1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software developed by the Computer Systems 8 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 9 * BG 91-66 and contributed to Berkeley. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 __SCCSID("@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"); 39 40 /* 41 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 42 * users of this code, so we've factored it out into a separate module. 43 * Thus, we keep this grunge out of the other kvm applications (i.e., 44 * most other applications are interested only in open/close/read/nlist). 45 */ 46 47 #include <sys/param.h> 48 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 49 #include <sys/ucred.h> 50 #include <sys/queue.h> 51 #include <sys/_lock.h> 52 #include <sys/_mutex.h> 53 #include <sys/_task.h> 54 #include <sys/cpuset.h> 55 #include <sys/user.h> 56 #include <sys/proc.h> 57 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 58 #include <sys/jail.h> 59 #include <sys/exec.h> 60 #include <sys/stat.h> 61 #include <sys/sysent.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <sys/file.h> 65 #include <sys/conf.h> 66 #define _WANT_KW_EXITCODE 67 #include <sys/wait.h> 68 #include <stdio.h> 69 #include <stdlib.h> 70 #include <stdbool.h> 71 #include <unistd.h> 72 #include <nlist.h> 73 #include <kvm.h> 74 75 #include <sys/sysctl.h> 76 77 #include <limits.h> 78 #include <memory.h> 79 #include <paths.h> 80 81 #include "kvm_private.h" 82 83 #define KREAD(kd, addr, obj) \ 84 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 85 86 static int ticks; 87 static int hz; 88 static uint64_t cpu_tick_frequency; 89 90 /* 91 * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is 92 * read/initialized before this function is ever called. 93 */ 94 static uint64_t 95 cputick2usec(uint64_t tick) 96 { 97 98 if (cpu_tick_frequency == 0) 99 return (0); 100 if (tick > 18446744073709551) /* floor(2^64 / 1000) */ 101 return (tick / (cpu_tick_frequency / 1000000)); 102 else if (tick > 18446744073709) /* floor(2^64 / 1000000) */ 103 return ((tick * 1000) / (cpu_tick_frequency / 1000)); 104 else 105 return ((tick * 1000000) / cpu_tick_frequency); 106 } 107 108 /* 109 * Read proc's from memory file into buffer bp, which has space to hold 110 * at most maxcnt procs. 111 */ 112 static int 113 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 114 struct kinfo_proc *bp, int maxcnt) 115 { 116 int cnt = 0; 117 struct kinfo_proc kinfo_proc, *kp; 118 struct pgrp pgrp; 119 struct session sess; 120 struct cdev t_cdev; 121 struct tty tty; 122 struct vmspace vmspace; 123 struct sigacts sigacts; 124 #if 0 125 struct pstats pstats; 126 #endif 127 struct ucred ucred; 128 struct prison pr; 129 struct thread mtd; 130 struct proc proc; 131 struct proc pproc; 132 struct sysentvec sysent; 133 char svname[KI_EMULNAMELEN]; 134 struct thread *td = NULL; 135 bool first_thread; 136 137 kp = &kinfo_proc; 138 kp->ki_structsize = sizeof(kinfo_proc); 139 /* 140 * Loop on the processes, then threads within the process if requested. 