1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #if 0 35 #if defined(LIBC_SCCS) && !defined(lint) 36 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 37 #endif /* LIBC_SCCS and not lint */ 38 #endif 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 /* 44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 45 * users of this code, so we've factored it out into a separate module. 46 * Thus, we keep this grunge out of the other kvm applications (i.e., 47 * most other applications are interested only in open/close/read/nlist). 48 */ 49 50 #include <sys/param.h> 51 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 52 #include <sys/ucred.h> 53 #include <sys/queue.h> 54 #include <sys/_lock.h> 55 #include <sys/_mutex.h> 56 #include <sys/_task.h> 57 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 58 #include <sys/jail.h> 59 #include <sys/user.h> 60 #include <sys/proc.h> 61 #include <sys/exec.h> 62 #include <sys/stat.h> 63 #include <sys/sysent.h> 64 #include <sys/ioctl.h> 65 #include <sys/tty.h> 66 #include <sys/file.h> 67 #include <sys/conf.h> 68 #include <stdio.h> 69 #include <stdlib.h> 70 #include <unistd.h> 71 #include <nlist.h> 72 #include <kvm.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_param.h> 76 77 #include <sys/sysctl.h> 78 79 #include <limits.h> 80 #include <memory.h> 81 #include <paths.h> 82 83 #include "kvm_private.h" 84 85 #define KREAD(kd, addr, obj) \ 86 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 87 88 /* 89 * Read proc's from memory file into buffer bp, which has space to hold 90 * at most maxcnt procs. 91 */ 92 static int 93 kvm_proclist(kd, what, arg, p, bp, maxcnt) 94 kvm_t *kd; 95 int what, arg; 96 struct proc *p; 97 struct kinfo_proc *bp; 98 int maxcnt; 99 { 100 int cnt = 0; 101 struct kinfo_proc kinfo_proc, *kp; 102 struct pgrp pgrp; 103 struct session sess; 104 struct cdev t_cdev; 105 struct tty tty; 106 struct vmspace vmspace; 107 struct sigacts sigacts; 108 struct pstats pstats; 109 struct ucred ucred; 110 struct prison pr; 111 struct thread mtd; 112 struct proc proc; 113 struct proc pproc; 114 struct timeval tv; 115 struct sysentvec sysent; 116 char svname[KI_EMULNAMELEN]; 117 118 kp = &kinfo_proc; 119 kp->ki_structsize = sizeof(kinfo_proc); 120 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 121 memset(kp, 0, sizeof *kp); 122 if (KREAD(kd, (u_long)p, &proc)) { 123 _kvm_err(kd, kd->program, "can't read proc at %x", p); 124 return (-1); 125 } 126 if (proc.p_state != PRS_ZOMBIE) { 127 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 128 &mtd)) { 129 _kvm_err(kd, kd->program, 130 "can't read thread at %x", 131 TAILQ_FIRST(&proc.p_threads)); 132 return (-1); 133 } 134 } 135 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 136 kp->ki_ruid = ucred.cr_ruid; 137 kp->ki_svuid = ucred.cr_svuid; 138 kp->ki_rgid = ucred.cr_rgid; 139 kp->ki_svgid = ucred.cr_svgid; 140 kp->ki_ngroups = ucred.cr_ngroups; 141 bcopy(ucred.cr_groups, kp->ki_groups, 142 NGROUPS * sizeof(gid_t)); 143 kp->ki_uid = ucred.cr_uid; 144 if (ucred.cr_prison != NULL) { 145 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 146 _kvm_err(kd, kd->program, 147 "can't read prison at %x", 148 ucred.cr_prison); 149 return (-1); 150 } 151 kp->ki_jid = pr.pr_id; 152 } 153 } 154 155 switch(what & ~KERN_PROC_INC_THREAD) { 156 157 case KERN_PROC_GID: 158 if (kp->ki_groups[0] != (gid_t)arg) 159 continue; 160 break; 161 162 case KERN_PROC_PID: 163 if (proc.p_pid != (pid_t)arg) 164 continue; 165 break; 166 167 case KERN_PROC_RGID: 168 if (kp->ki_rgid != (gid_t)arg) 169 continue; 170 break; 171 172 case KERN_PROC_UID: 173 if (kp->ki_uid != (uid_t)arg) 174 continue; 175 break; 176 177 case KERN_PROC_RUID: 178 if (kp->ki_ruid != (uid_t)arg) 179 continue; 180 break; 181 } 182 /* 183 * We're going to add another proc to the set. If this 184 * will overflow the buffer, assume the reason is because 185 * nprocs (or the proc list) is corrupt and declare an error. 