1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #if 0 35 #if defined(LIBC_SCCS) && !defined(lint) 36 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 37 #endif /* LIBC_SCCS and not lint */ 38 #endif 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 /* 44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 45 * users of this code, so we've factored it out into a separate module. 46 * Thus, we keep this grunge out of the other kvm applications (i.e., 47 * most other applications are interested only in open/close/read/nlist). 48 */ 49 50 #include <sys/param.h> 51 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 52 #include <sys/ucred.h> 53 #include <sys/queue.h> 54 #include <sys/_lock.h> 55 #include <sys/_mutex.h> 56 #include <sys/_task.h> 57 #include <sys/cpuset.h> 58 #include <sys/user.h> 59 #include <sys/proc.h> 60 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 61 #include <sys/jail.h> 62 #include <sys/exec.h> 63 #include <sys/stat.h> 64 #include <sys/sysent.h> 65 #include <sys/ioctl.h> 66 #include <sys/tty.h> 67 #include <sys/file.h> 68 #include <sys/conf.h> 69 #include <stdio.h> 70 #include <stdlib.h> 71 #include <unistd.h> 72 #include <nlist.h> 73 #include <kvm.h> 74 75 #include <sys/sysctl.h> 76 77 #include <limits.h> 78 #include <memory.h> 79 #include <paths.h> 80 81 #include "kvm_private.h" 82 83 #define KREAD(kd, addr, obj) \ 84 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 85 86 static int ticks; 87 static int hz; 88 static uint64_t cpu_tick_frequency; 89 90 /* 91 * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is 92 * read/initialized before this function is ever called. 93 */ 94 static uint64_t 95 cputick2usec(uint64_t tick) 96 { 97 98 if (cpu_tick_frequency == 0) 99 return (0); 100 if (tick > 18446744073709551) /* floor(2^64 / 1000) */ 101 return (tick / (cpu_tick_frequency / 1000000)); 102 else if (tick > 18446744073709) /* floor(2^64 / 1000000) */ 103 return ((tick * 1000) / (cpu_tick_frequency / 1000)); 104 else 105 return ((tick * 1000000) / cpu_tick_frequency); 106 } 107 108 /* 109 * Read proc's from memory file into buffer bp, which has space to hold 110 * at most maxcnt procs. 111 */ 112 static int 113 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 114 struct kinfo_proc *bp, int maxcnt) 115 { 116 int cnt = 0; 117 struct kinfo_proc kinfo_proc, *kp; 118 struct pgrp pgrp; 119 struct session sess; 120 struct cdev t_cdev; 121 struct tty tty; 122 struct vmspace vmspace; 123 struct sigacts sigacts; 124 #if 0 125 struct pstats pstats; 126 #endif 127 struct ucred ucred; 128 struct prison pr; 129 struct thread mtd; 130 struct proc proc; 131 struct proc pproc; 132 struct sysentvec sysent; 133 char svname[KI_EMULNAMELEN]; 134 135 kp = &kinfo_proc; 136 kp->ki_structsize = sizeof(kinfo_proc); 137 /* 138 * Loop on the processes. this is completely broken because we need to be 139 * able to loop on the threads and merge the ones that are the same process some how. 140 */ 141 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 142 memset(kp, 0, sizeof *kp); 143 if (KREAD(kd, (u_long)p, &proc)) { 144 _kvm_err(kd, kd->program, "can't read proc at %p", p); 145 return (-1); 146 } 147 if (proc.p_state != PRS_ZOMBIE) { 148 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 149 &mtd)) { 150 _kvm_err(kd, kd->program, 151 "can't read thread at %p", 152 TAILQ_FIRST(&proc.p_threads)); 153 return (-1); 154 } 155 } 156 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 157 kp->ki_ruid = ucred.cr_ruid; 158 kp->ki_svuid = ucred.cr_svuid; 159 kp->ki_rgid = ucred.cr_rgid; 160 kp->ki_svgid = ucred.cr_svgid; 161 kp->ki_cr_flags = ucred.cr_flags; 162 if (ucred.cr_ngroups > KI_NGROUPS) { 163 kp->ki_ngroups = KI_NGROUPS; 164 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 165 } else 166 kp->ki_ngroups = ucred.cr_ngroups; 167 kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, 168 kp->ki_ngroups * sizeof(gid_t)); 169 kp->ki_uid = ucred.cr_uid; 170 if (ucred.cr_prison != NULL) { 171 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 172 _kvm_err(kd, kd->program, 173 "can't read prison at %p", 174 ucred.cr_prison); 175 return (-1); 176 } 177 kp->ki_jid = pr.pr_id; 178 } 179 } 180 181 switch(what & ~KERN_PROC_INC_THREAD) { 182 183 case KERN_PROC_GID: 184 if (kp->ki_groups[0] != (gid_t)arg) 185 continue; 186 break; 187 188 case KERN_PROC_PID: 189 if (proc.p_pid != (pid_t)arg) 190 continue; 191 break; 192 193 case KERN_PROC_RGID: 194 if (kp->ki_rgid != (gid_t)arg) 195 continue; 196 break; 197 198 case KERN_PROC_UID: 199 if (kp->ki_uid != (uid_t)arg) 200 continue; 201 break; 202 203 case KERN_PROC_RUID: 204 if (kp->ki_ruid != (uid_t)arg) 205 continue; 206 break; 207 } 208 /* 209 * We're going to add another proc to the set. If this 210 * will overflow the buffer, assume the reason is because 211 * nprocs (or the proc list) is corrupt and declare an error. 212 */ 213 if (cnt >= maxcnt) { 214 _kvm_err(kd, kd->program, "nprocs corrupt"); 215 return (-1); 216 } 217 /* 218 * gather kinfo_proc 219 */ 220 kp->ki_paddr = p; 221 kp->ki_addr = 0; /* XXX uarea */ 222 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 223 kp->ki_args = proc.p_args; 224 kp->ki_tracep = proc.p_tracevp; 225 kp->ki_textvp = proc.p_textvp; 226 kp->ki_fd = proc.p_fd; 227 kp->ki_vmspace = proc.p_vmspace; 228 if (proc.p_sigacts != NULL) { 229 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 230 _kvm_err(kd, kd->program, 231 "can't read sigacts at %p", proc.p_sigacts); 232 return (-1); 233 } 234 kp->ki_sigignore = sigacts.ps_sigignore; 235 kp->ki_sigcatch = sigacts.ps_sigcatch; 236 } 237 #if 0 238 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 239 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 240 _kvm_err(kd, kd->program, 241 "can't read stats at %x", proc.p_stats); 242 return (-1); 243 } 244 kp->ki_start = pstats.p_start; 245 246 /* 247 * XXX: The times here are probably zero and need 248 * to be calculated from the raw data in p_rux and 249 * p_crux. 250 */ 251 kp->ki_rusage = pstats.p_ru; 252 kp->ki_childstime = pstats.p_cru.ru_stime; 253 kp->ki_childutime = pstats.p_cru.ru_utime; 254 /* Some callers want child-times in a single value */ 255 timeradd(&kp->ki_childstime, &kp->ki_childutime, 256 &kp->ki_childtime); 257 } 258 #endif 259 if (proc.p_oppid) 260 kp->ki_ppid = proc.p_oppid; 261 else if (proc.p_pptr) { 262 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 263 _kvm_err(kd, kd->program, 264 "can't read pproc at %p", proc.p_pptr); 265 return (-1); 266 } 267 kp->ki_ppid = pproc.p_pid; 268 } else 269 kp->ki_ppid = 0; 270 if (proc.p_pgrp == NULL) 271 goto nopgrp; 272 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 273 _kvm_err(kd, kd->program, "can't read pgrp at %p", 274 proc.p_pgrp); 275 return (-1); 276 } 277 kp->ki_pgid = pgrp.pg_id; 278 kp->ki_jobc = pgrp.pg_jobc; 279 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 280 _kvm_err(kd, kd->program, "can't read session at %p", 281 pgrp.pg_session); 282 return (-1); 283 } 284 kp->ki_sid = sess.s_sid; 285 (void)memcpy(kp->ki_login, sess.s_login, 286 sizeof(kp->ki_login)); 287 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 288 if (sess.s_leader == p) 289 kp->ki_kiflag |= KI_SLEADER; 290 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 