141 */ 142 if (what == KERN_PROC_ALL) 143 what |= KERN_PROC_INC_THREAD; 144 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 145 memset(kp, 0, sizeof *kp); 146 if (KREAD(kd, (u_long)p, &proc)) { 147 _kvm_err(kd, kd->program, "can't read proc at %p", p); 148 return (-1); 149 } 150 if (proc.p_state == PRS_NEW) 151 continue; 152 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 153 kp->ki_ruid = ucred.cr_ruid; 154 kp->ki_svuid = ucred.cr_svuid; 155 kp->ki_rgid = ucred.cr_rgid; 156 kp->ki_svgid = ucred.cr_svgid; 157 kp->ki_cr_flags = ucred.cr_flags; 158 if (ucred.cr_ngroups > KI_NGROUPS) { 159 kp->ki_ngroups = KI_NGROUPS; 160 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 161 } else 162 kp->ki_ngroups = ucred.cr_ngroups; 163 kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, 164 kp->ki_ngroups * sizeof(gid_t)); 165 kp->ki_uid = ucred.cr_uid; 166 if (ucred.cr_prison != NULL) { 167 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 168 _kvm_err(kd, kd->program, 169 "can't read prison at %p", 170 ucred.cr_prison); 171 return (-1); 172 } 173 kp->ki_jid = pr.pr_id; 174 } 175 } 176 177 switch(what & ~KERN_PROC_INC_THREAD) { 178 179 case KERN_PROC_GID: 180 if (kp->ki_groups[0] != (gid_t)arg) 181 continue; 182 break; 183 184 case KERN_PROC_PID: 185 if (proc.p_pid != (pid_t)arg) 186 continue; 187 break; 188 189 case KERN_PROC_RGID: 190 if (kp->ki_rgid != (gid_t)arg) 191 continue; 192 break; 193 194 case KERN_PROC_UID: 195 if (kp->ki_uid != (uid_t)arg) 196 continue; 197 break; 198 199 case KERN_PROC_RUID: 200 if (kp->ki_ruid != (uid_t)arg) 201 continue; 202 break; 203 } 204 /* 205 * We're going to add another proc to the set. If this 206 * will overflow the buffer, assume the reason is because 207 * nprocs (or the proc list) is corrupt and declare an error. 208 */ 209 if (cnt >= maxcnt) { 210 _kvm_err(kd, kd->program, "nprocs corrupt"); 211 return (-1); 212 } 213 /* 214 * gather kinfo_proc 215 */ 216 kp->ki_paddr = p; 217 kp->ki_addr = 0; /* XXX uarea */ 218 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 219 kp->ki_args = proc.p_args; 220 kp->ki_numthreads = proc.p_numthreads; 221 kp->ki_tracep = proc.p_tracevp; 222 kp->ki_textvp = proc.p_textvp; 223 kp->ki_fd = proc.p_fd; 224 kp->ki_vmspace = proc.p_vmspace; 225 if (proc.p_sigacts != NULL) { 226 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 227 _kvm_err(kd, kd->program, 228 "can't read sigacts at %p", proc.p_sigacts); 229 return (-1); 230 } 231 kp->ki_sigignore = sigacts.ps_sigignore; 232 kp->ki_sigcatch = sigacts.ps_sigcatch; 233 } 234 #if 0 235 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 236 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 237 _kvm_err(kd, kd->program, 238 "can't read stats at %x", proc.p_stats); 239 return (-1); 240 } 241 kp->ki_start = pstats.p_start; 242 243 /* 244 * XXX: The times here are probably zero and need 245 * to be calculated from the raw data in p_rux and 246 * p_crux. 247 */ 248 kp->ki_rusage = pstats.p_ru; 249 kp->ki_childstime = pstats.p_cru.ru_stime; 250 kp->ki_childutime = pstats.p_cru.ru_utime; 251 /* Some callers want child-times in a single value */ 252 timeradd(&kp->ki_childstime, &kp->ki_childutime, 253 &kp->ki_childtime); 254 } 255 #endif 256 if (proc.p_oppid) 257 kp->ki_ppid = proc.p_oppid; 258 else if (proc.p_pptr) { 259 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 260 _kvm_err(kd, kd->program, 261 "can't read pproc at %p", proc.p_pptr); 262 return (-1); 263 } 264 kp->ki_ppid = pproc.p_pid; 265 } else 266 kp->ki_ppid = 0; 267 if (proc.p_pgrp == NULL) 268 goto nopgrp; 269 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 270 _kvm_err(kd, kd->program, "can't read pgrp at %p", 271 proc.p_pgrp); 272 return (-1); 273 } 274 kp->ki_pgid = pgrp.pg_id; 275 