186 */ 187 if (cnt >= maxcnt) { 188 _kvm_err(kd, kd->program, "nprocs corrupt"); 189 return (-1); 190 } 191 /* 192 * gather kinfo_proc 193 */ 194 kp->ki_paddr = p; 195 kp->ki_addr = 0; /* XXX uarea */ 196 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 197 kp->ki_args = proc.p_args; 198 kp->ki_tracep = proc.p_tracevp; 199 kp->ki_textvp = proc.p_textvp; 200 kp->ki_fd = proc.p_fd; 201 kp->ki_vmspace = proc.p_vmspace; 202 if (proc.p_sigacts != NULL) { 203 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 204 _kvm_err(kd, kd->program, 205 "can't read sigacts at %x", proc.p_sigacts); 206 return (-1); 207 } 208 kp->ki_sigignore = sigacts.ps_sigignore; 209 kp->ki_sigcatch = sigacts.ps_sigcatch; 210 } 211 #if 0 212 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 213 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 214 _kvm_err(kd, kd->program, 215 "can't read stats at %x", proc.p_stats); 216 return (-1); 217 } 218 kp->ki_start = pstats.p_start; 219 220 /* 221 * XXX: The times here are probably zero and need 222 * to be calculated from the raw data in p_rux and 223 * p_crux. 224 */ 225 kp->ki_rusage = pstats.p_ru; 226 kp->ki_childstime = pstats.p_cru.ru_stime; 227 kp->ki_childutime = pstats.p_cru.ru_utime; 228 /* Some callers want child-times in a single value */ 229 timeradd(&kp->ki_childstime, &kp->ki_childutime, 230 &kp->ki_childtime); 231 } 232 #endif 233 if (proc.p_oppid) 234 kp->ki_ppid = proc.p_oppid; 235 else if (proc.p_pptr) { 236 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 237 _kvm_err(kd, kd->program, 238 "can't read pproc at %x", proc.p_pptr); 239 return (-1); 240 } 241 kp->ki_ppid = pproc.p_pid; 242 } else 243 kp->ki_ppid = 0; 244 if (proc.p_pgrp == NULL) 245 goto nopgrp; 246 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 247 _kvm_err(kd, kd->program, "can't read pgrp at %x", 248 proc.p_pgrp); 249 return (-1); 250 } 251 kp->ki_pgid = pgrp.pg_id; 252 kp->ki_jobc = pgrp.pg_jobc; 253 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 254 _kvm_err(kd, kd->program, "can't read session at %x", 255 pgrp.pg_session); 256 return (-1); 257 } 258 kp->ki_sid = sess.s_sid; 259 (void)memcpy(kp->ki_login, sess.s_login, 260 sizeof(kp->ki_login)); 261 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 262 if (sess.s_leader == p) 263 kp->ki_kiflag |= KI_SLEADER; 264 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 265 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 266 _kvm_err(kd, kd->program, 267 "can't read tty at %x", sess.s_ttyp); 268 return (-1); 269 } 270 if (tty.t_dev != NULL) { 271 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 272 _kvm_err(kd, kd->program, 273 "can't read cdev at %x", 274 tty.t_dev); 275 return (-1); 276 } 277 #if 0 278 kp->ki_tdev = t_cdev.si_udev; 279 #else 280 kp->ki_tdev = NODEV; 281 #endif 282 } 283 if (tty.t_pgrp != NULL) { 284 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 285 _kvm_err(kd, kd->program, 286 "can't read tpgrp at %x", 287 tty.t_pgrp); 288 return (-1); 289 } 290 kp->ki_tpgid = pgrp.pg_id; 291 } else 292 kp->ki_tpgid = -1; 293 if (tty.t_session != NULL) { 294 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 295 _kvm_err(kd, kd->program, 296 "can't read session at %x", 297 tty.t_session); 298 