = np; 777 } else { 778 /* update the address relative to the target process */ 779 *argv += cc; 780 } 781 782 if (maxcnt > 0 && len >= maxcnt) { 783 /* 784 * We're stopping prematurely. Terminate the 785 * current string. 786 */ 787 if (ep == 0) { 788 *np = '\0'; 789 *argv++ = ap; 790 } 791 break; 792 } 793 } 794 /* Make sure argv is terminated. */ 795 *argv = 0; 796 return (kd->argv); 797 } 798 799 static void 800 ps_str_a(p, addr, n) 801 struct ps_strings *p; 802 u_long *addr; 803 int *n; 804 { 805 *addr = (u_long)p->ps_argvstr; 806 *n = p->ps_nargvstr; 807 } 808 809 static void 810 ps_str_e(p, addr, n) 811 struct ps_strings *p; 812 u_long *addr; 813 int *n; 814 { 815 *addr = (u_long)p->ps_envstr; 816 *n = p->ps_nenvstr; 817 } 818 819 /* 820 * Determine if the proc indicated by p is still active. 821 * This test is not 100% foolproof in theory, but chances of 822 * being wrong are very low. 823 */ 824 static int 825 proc_verify(curkp) 826 struct kinfo_proc *curkp; 827 { 828 struct kinfo_proc newkp; 829 int mib[4]; 830 size_t len; 831 832 mib[0] = CTL_KERN; 833 mib[1] = KERN_PROC; 834 mib[2] = KERN_PROC_PID; 835 mib[3] = curkp->ki_pid; 836 len = sizeof(newkp); 837 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 838 return (0); 839 return (curkp->ki_pid == newkp.ki_pid && 840 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 841 } 842 843 static char ** 844 kvm_doargv(kd, kp, nchr, info) 845 kvm_t *kd; 846 struct kinfo_proc *kp; 847 int nchr; 848 void (*info)(struct ps_strings *, u_long *, int *); 849 { 850 char **ap; 851 u_long addr; 852 int cnt; 853 static struct ps_strings arginfo; 854 static u_long ps_strings; 855 size_t len; 856 857 if (ps_strings == 0) { 858 len = sizeof(ps_strings); 859 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 860 0) == -1) 861 ps_strings = PS_STRINGS; 862 } 863 864 /* 865 * Pointers are stored at the top of the user stack. 866 */ 867 if (kp->ki_stat == SZOMB || 868 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 869 sizeof(arginfo)) != sizeof(arginfo)) 870 return (0); 871 872 (*info)(&arginfo, &addr, &cnt); 873 if (cnt == 0) 874 return (0); 875 ap = kvm_argv(kd, kp, addr, cnt, nchr); 876 /* 877 * For live kernels, make sure this process didn't go away. 878 */ 879 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 880 ap = 0; 881 return (ap); 882 } 883 884 /* 885 * Get the command args. This code is now machine independent. 886 */ 887 char ** 888 kvm_getargv(kd, kp, nchr) 889 kvm_t *kd; 890 const struct kinfo_proc *kp; 891 int nchr; 892 { 893 int oid[4]; 894 int i; 895 size_t bufsz; 896 static unsigned long buflen; 897 static char *buf, *p; 898 static char **bufp; 899 static int argc; 900 901 if (!ISALIVE(kd)) { 902 _kvm_err(kd, kd->program, 903 "cannot read user space from dead kernel"); 904 return (0); 905 } 906 907 if (!buflen) { 908 bufsz = sizeof(buflen); 909 i = sysctlbyname("kern.ps_arg_cache_limit", 910 &buflen, &bufsz, NULL, 0); 911 if (i == -1) { 912 buflen = 0; 913 } else { 914 buf = malloc(buflen); 915 if (buf == NULL) 916 buflen = 0; 917 argc = 32; 918 bufp = malloc(sizeof(char *) * argc); 919 } 920 } 921 if (buf != NULL) { 922 oid[0] = CTL_KERN; 923 oid[1] = KERN_PROC; 924 oid[2] = KERN_PROC_ARGS; 925 oid[3] = kp->ki_pid; 926 bufsz = buflen; 927 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 928 if (i == 0 && bufsz > 0) { 929 i = 0; 930 p = buf; 931 do { 932 bufp[i++] = p; 933 p += strlen(p) + 1; 934 if (i >= argc) { 935 argc += argc; 936 bufp = realloc(bufp, 937 sizeof(char *) * argc); 938 } 939 } while (p < buf + bufsz); 940 bufp[i++] = 0; 941 return (bufp); 942 } 943 } 944 if (kp->ki_flag & P_SYSTEM) 945 return (NULL); 946 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 947 } 948 949 char ** 950 kvm_getenvv(kd, kp, nchr) 951 kvm_t *kd; 952 const struct kinfo_proc *kp; 953 int nchr; 954 { 955 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 956 } 957 958 /* 959 * Read from user space. The user context is given by p. 960 */ 961 ssize_t 962 kvm_uread(kd, kp, uva, buf, len) 963 kvm_t *kd; 964 struct kinfo_proc *kp; 965 u_long uva; 966 char *buf; 967 size_t len; 968 { 969 char *cp; 970 char procfile[MAXPATHLEN]; 971 ssize_t amount; 972 int fd; 973 974 if (!ISALIVE(kd)) { 975 _kvm_err(kd, kd->program, 976 "cannot read user space from dead kernel"); 977 return (0); 978 } 979 980 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 981 fd = open(procfile, O_RDONLY, 0); 982 if (fd < 0) { 983 _kvm_err(kd, kd->program, "cannot open %s", procfile); 984 return (0); 985 } 986 987 cp = buf; 988 while (len > 0) { 989 errno = 0; 990 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 991 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 992 uva, procfile); 993 break; 994 } 995 amount = read(fd, cp, len); 996 if (amount < 0) { 997 _kvm_syserr(kd, kd->program, "error reading %s", 998 procfile); 999 break; 1000 } 1001 if (amount == 0) { 1002 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 1003 break; 1004 } 1005 cp += amount; 1006 uva += amount; 1007 len -= amount; 1008 } 1009 1010 close(fd); 1011 return ((ssize_t)(cp - buf)); 1012 } 1013