kp->ki_jobc = pgrp.pg_jobc; 276 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 277 _kvm_err(kd, kd->program, "can't read session at %p", 278 pgrp.pg_session); 279 return (-1); 280 } 281 kp->ki_sid = sess.s_sid; 282 (void)memcpy(kp->ki_login, sess.s_login, 283 sizeof(kp->ki_login)); 284 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 285 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 286 _kvm_err(kd, kd->program, 287 "can't read tty at %p", sess.s_ttyp); 288 return (-1); 289 } 290 if (tty.t_dev != NULL) { 291 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 292 _kvm_err(kd, kd->program, 293 "can't read cdev at %p", 294 tty.t_dev); 295 return (-1); 296 } 297 #if 0 298 kp->ki_tdev = t_cdev.si_udev; 299 #else 300 kp->ki_tdev = NODEV; 301 #endif 302 } 303 if (tty.t_pgrp != NULL) { 304 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 305 _kvm_err(kd, kd->program, 306 "can't read tpgrp at %p", 307 tty.t_pgrp); 308 return (-1); 309 } 310 kp->ki_tpgid = pgrp.pg_id; 311 } else 312 kp->ki_tpgid = -1; 313 if (tty.t_session != NULL) { 314 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 315 _kvm_err(kd, kd->program, 316 "can't read session at %p", 317 tty.t_session); 318 return (-1); 319 } 320 kp->ki_tsid = sess.s_sid; 321 } 322 } else { 323 nopgrp: 324 kp->ki_tdev = NODEV; 325 } 326 327 (void)kvm_read(kd, (u_long)proc.p_vmspace, 328 (char *)&vmspace, sizeof(vmspace)); 329 kp->ki_size = vmspace.vm_map.size; 330 /* 331 * Approximate the kernel's method of calculating 332 * this field. 333 */ 334 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) 335 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); 336 kp->ki_swrss = vmspace.vm_swrss; 337 kp->ki_tsize = vmspace.vm_tsize; 338 kp->ki_dsize = vmspace.vm_dsize; 339 kp->ki_ssize = vmspace.vm_ssize; 340 341 switch (what & ~KERN_PROC_INC_THREAD) { 342 343 case KERN_PROC_PGRP: 344 if (kp->ki_pgid != (pid_t)arg) 345 continue; 346 break; 347 348 case KERN_PROC_SESSION: 349 if (kp->ki_sid != (pid_t)arg) 350 continue; 351 break; 352 353 case KERN_PROC_TTY: 354 if ((proc.p_flag & P_CONTROLT) == 0 || 355 kp->ki_tdev != (dev_t)arg) 356 continue; 357 break; 358 } 359 if (proc.p_comm[0] != 0) 360 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 361 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 362 sizeof(sysent)); 363 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 364 sizeof(svname)); 365 if (svname[0] != 0) 366 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 367 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); 368 kp->ki_pid = proc.p_pid; 369 kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig); 370 kp->ki_acflag = proc.p_acflag; 371 kp->ki_lock = proc.p_lock; 372 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 373 374 /* Per-thread items; iterate as appropriate. */ 375 td = TAILQ_FIRST(&proc.p_threads); 376 for (first_thread = true; cnt < maxcnt && td != NULL && 377 (first_thread || (what & KERN_PROC_INC_THREAD)); 378 first_thread = false) { 379 if (proc.p_state != PRS_ZOMBIE) { 380 if (KREAD(kd, (u_long)td, &mtd)) { 381 _kvm_err(kd, kd->program, 382 "can't read thread at %p", td); 383 return (-1); 384 } 385 if (what & KERN_PROC_INC_THREAD) 386 td = TAILQ_NEXT(&mtd, td_plist); 387 } else 388 td = NULL; 389 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 390 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 391 kp->ki_wmesg, WMESGLEN); 