291 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 292 _kvm_err(kd, kd->program, 293 "can't read tty at %p", sess.s_ttyp); 294 return (-1); 295 } 296 if (tty.t_dev != NULL) { 297 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 298 _kvm_err(kd, kd->program, 299 "can't read cdev at %p", 300 tty.t_dev); 301 return (-1); 302 } 303 #if 0 304 kp->ki_tdev = t_cdev.si_udev; 305 #else 306 kp->ki_tdev = NODEV; 307 #endif 308 } 309 if (tty.t_pgrp != NULL) { 310 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 311 _kvm_err(kd, kd->program, 312 "can't read tpgrp at %p", 313 tty.t_pgrp); 314 return (-1); 315 } 316 kp->ki_tpgid = pgrp.pg_id; 317 } else 318 kp->ki_tpgid = -1; 319 if (tty.t_session != NULL) { 320 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 321 _kvm_err(kd, kd->program, 322 "can't read session at %p", 323 tty.t_session); 324 return (-1); 325 } 326 kp->ki_tsid = sess.s_sid; 327 } 328 } else { 329 nopgrp: 330 kp->ki_tdev = NODEV; 331 } 332 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 333 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 334 kp->ki_wmesg, WMESGLEN); 335 336 (void)kvm_read(kd, (u_long)proc.p_vmspace, 337 (char *)&vmspace, sizeof(vmspace)); 338 kp->ki_size = vmspace.vm_map.size; 339 /* 340 * Approximate the kernel's method of calculating 341 * this field. 342 */ 343 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) 344 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); 345 kp->ki_swrss = vmspace.vm_swrss; 346 kp->ki_tsize = vmspace.vm_tsize; 347 kp->ki_dsize = vmspace.vm_dsize; 348 kp->ki_ssize = vmspace.vm_ssize; 349 350 switch (what & ~KERN_PROC_INC_THREAD) { 351 352 case KERN_PROC_PGRP: 353 if (kp->ki_pgid != (pid_t)arg) 354 continue; 355 break; 356 357 case KERN_PROC_SESSION: 358 if (kp->ki_sid != (pid_t)arg) 359 continue; 360 break; 361 362 case KERN_PROC_TTY: 363 if ((proc.p_flag & P_CONTROLT) == 0 || 364 kp->ki_tdev != (dev_t)arg) 365 continue; 366 break; 367 } 368 if (proc.p_comm[0] != 0) 369 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 370 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 371 sizeof(sysent)); 372 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 373 sizeof(svname)); 374 if (svname[0] != 0) 375 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 376 if ((proc.p_state != PRS_ZOMBIE) && 377 (mtd.td_blocked != 0)) { 378 kp->ki_kiflag |= KI_LOCKBLOCK; 379 if (mtd.td_lockname) 380 (void)kvm_read(kd, 381 (u_long)mtd.td_lockname, 382 kp->ki_lockname, LOCKNAMELEN); 383 kp->ki_lockname[LOCKNAMELEN] = 0; 384 } 385 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); 386 kp->ki_pid = proc.p_pid; 387 kp->ki_siglist = proc.p_siglist; 388 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 389 kp->ki_sigmask = mtd.td_sigmask; 390 kp->ki_xstat = proc.p_xstat; 391 kp->ki_acflag = proc.p_acflag; 392 kp->ki_lock = proc.p_lock; 393 if (proc.p_state != PRS_ZOMBIE) { 394 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 395 kp->ki_flag = proc.p_flag; 396 kp->ki_sflag = 0; 397 kp->ki_nice = proc.p_nice; 398 kp->ki_traceflag = proc.p_traceflag; 399 if (proc.p_state == PRS_NORMAL) { 400 if (TD_ON_RUNQ(&mtd) || 401 TD_CAN_RUN(&mtd) || 402 TD_IS_RUNNING(&mtd)) { 403 kp->ki_stat = SRUN; 404 } else if (mtd.td_state == 405 TDS_INHIBITED) { 406 if (P_SHOULDSTOP(&proc)) { 407 kp->ki_stat = SSTOP; 408 } else if ( 409 TD_IS_SLEEPING(&mtd)) { 410 kp->ki_stat = SSLEEP; 411 } else if (TD_ON_LOCK(&mtd)) { 412 kp->ki_stat = SLOCK; 413 } else { 414 kp->ki_stat = SWAIT; 415 } 416 } 417 } else { 418 kp->ki_stat = SIDL; 419 } 420 /* Stuff from the thread */ 421 kp->ki_pri.pri_level = mtd.td_priority; 422 kp->ki_pri.pri_native = mtd.td_base_pri; 423 kp->ki_lastcpu = mtd.td_lastcpu; 424 kp->ki_wchan = mtd.td_wchan; 425 if (mtd.td_name[0] != 0) 426 strlcpy(kp->ki_tdname, mtd.td_name, MAXCOMLEN); 427 kp->ki_oncpu = mtd.td_oncpu; 428 if (mtd.td_name[0] != '\0') 429 strlcpy(kp->ki_tdname, mtd.td_name, sizeof(kp->ki_tdname)); 430 kp->ki_pctcpu = 0; 431 kp->ki_rqindex = 0; 432 } else { 433 kp->ki_stat = SZOMB; 434 } 435 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 436 ++bp; 437 ++cnt; 438 } 439 return (cnt); 440 } 441 442 /* 443 * Build proc info array by reading in proc list from a crash dump. 444 * Return number of procs read. maxcnt is the max we will read. 445 */ 446 static int 447 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 448 u_long a_zombproc, int maxcnt) 449 { 450 struct kinfo_proc *bp = kd->procbase; 451 int acnt, zcnt; 452 struct proc *p; 453 454 if (KREAD(kd, a_allproc, &p)) { 455 _kvm_err(kd, kd->program, "cannot read allproc"); 456 return (-1); 457 } 458 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 459 if (acnt < 0) 460 return (acnt); 461 462 if (KREAD(kd, a_zombproc, &p)) { 463 _kvm_err(kd, kd->program, "cannot read zombproc"); 464 return (-1); 465 } 466 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 467 if (zcnt < 0) 468 zcnt = 0; 469 470 return (acnt + zcnt); 471 } 472 473 struct kinfo_proc * 474 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 475 { 476 int mib[4], st, nprocs; 477 size_t size; 478 int temp_op; 479 480 if (kd->procbase != 0) { 481 free((void *)kd->procbase); 482 /* 483 * Clear this pointer in case this call fails. Otherwise, 484 * kvm_close() will free it again. 485 */ 486 kd->procbase = 0; 487 } 488 if (ISALIVE(kd)) { 489 size = 0; 490 mib[0] = CTL_KERN; 491 mib[1] = KERN_PROC; 492 mib[2] = op; 493 mib[3] = arg; 494 temp_op = op & ~KERN_PROC_INC_THREAD; 495 st = sysctl(mib, 496 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 497 3 : 4, NULL, &size, NULL, 0); 498 if (st == -1) { 499 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 500 return (0); 501 } 502 /* 503 * We can't continue with a size of 0 because we pass 504 * it to realloc() (via _kvm_realloc()), and passing 0 505 * to realloc() results in undefined behavior. 506 */ 507 if (size == 0) { 508 /* 509 * XXX: We should probably return an invalid, 510 * but non-NULL, pointer here so any client 511 * program trying to dereference it will 512 * crash. However, _kvm_freeprocs() calls 513 * free() on kd->procbase if it isn't NULL, 514 * and free()'ing a junk pointer isn't good. 515 * Then again, _kvm_freeprocs() isn't used 516 * anywhere . . . 517 */ 518 kd->procbase = _kvm_malloc(kd, 1); 519 goto liveout; 520 } 521 do { 522 size += size / 10; 523 kd->procbase = (struct kinfo_proc *) 524 _kvm_realloc(kd, kd->procbase, size); 525 if (kd->procbase == 0) 526 return (0); 527 st = sysctl(mib, temp_op == KERN_PROC_ALL || 528 temp_op == KERN_PROC_PROC ? 3 : 4, 529 kd->procbase, &size, NULL, 0); 530 } while (st == -1 && errno == ENOMEM); 531 if (st == -1) { 532 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 533 return (0); 534 } 535 /* 536 * We have to check the size again because sysctl() 537 * may "round up" oldlenp if oldp is NULL; hence it 538 * might've told us that there was data to get when 539 * there really isn't any. 540 */ 541 if (size > 0 && 542 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 543 _kvm_err(kd, kd->program, 544 "kinfo_proc size mismatch (expected %zu, got %d)", 545 sizeof(struct kinfo_proc), 546 kd->procbase->ki_structsize); 547 return (0); 548 } 549 liveout: 550 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 