return (-1); 299 } 300 kp->ki_tsid = sess.s_sid; 301 } 302 } else { 303 nopgrp: 304 kp->ki_tdev = NODEV; 305 } 306 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 307 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 308 kp->ki_wmesg, WMESGLEN); 309 310 (void)kvm_read(kd, (u_long)proc.p_vmspace, 311 (char *)&vmspace, sizeof(vmspace)); 312 kp->ki_size = vmspace.vm_map.size; 313 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 314 kp->ki_swrss = vmspace.vm_swrss; 315 kp->ki_tsize = vmspace.vm_tsize; 316 kp->ki_dsize = vmspace.vm_dsize; 317 kp->ki_ssize = vmspace.vm_ssize; 318 319 switch (what & ~KERN_PROC_INC_THREAD) { 320 321 case KERN_PROC_PGRP: 322 if (kp->ki_pgid != (pid_t)arg) 323 continue; 324 break; 325 326 case KERN_PROC_SESSION: 327 if (kp->ki_sid != (pid_t)arg) 328 continue; 329 break; 330 331 case KERN_PROC_TTY: 332 if ((proc.p_flag & P_CONTROLT) == 0 || 333 kp->ki_tdev != (dev_t)arg) 334 continue; 335 break; 336 } 337 if (proc.p_comm[0] != 0) 338 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 339 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 340 sizeof(sysent)); 341 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 342 sizeof(svname)); 343 if (svname[0] != 0) 344 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 345 if ((proc.p_state != PRS_ZOMBIE) && 346 (mtd.td_blocked != 0)) { 347 kp->ki_kiflag |= KI_LOCKBLOCK; 348 if (mtd.td_lockname) 349 (void)kvm_read(kd, 350 (u_long)mtd.td_lockname, 351 kp->ki_lockname, LOCKNAMELEN); 352 kp->ki_lockname[LOCKNAMELEN] = 0; 353 } 354 /* 355 * XXX: This is plain wrong, rux_runtime has nothing 356 * to do with struct bintime, rux_runtime is just a 64-bit 357 * integer counter of cputicks. What we need here is a way 358 * to convert cputicks to usecs. The kernel does it in 359 * kern/kern_tc.c, but the function can't be just copied. 360 */ 361 bintime2timeval(&proc.p_rux.rux_runtime, &tv); 362 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 363 kp->ki_pid = proc.p_pid; 364 kp->ki_siglist = proc.p_siglist; 365 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 366 kp->ki_sigmask = mtd.td_sigmask; 367 kp->ki_xstat = proc.p_xstat; 368 kp->ki_acflag = proc.p_acflag; 369 kp->ki_lock = proc.p_lock; 370 if (proc.p_state != PRS_ZOMBIE) { 371 kp->ki_swtime = proc.p_swtime; 372 kp->ki_flag = proc.p_flag; 373 kp->ki_sflag = proc.p_sflag; 374 kp->ki_nice = proc.p_nice; 375 kp->ki_traceflag = proc.p_traceflag; 376 if (proc.p_state == PRS_NORMAL) { 377 if (TD_ON_RUNQ(&mtd) || 378 TD_CAN_RUN(&mtd) || 379 TD_IS_RUNNING(&mtd)) { 380 kp->ki_stat = SRUN; 381 } else if (mtd.td_state == 382 TDS_INHIBITED) { 383 if (P_SHOULDSTOP(&proc)) { 384 kp->ki_stat = SSTOP; 385 } else if ( 386 TD_IS_SLEEPING(&mtd)) { 387 kp->ki_stat = SSLEEP; 388 } else if (TD_ON_LOCK(&mtd)) { 389 kp->ki_stat = SLOCK; 390 } else { 391 kp->ki_stat = SWAIT; 392 } 393 } 394 } else { 395 kp->ki_stat = SIDL; 396 } 397 /* Stuff from the thread */ 398 kp->ki_pri.pri_level = mtd.td_priority; 399 kp->ki_pri.pri_native = mtd.td_base_pri; 400 kp->ki_lastcpu = mtd.td_lastcpu; 401 kp->ki_wchan = mtd.td_wchan; 402 kp->ki_oncpu = mtd.td_oncpu; 403 404 if (!