392 else 393 memset(kp->ki_wmesg, 0, WMESGLEN); 394 if (proc.p_pgrp == NULL) { 395 kp->ki_kiflag = 0; 396 } else { 397 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 398 if (sess.s_leader == p) 399 kp->ki_kiflag |= KI_SLEADER; 400 } 401 if ((proc.p_state != PRS_ZOMBIE) && 402 (mtd.td_blocked != 0)) { 403 kp->ki_kiflag |= KI_LOCKBLOCK; 404 if (mtd.td_lockname) 405 (void)kvm_read(kd, 406 (u_long)mtd.td_lockname, 407 kp->ki_lockname, LOCKNAMELEN); 408 else 409 memset(kp->ki_lockname, 0, 410 LOCKNAMELEN); 411 kp->ki_lockname[LOCKNAMELEN] = 0; 412 } else 413 kp->ki_kiflag &= ~KI_LOCKBLOCK; 414 kp->ki_siglist = proc.p_siglist; 415 if (proc.p_state != PRS_ZOMBIE) { 416 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 417 kp->ki_sigmask = mtd.td_sigmask; 418 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 419 kp->ki_flag = proc.p_flag; 420 kp->ki_sflag = 0; 421 kp->ki_nice = proc.p_nice; 422 kp->ki_traceflag = proc.p_traceflag; 423 if (proc.p_state == PRS_NORMAL) { 424 if (TD_ON_RUNQ(&mtd) || 425 TD_CAN_RUN(&mtd) || 426 TD_IS_RUNNING(&mtd)) { 427 kp->ki_stat = SRUN; 428 } else if (mtd.td_state == 429 TDS_INHIBITED) { 430 if (P_SHOULDSTOP(&proc)) { 431 kp->ki_stat = SSTOP; 432 } else if ( 433 TD_IS_SLEEPING(&mtd)) { 434 kp->ki_stat = SSLEEP; 435 } else if (TD_ON_LOCK(&mtd)) { 436 kp->ki_stat = SLOCK; 437 } else { 438 kp->ki_stat = SWAIT; 439 } 440 } 441 } else { 442 kp->ki_stat = SIDL; 443 } 444 /* Stuff from the thread */ 445 kp->ki_pri.pri_level = mtd.td_priority; 446 kp->ki_pri.pri_native = mtd.td_base_pri; 447 kp->ki_lastcpu = mtd.td_lastcpu; 448 kp->ki_wchan = mtd.td_wchan; 449 kp->ki_oncpu = mtd.td_oncpu; 450 if (mtd.td_name[0] != '\0') 451 strlcpy(kp->ki_tdname, mtd.td_name, 452 sizeof(kp->ki_tdname)); 453 else 454 memset(kp->ki_tdname, 0, 455 sizeof(kp->ki_tdname)); 456 kp->ki_pctcpu = 0; 457 kp->ki_rqindex = 0; 458 459 /* 460 * Note: legacy fields; wraps at NO_CPU_OLD 461 * or the old max CPU value as appropriate 462 */ 463 if (mtd.td_lastcpu == NOCPU) 464 kp->ki_lastcpu_old = NOCPU_OLD; 465 else if (mtd.td_lastcpu > MAXCPU_OLD) 466 kp->ki_lastcpu_old = MAXCPU_OLD; 467 else 468 kp->ki_lastcpu_old = mtd.td_lastcpu; 469 470 if (mtd.td_oncpu == NOCPU) 471 kp->ki_oncpu_old = NOCPU_OLD; 472 else if (mtd.td_oncpu > MAXCPU_OLD) 473 kp->ki_oncpu_old = MAXCPU_OLD; 474 else 475 kp->ki_oncpu_old = mtd.td_oncpu; 476 kp->ki_tid = mtd.td_tid; 477 } else { 478 memset(&kp->ki_sigmask, 0, 479 sizeof(kp->ki_sigmask)); 480 kp->ki_stat = SZOMB; 481 kp->ki_tid = 0; 482 } 483 484 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 485 ++bp; 486 ++cnt; 487 } 488 } 489 return (cnt); 490 } 491 492 /* 493 * Build proc info array by reading in proc list from a crash dump. 494 * Return number of procs read. maxcnt is the max we will read. 495 */ 496 static int 497 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 498 u_long a_zombproc, int maxcnt) 499 { 500 struct kinfo_proc *bp = kd->procbase; 501 int acnt, zcnt = 0; 502 struct proc *p; 503 504 if (KREAD(kd, a_allproc, &p)) { 505 _kvm_err(kd, kd->program, "cannot read allproc"); 506 return (-1); 507 } 508 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 509 if (acnt < 0) 510 return (acnt); 511 512 if (a_zombproc != 0) { 513 if (KREAD(kd, a_zombproc, &p)) { 514 _kvm_err(kd, kd->program, "cannot read zombproc"); 515 return (-1); 516 } 517 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 518 if (zcnt < 0) 519 zcnt = 0; 520 } 521 522 return (acnt + zcnt); 523 } 524 525 struct kinfo_proc * 526 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 527 { 528 int mib[4], st, nprocs; 529 size_t size, osize; 530 int temp_op; 531 532 if (kd->procbase != 0) { 533 free((void *)kd->procbase); 534 /* 535 * Clear this pointer in case this call fails. Otherwise, 536 * kvm_close() will free it again. 