551 } else { 552 struct nlist nl[7], *p; 553 554 nl[0].n_name = "_nprocs"; 555 nl[1].n_name = "_allproc"; 556 nl[2].n_name = "_zombproc"; 557 nl[3].n_name = "_ticks"; 558 nl[4].n_name = "_hz"; 559 nl[5].n_name = "_cpu_tick_frequency"; 560 nl[6].n_name = 0; 561 562 if (kvm_nlist(kd, nl) != 0) { 563 for (p = nl; p->n_type != 0; ++p) 564 ; 565 _kvm_err(kd, kd->program, 566 "%s: no such symbol", p->n_name); 567 return (0); 568 } 569 if (KREAD(kd, nl[0].n_value, &nprocs)) { 570 _kvm_err(kd, kd->program, "can't read nprocs"); 571 return (0); 572 } 573 if (KREAD(kd, nl[3].n_value, &ticks)) { 574 _kvm_err(kd, kd->program, "can't read ticks"); 575 return (0); 576 } 577 if (KREAD(kd, nl[4].n_value, &hz)) { 578 _kvm_err(kd, kd->program, "can't read hz"); 579 return (0); 580 } 581 if (KREAD(kd, nl[5].n_value, &cpu_tick_frequency)) { 582 _kvm_err(kd, kd->program, 583 "can't read cpu_tick_frequency"); 584 return (0); 585 } 586 size = nprocs * sizeof(struct kinfo_proc); 587 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 588 if (kd->procbase == 0) 589 return (0); 590 591 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 592 nl[2].n_value, nprocs); 593 #ifdef notdef 594 size = nprocs * sizeof(struct kinfo_proc); 595 (void)realloc(kd->procbase, size); 596 #endif 597 } 598 *cnt = nprocs; 599 return (kd->procbase); 600 } 601 602 void 603 _kvm_freeprocs(kvm_t *kd) 604 { 605 if (kd->procbase) { 606 free(kd->procbase); 607 kd->procbase = 0; 608 } 609 } 610 611 void * 612 _kvm_realloc(kvm_t *kd, void *p, size_t n) 613 { 614 void *np = (void *)realloc(p, n); 615 616 if (np == 0) { 617 free(p); 618 _kvm_err(kd, kd->program, "out of memory"); 619 } 620 return (np); 621 } 622 623 /* 624 * Get the command args or environment. 625 */ 626 static char ** 627 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr) 628 { 629 int oid[4]; 630 int i; 631 size_t bufsz; 632 static int buflen; 633 static char *buf, *p; 634 static char **bufp; 635 static int argc; 636 637 if (!ISALIVE(kd)) { 638 _kvm_err(kd, kd->program, 639 "cannot read user space from dead kernel"); 640 return (0); 641 } 642 643 if (nchr == 0 || nchr > ARG_MAX) 644 nchr = ARG_MAX; 645 if (buflen == 0) { 646 buf = malloc(nchr); 647 if (buf == NULL) { 648 _kvm_err(kd, kd->program, "cannot allocate memory"); 649 return (0); 650 } 651 buflen = nchr; 652 argc = 32; 653 bufp = malloc(sizeof(char *) * argc); 654 } else if (nchr > buflen) { 655 p = realloc(buf, nchr); 656 if (p != NULL) { 657 buf = p; 658 buflen = nchr; 659 } 660 } 661 oid[0] = CTL_KERN; 662 oid[1] = KERN_PROC; 663 oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 664 oid[3] = kp->ki_pid; 665 bufsz = buflen; 666 if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) { 667 /* 668 * If the supplied buf is too short to hold the requested 669 * value the sysctl returns with ENOMEM. The buf is filled 670 * with the truncated value and the returned bufsz is equal 671 * to the requested len. 672 */ 673 if (errno != ENOMEM || bufsz != (size_t)buflen) 674 return (0); 675 buf[bufsz - 1] = '\0'; 676 errno = 0; 677 } else if (bufsz == 0) { 678 return (0); 679 } 680 i = 0; 681 p = buf; 682 do { 683 bufp[i++] = p; 684 p += strlen(p) + 1; 685 if (i >= argc) { 686 argc += argc; 687 bufp = realloc(bufp, 688 sizeof(char *) * argc); 689 } 690 } while (p < buf + bufsz); 691 bufp[i++] = 0; 692 return (bufp); 693 } 694 695 char ** 696 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 697 { 698 return (kvm_argv(kd, kp, 0, nchr)); 699 } 700 701 char ** 702 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 703 { 704 return (kvm_argv(kd, kp, 1, nchr)); 705 } 706