(proc.p_flag & P_SA)) { 405 kp->ki_pctcpu = 0; 406 kp->ki_rqindex = 0; 407 } else { 408 kp->ki_tdflags = -1; 409 /* All the rest are 0 for now */ 410 } 411 } else { 412 kp->ki_stat = SZOMB; 413 } 414 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 415 ++bp; 416 ++cnt; 417 } 418 return (cnt); 419 } 420 421 /* 422 * Build proc info array by reading in proc list from a crash dump. 423 * Return number of procs read. maxcnt is the max we will read. 424 */ 425 static int 426 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 427 kvm_t *kd; 428 int what, arg; 429 u_long a_allproc; 430 u_long a_zombproc; 431 int maxcnt; 432 { 433 struct kinfo_proc *bp = kd->procbase; 434 int acnt, zcnt; 435 struct proc *p; 436 437 if (KREAD(kd, a_allproc, &p)) { 438 _kvm_err(kd, kd->program, "cannot read allproc"); 439 return (-1); 440 } 441 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 442 if (acnt < 0) 443 return (acnt); 444 445 if (KREAD(kd, a_zombproc, &p)) { 446 _kvm_err(kd, kd->program, "cannot read zombproc"); 447 return (-1); 448 } 449 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 450 if (zcnt < 0) 451 zcnt = 0; 452 453 return (acnt + zcnt); 454 } 455 456 struct kinfo_proc * 457 kvm_getprocs(kd, op, arg, cnt) 458 kvm_t *kd; 459 int op, arg; 460 int *cnt; 461 { 462 int mib[4], st, nprocs; 463 size_t size; 464 int temp_op; 465 466 if (kd->procbase != 0) { 467 free((void *)kd->procbase); 468 /* 469 * Clear this pointer in case this call fails. Otherwise, 470 * kvm_close() will free it again. 471 */ 472 kd->procbase = 0; 473 } 474 if (ISALIVE(kd)) { 475 size = 0; 476 mib[0] = CTL_KERN; 477 mib[1] = KERN_PROC; 478 mib[2] = op; 479 mib[3] = arg; 480 temp_op = op & ~KERN_PROC_INC_THREAD; 481 st = sysctl(mib, 482 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 483 3 : 4, NULL, &size, NULL, 0); 484 if (st == -1) { 485 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 486 return (0); 487 } 488 /* 489 * We can't continue with a size of 0 because we pass 490 * it to realloc() (via _kvm_realloc()), and passing 0 491 * to realloc() results in undefined behavior. 492 */ 493 if (size == 0) { 494 /* 495 * XXX: We should probably return an invalid, 496 * but non-NULL, pointer here so any client 497 * program trying to dereference it will 498 * crash. However, _kvm_freeprocs() calls 499 * free() on kd->procbase if it isn't NULL, 500 * and free()'ing a junk pointer isn't good. 501 * Then again, _kvm_freeprocs() isn't used 502 * anywhere . . . 503 */ 504 kd->procbase = _kvm_malloc(kd, 1); 505 goto liveout; 506 } 507 do { 508 size += size / 10; 509 kd->procbase = (struct kinfo_proc *) 510 _kvm_realloc(kd, kd->procbase, size); 511 if (kd->procbase == 0) 512 return (0); 513 st = sysctl(mib, temp_op == KERN_PROC_ALL || 514 temp_op == KERN_PROC_PROC ? 3 : 4, 515 kd->procbase, &size, NULL, 0); 516 } while (st == -1 && errno == ENOMEM); 517 if (st == -1) { 518 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 519 return (0); 520 } 521 /* 522 * We have to check the size again because sysctl() 523 * may "round up" oldlenp if oldp is NULL; hence it 524 * might've told us that there was data to get when 525 * there really isn't any. 526 */ 527 if (size > 0 && 528 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 529 _kvm_err(kd, kd->program, 530 "kinfo_proc size mismatch (expected %d, got %d)", 531 sizeof(struct kinfo_proc), 532 kd->procbase->ki_structsize); 533 return (0); 534 } 535 liveout: 536 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 537 } else { 538 struct nlist nl[4], *p; 539 540 nl[0].n_name = "_nprocs"; 541 nl[1].n_name = "_allproc"; 542 nl[2].n_name = "_zombproc"; 543 nl[3].n_name = 0; 544 545 if (kvm_nlist(kd, nl) != 0) { 546 for (p = nl; p->n_type != 0; ++p) 547 ; 548 _kvm_err(kd, kd->program, 549 "%s: no such symbol", p->n_name); 550 return (0); 551 } 552 if (KREAD(kd, nl[0].n_value, &nprocs)) { 553 _kvm_err(kd, kd->program, "can't read nprocs"); 554 return (0); 555 } 556 size = nprocs * sizeof(struct kinfo_proc); 557 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 558 