537 */ 538 kd->procbase = 0; 539 } 540 if (ISALIVE(kd)) { 541 size = 0; 542 mib[0] = CTL_KERN; 543 mib[1] = KERN_PROC; 544 mib[2] = op; 545 mib[3] = arg; 546 temp_op = op & ~KERN_PROC_INC_THREAD; 547 st = sysctl(mib, 548 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 549 3 : 4, NULL, &size, NULL, 0); 550 if (st == -1) { 551 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 552 return (0); 553 } 554 /* 555 * We can't continue with a size of 0 because we pass 556 * it to realloc() (via _kvm_realloc()), and passing 0 557 * to realloc() results in undefined behavior. 558 */ 559 if (size == 0) { 560 /* 561 * XXX: We should probably return an invalid, 562 * but non-NULL, pointer here so any client 563 * program trying to dereference it will 564 * crash. However, _kvm_freeprocs() calls 565 * free() on kd->procbase if it isn't NULL, 566 * and free()'ing a junk pointer isn't good. 567 * Then again, _kvm_freeprocs() isn't used 568 * anywhere . . . 569 */ 570 kd->procbase = _kvm_malloc(kd, 1); 571 goto liveout; 572 } 573 do { 574 size += size / 10; 575 kd->procbase = (struct kinfo_proc *) 576 _kvm_realloc(kd, kd->procbase, size); 577 if (kd->procbase == NULL) 578 return (0); 579 osize = size; 580 st = sysctl(mib, temp_op == KERN_PROC_ALL || 581 temp_op == KERN_PROC_PROC ? 3 : 4, 582 kd->procbase, &size, NULL, 0); 583 } while (st == -1 && errno == ENOMEM && size == osize); 584 if (st == -1) { 585 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 586 return (0); 587 } 588 /* 589 * We have to check the size again because sysctl() 590 * may "round up" oldlenp if oldp is NULL; hence it 591 * might've told us that there was data to get when 592 * there really isn't any. 593 */ 594 if (size > 0 && 595 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 596 _kvm_err(kd, kd->program, 597 "kinfo_proc size mismatch (expected %zu, got %d)", 598 sizeof(struct kinfo_proc), 599 kd->procbase->ki_structsize); 600 return (0); 601 } 602 liveout: 603 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 604 } else { 605 struct nlist nl[6], *p; 606 struct nlist nlz[2]; 607 608 nl[0].n_name = "_nprocs"; 609 nl[1].n_name = "_allproc"; 610 nl[2].n_name = "_ticks"; 611 nl[3].n_name = "_hz"; 612 nl[4].n_name = "_cpu_tick_frequency"; 613 nl[5].n_name = 0; 614 615 nlz[0].n_name = "_zombproc"; 616 nlz[1].n_name = 0; 617 618 if (!kd->arch->ka_native(kd)) { 619 _kvm_err(kd, kd->program, 620 "cannot read procs from non-native core"); 621 return (0); 622 } 623 624 if (kvm_nlist(kd, nl) != 0) { 625 for (p = nl; p->n_type != 0; ++p) 626 ; 627 _kvm_err(kd, kd->program, 628 "%s: no such symbol", p->n_name); 629 return (0); 630 } 631 (void) kvm_nlist(kd, nlz); /* attempt to get zombproc */ 632 if (KREAD(kd, nl[0].n_value, &nprocs)) { 633 _kvm_err(kd, kd->program, "can't read nprocs"); 634 return (0); 635 } 636 /* 637 * If returning all threads, we don't know how many that 638 * might be. Presume that there are, on average, no more 639 * than 10 threads per process. 