if (kd->procbase == 0) 559 return (0); 560 561 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 562 nl[2].n_value, nprocs); 563 #ifdef notdef 564 size = nprocs * sizeof(struct kinfo_proc); 565 (void)realloc(kd->procbase, size); 566 #endif 567 } 568 *cnt = nprocs; 569 return (kd->procbase); 570 } 571 572 void 573 _kvm_freeprocs(kd) 574 kvm_t *kd; 575 { 576 if (kd->procbase) { 577 free(kd->procbase); 578 kd->procbase = 0; 579 } 580 } 581 582 void * 583 _kvm_realloc(kd, p, n) 584 kvm_t *kd; 585 void *p; 586 size_t n; 587 { 588 void *np = (void *)realloc(p, n); 589 590 if (np == 0) { 591 free(p); 592 _kvm_err(kd, kd->program, "out of memory"); 593 } 594 return (np); 595 } 596 597 #ifndef MAX 598 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 599 #endif 600 601 /* 602 * Read in an argument vector from the user address space of process kp. 603 * addr if the user-space base address of narg null-terminated contiguous 604 * strings. This is used to read in both the command arguments and 605 * environment strings. Read at most maxcnt characters of strings. 606 */ 607 static char ** 608 kvm_argv(kd, kp, addr, narg, maxcnt) 609 kvm_t *kd; 610 struct kinfo_proc *kp; 611 u_long addr; 612 int narg; 613 int maxcnt; 614 { 615 char *np, *cp, *ep, *ap; 616 u_long oaddr = -1; 617 int len, cc; 618 char **argv; 619 620 /* 621 * Check that there aren't an unreasonable number of agruments, 622 * and that the address is in user space. 623 */ 624 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 625 return (0); 626 627 /* 628 * kd->argv : work space for fetching the strings from the target 629 * process's space, and is converted for returning to caller 630 */ 631 if (kd->argv == 0) { 632 /* 633 * Try to avoid reallocs. 634 */ 635 kd->argc = MAX(narg + 1, 32); 636 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 637 sizeof(*kd->argv)); 638 if (kd->argv == 0) 639 return (0); 640 } else if (narg + 1 > kd->argc) { 641 kd->argc = MAX(2 * kd->argc, narg + 1); 642 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 643 sizeof(*kd->argv)); 644 if (kd->argv == 0) 645 return (0); 646 } 647 /* 648 * kd->argspc : returned to user, this is where the kd->argv 649 * arrays are left pointing to the collected strings. 650 */ 651 if (kd->argspc == 0) { 652 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 653 if (kd->argspc == 0) 654 return (0); 655 kd->arglen = PAGE_SIZE; 656 } 657 /* 658 * kd->argbuf : used to pull in pages from the target process. 659 * the strings are copied out of here. 660 */ 661 if (kd->argbuf == 0) { 662 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 663 if (kd->argbuf == 0) 664 return (0); 665 } 666 667 /* Pull in the target process'es argv vector */ 668 cc = sizeof(char *) * narg; 669 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 670 return (0); 671 /* 672 * ap : saved start address of string we're working on in kd->argspc 673 * np : pointer to next place to write in kd->argspc 674 * len: length of data in kd->argspc 675 * argv: pointer to the argv vector that we are hunting around the 676 * target process space for, and converting to addresses in 677 * our address space (kd->argspc). 678 */ 679 ap = np = kd->argspc; 680 argv = kd->argv; 681 len = 0; 682 /* 683 * Loop over pages, filling in the argument vector. 684 * Note that the argv strings could be pointing *anywhere* in 685 * the user address space and are no longer contiguous. 686 * Note that *argv is modified when we are going to fetch a string 687 * that crosses a page boundary. We copy the next part of the string 688 * into to "np" and eventually convert the pointer. 689 */ 690 while (argv < kd->argv + narg && *argv != 0) { 691 692 /* get the address that the current argv string is on */ 693 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 694 695 /* is it the same page as the last one? */ 696 if (addr != oaddr) { 697 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 698 PAGE_SIZE) 699 return (0); 700 oaddr = addr; 701 } 702 703 /* offset within the page... kd->argbuf */ 704 addr = (u_long)*argv & (PAGE_SIZE - 1); 705 706 /* cp = start of string, cc = count of chars in this chunk */ 707 cp = kd->argbuf + addr; 708 cc = PAGE_SIZE - addr; 709 710 /* dont get more than asked for by user process */ 711 if (maxcnt > 0 && cc > maxcnt - len) 712 cc = maxcnt - len; 713 714 /* pointer to end of string if we found it in this page */ 715 ep = memchr(cp, '\0', cc); 716 if (ep != 0) 717 cc = ep - cp + 1; 718 /* 719 * at this point, cc is the count of the chars that we are 720 * going to retrieve this time. we may or may not have found 721 * the end of it. (ep points to the null if the end is known) 722 */ 723 724 /* will we exceed the malloc/realloced buffer? */ 725 if (len + cc > kd->arglen) { 726 int off; 727 char **pp; 728 char *op = kd->argspc; 729 730 kd->arglen *= 2; 731 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 732 kd->arglen); 733 if (kd->argspc == 0) 734 return (0); 735 /* 736 * Adjust argv pointers in case realloc moved 737 * the string space. 738 */ 739 off = kd->argspc - op; 740 for (pp = kd->argv; pp < argv; pp++) 741 *pp += off; 742 ap += off; 743 np += off; 744 } 745 /* np = where to put the next part of the string in kd->argspc*/ 746 /* np is kinda redundant.. could use "kd->argspc + len" */ 747 memcpy(np, cp, cc); 748 np += cc; /* inc counters */ 749 len += cc; 750 751 /* 752 * if end of string found, set the *argv pointer to the 753 * saved beginning of string, and advance. argv points to 754 * somewhere in kd->argv.. This is initially relative 755 * to the target process, but when we close it off, we set 756 * it to point in our address space. 757 */ 758 if (ep != 0) { 759 *argv++ = ap; 760 ap = np; 761 } else { 762 /* update the address relative to the target process */ 763 *argv += cc; 764 } 765 766 if (maxcnt > 0 && len >= maxcnt) { 767 /* 768 * We're stopping prematurely. Terminate the 769 * current string. 770 */ 771 if (ep == 0) { 772 *np = '\0'; 773 *argv++ = ap; 774 } 775 break; 776 } 777 } 778 /* Make sure argv is terminated. */ 779 *argv = 0; 780 return (kd->argv); 781 } 782 783 static void 784 ps_str_a(p, addr, n) 785 struct ps_strings *p; 786 u_long *addr; 787 int *n; 788 { 789 *addr = (u_long)p->ps_argvstr; 790 *n = p->ps_nargvstr; 791 } 792 793 static void 794 ps_str_e(p, addr, n) 795 struct ps_strings *p; 796 u_long *addr; 797 int *n; 798 { 799 *addr = (u_long)p->ps_envstr; 800 *n = p->ps_nenvstr; 801 } 802 803 /* 804 * Determine if the proc indicated by p is still active. 805 * This test is not 100% foolproof in theory, but chances of 806 * being wrong are very low. 807 */ 808 static int 809 proc_verify(curkp) 810 struct kinfo_proc *curkp; 811 { 812 struct kinfo_proc newkp; 813 int mib[4]; 814 size_t len; 815 816 mib[0] = CTL_KERN; 817 mib[1] = KERN_PROC; 818 mib[2] = KERN_PROC_PID; 819 mib[3] = curkp->ki_pid; 820 len = sizeof(newkp); 821 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 822 return (0); 823 return (curkp->ki_pid == newkp.ki_pid && 824 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 825 } 826 827 static char ** 828 kvm_doargv(kd, kp, nchr, info) 829 kvm_t *kd; 830 struct kinfo_proc *kp; 831 int nchr; 832 void (*info)(struct ps_strings *, u_long *, int *); 833 { 834 char **ap; 835 u_long addr; 836 int cnt; 837 static struct ps_strings arginfo; 838 static u_long ps_strings; 839 size_t len; 840 841 if (ps_strings == 0) { 842 len = sizeof(ps_strings); 843 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 844 0) == -1) 845 ps_strings = PS_STRINGS; 846 } 847 848 /* 849 * Pointers are stored at the top of the user stack. 