640 */ 641 if (op == KERN_PROC_ALL || (op & KERN_PROC_INC_THREAD)) 642 nprocs *= 10; /* XXX */ 643 if (KREAD(kd, nl[2].n_value, &ticks)) { 644 _kvm_err(kd, kd->program, "can't read ticks"); 645 return (0); 646 } 647 if (KREAD(kd, nl[3].n_value, &hz)) { 648 _kvm_err(kd, kd->program, "can't read hz"); 649 return (0); 650 } 651 if (KREAD(kd, nl[4].n_value, &cpu_tick_frequency)) { 652 _kvm_err(kd, kd->program, 653 "can't read cpu_tick_frequency"); 654 return (0); 655 } 656 size = nprocs * sizeof(struct kinfo_proc); 657 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 658 if (kd->procbase == NULL) 659 return (0); 660 661 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 662 nlz[0].n_value, nprocs); 663 if (nprocs <= 0) { 664 _kvm_freeprocs(kd); 665 nprocs = 0; 666 } 667 #ifdef notdef 668 else { 669 size = nprocs * sizeof(struct kinfo_proc); 670 kd->procbase = realloc(kd->procbase, size); 671 } 672 #endif 673 } 674 *cnt = nprocs; 675 return (kd->procbase); 676 } 677 678 void 679 _kvm_freeprocs(kvm_t *kd) 680 { 681 682 free(kd->procbase); 683 kd->procbase = NULL; 684 } 685 686 void * 687 _kvm_realloc(kvm_t *kd, void *p, size_t n) 688 { 689 void *np; 690 691 np = reallocf(p, n); 692 if (np == NULL) 693 _kvm_err(kd, kd->program, "out of memory"); 694 return (np); 695 } 696 697 /* 698 * Get the command args or environment. 699 */ 700 static char ** 701 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr) 702 { 703 int oid[4]; 704 int i; 705 size_t bufsz; 706 static int buflen; 707 static char *buf, *p; 708 static char **bufp; 709 static int argc; 710 char **nbufp; 711 712 if (!ISALIVE(kd)) { 713 _kvm_err(kd, kd->program, 714 "cannot read user space from dead kernel"); 715 return (NULL); 716 } 717 718 if (nchr == 0 || nchr > ARG_MAX) 719 nchr = ARG_MAX; 720 if (buflen == 0) { 721 buf = malloc(nchr); 722 if (buf == NULL) { 723 _kvm_err(kd, kd->program, "cannot allocate memory"); 724 return (NULL); 725 } 726 argc = 32; 727 bufp = malloc(sizeof(char *) * argc); 728 if (bufp == NULL) { 729 free(buf); 730 buf = NULL; 731 _kvm_err(kd, kd->program, "cannot allocate memory"); 732 return (NULL); 733 } 734 buflen = nchr; 735 } else if (nchr > buflen) { 736 p = realloc(buf, nchr); 737 if (p != NULL) { 738 buf = p; 739 buflen = nchr; 740 } 741 } 742 oid[0] = CTL_KERN; 743 oid[1] = KERN_PROC; 744 oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 745 oid[3] = kp->ki_pid; 746 bufsz = buflen; 747 if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) { 748 /* 749 * If the supplied buf is too short to hold the requested 750 * value the sysctl returns with ENOMEM. The buf is filled 751 * with the truncated value and the returned bufsz is equal 752 * to the requested len. 753 */ 754 if (errno != ENOMEM || bufsz != (size_t)buflen) 755 return (NULL); 756 buf[bufsz - 1] = '\0'; 757 errno = 0; 758 } else if (bufsz == 0) 759 return (NULL); 760 i = 0; 761 p = buf; 762 do { 763 bufp[i++] = p; 764 p += strlen(p) + 1; 765 if (i >= argc) { 766 argc += argc; 767 nbufp = realloc(bufp, sizeof(char *) * argc); 768 if (nbufp == NULL) 769 return (NULL); 770 bufp = nbufp; 771 } 772 } while (p < buf + bufsz); 773 bufp[i++] = 0; 774 return (bufp); 775 } 776 777 char ** 778 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 779 { 780 return (kvm_argv(kd, kp, 0, nchr)); 781 } 782 783 char ** 784 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 785 { 786 return (kvm_argv(kd, kp, 1, nchr)); 787 } 788