850 */ 851 if (kp->ki_stat == SZOMB || 852 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 853 sizeof(arginfo)) != sizeof(arginfo)) 854 return (0); 855 856 (*info)(&arginfo, &addr, &cnt); 857 if (cnt == 0) 858 return (0); 859 ap = kvm_argv(kd, kp, addr, cnt, nchr); 860 /* 861 * For live kernels, make sure this process didn't go away. 862 */ 863 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 864 ap = 0; 865 return (ap); 866 } 867 868 /* 869 * Get the command args. This code is now machine independent. 870 */ 871 char ** 872 kvm_getargv(kd, kp, nchr) 873 kvm_t *kd; 874 const struct kinfo_proc *kp; 875 int nchr; 876 { 877 int oid[4]; 878 int i; 879 size_t bufsz; 880 static unsigned long buflen; 881 static char *buf, *p; 882 static char **bufp; 883 static int argc; 884 885 if (!ISALIVE(kd)) { 886 _kvm_err(kd, kd->program, 887 "cannot read user space from dead kernel"); 888 return (0); 889 } 890 891 if (!buflen) { 892 bufsz = sizeof(buflen); 893 i = sysctlbyname("kern.ps_arg_cache_limit", 894 &buflen, &bufsz, NULL, 0); 895 if (i == -1) { 896 buflen = 0; 897 } else { 898 buf = malloc(buflen); 899 if (buf == NULL) 900 buflen = 0; 901 argc = 32; 902 bufp = malloc(sizeof(char *) * argc); 903 } 904 } 905 if (buf != NULL) { 906 oid[0] = CTL_KERN; 907 oid[1] = KERN_PROC; 908 oid[2] = KERN_PROC_ARGS; 909 oid[3] = kp->ki_pid; 910 bufsz = buflen; 911 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 912 if (i == 0 && bufsz > 0) { 913 i = 0; 914 p = buf; 915 do { 916 bufp[i++] = p; 917 p += strlen(p) + 1; 918 if (i >= argc) { 919 argc += argc; 920 bufp = realloc(bufp, 921 sizeof(char *) * argc); 922 } 923 } while (p < buf + bufsz); 924 bufp[i++] = 0; 925 return (bufp); 926 } 927 } 928 if (kp->ki_flag & P_SYSTEM) 929 return (NULL); 930 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 931 } 932 933 char ** 934 kvm_getenvv(kd, kp, nchr) 935 kvm_t *kd; 936 const struct kinfo_proc *kp; 937 int nchr; 938 { 939 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 940 } 941 942 /* 943 * Read from user space. The user context is given by p. 944 */ 945 ssize_t 946 kvm_uread(kd, kp, uva, buf, len) 947 kvm_t *kd; 948 struct kinfo_proc *kp; 949 u_long uva; 950 char *buf; 951 size_t len; 952 { 953 char *cp; 954 char procfile[MAXPATHLEN]; 955 ssize_t amount; 956 int fd; 957 958 if (!ISALIVE(kd)) { 959 _kvm_err(kd, kd->program, 960 "cannot read user space from dead kernel"); 961 return (0); 962 } 963 964 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 965 fd = open(procfile, O_RDONLY, 0); 966 if (fd < 0) { 967 _kvm_err(kd, kd->program, "cannot open %s", procfile); 968 return (0); 969 } 970 971 cp = buf; 972 while (len > 0) { 973 errno = 0; 974 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 975 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 976 uva, procfile); 977 break; 978 } 979 amount = read(fd, cp, len); 980 if (amount < 0) { 981 _kvm_syserr(kd, kd->program, "error reading %s", 982 procfile); 983 break; 984 } 985 if (amount == 0) { 986 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 987 break; 988 } 989 cp += amount; 990 uva += amount; 991 len -= amount; 992 } 993 994 close(fd); 995 return ((ssize_t)(cp - buf)); 996 } 997