1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if defined(LIBC_SCCS) && !defined(lint) 39 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 40 #endif /* LIBC_SCCS and not lint */ 41 42 /* 43 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 44 * users of this code, so we've factored it out into a separate module. 45 * Thus, we keep this grunge out of the other kvm applications (i.e., 46 * most other applications are interested only in open/close/read/nlist). 47 */ 48 49 #include <sys/param.h> 50 #include <sys/user.h> 51 #include <sys/proc.h> 52 #include <sys/exec.h> 53 #include <sys/stat.h> 54 #include <sys/ioctl.h> 55 #include <sys/tty.h> 56 #include <unistd.h> 57 #include <nlist.h> 58 #include <kvm.h> 59 60 #include <vm/vm.h> 61 #include <vm/vm_param.h> 62 #include <vm/swap_pager.h> 63 64 #include <sys/sysctl.h> 65 66 #include <limits.h> 67 #include <db.h> 68 #include <paths.h> 69 70 #include "kvm_private.h" 71 72 static char * 73 kvm_readswap(kd, p, va, cnt) 74 kvm_t *kd; 75 const struct proc *p; 76 u_long va; 77 u_long *cnt; 78 { 79 #ifdef __FreeBSD__ 80 /* XXX Stubbed out, our vm system is differnet */ 81 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 82 return(0); 83 #else 84 register int ix; 85 register u_long addr, head; 86 register u_long offset, pagestart, sbstart, pgoff; 87 register off_t seekpoint; 88 struct vm_map_entry vme; 89 struct vm_object vmo; 90 struct pager_struct pager; 91 struct swpager swap; 92 struct swblock swb; 93 static char page[NBPG]; 94 95 head = (u_long)&p->p_vmspace->vm_map.header; 96 /* 97 * Look through the address map for the memory object 98 * that corresponds to the given virtual address. 99 * The header just has the entire valid range. 100 */ 101 addr = head; 102 while (1) { 103 if (kvm_read(kd, addr, (char *)&vme, sizeof(vme)) != 104 sizeof(vme)) 105 return (0); 106 107 if (va >= vme.start && va <= vme.end && 108 vme.object.vm_object != 0) 109 break; 110 111 addr = (u_long)vme.next; 112 if (addr == 0 || addr == head) 113 return (0); 114 } 115 /* 116 * We found the right object -- follow shadow links. 117 */ 118 offset = va - vme.start + vme.offset; 119 addr = (u_long)vme.object.vm_object; 120 while (1) { 121 if (kvm_read(kd, addr, (char *)&vmo, sizeof(vmo)) != 122 sizeof(vmo)) 123 return (0); 124 addr = (u_long)vmo.shadow; 125 if (addr == 0) 126 break; 127 offset += vmo.shadow_offset; 128 } 129 if (vmo.pager == 0) 130 return (0); 131 132 offset += vmo.paging_offset; 133 /* 134 * Read in the pager info and make sure it's a swap device. 135 */ 136 addr = (u_long)vmo.pager; 137 if (kvm_read(kd, addr, (char *)&pager, sizeof(pager)) != sizeof(pager) 138 || pager.pg_type != PG_SWAP) 139 return (0); 140 141 /* 142 * Read in the swap_pager private data, and compute the 143 * swap offset. 144 */ 145 addr = (u_long)pager.pg_data; 146 if (kvm_read(kd, addr, (char *)&swap, sizeof(swap)) != sizeof(swap)) 147 return (0); 148 ix = offset / dbtob(swap.sw_bsize); 149 if (swap.sw_blocks == 0 || ix >= swap.sw_nblocks) 150 return (0); 151 152 addr = (u_long)&swap.sw_blocks[ix]; 153 if (kvm_read(kd, addr, (char *)&swb, sizeof(swb)) != sizeof(swb)) 154 return (0); 155 156 sbstart = (offset / dbtob(swap.sw_bsize)) * dbtob(swap.sw_bsize); 157 sbstart /= NBPG; 158 pagestart = offset / NBPG; 159 pgoff = pagestart - sbstart; 160 161 if (swb.swb_block == 0 || (swb.swb_mask & (1 << pgoff)) == 0) 162 return (0); 163 164 seekpoint = dbtob(swb.swb_block) + ctob(pgoff); 165 errno = 0; 166 if (lseek(kd->swfd, seekpoint, 0) == -1 && errno != 0) 167 return (0); 168 if (read(kd->swfd, page, sizeof(page)) != sizeof(page)) 169 return (0); 170 171 offset %= NBPG; 172 *cnt = NBPG - offset; 173 return (&page[offset]); 174 #endif /* __FreeBSD__ */ 175 } 176 177 #define KREAD(kd, addr, obj) \ 178 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 179 180 /* 181 * Read proc's from memory file into buffer bp, which has space to hold 182 * at most maxcnt procs. 183 */ 184 static int 185 kvm_proclist(kd, what, arg, p, bp, maxcnt) 186 kvm_t *kd; 187 int what, arg; 188 struct proc *p; 189 struct kinfo_proc *bp; 190 int maxcnt; 191 { 192 register int cnt = 0; 193 struct eproc eproc; 194 struct pgrp pgrp; 195 struct session sess; 196 struct tty tty; 197 struct proc proc; 198 199 for (; cnt < maxcnt && p != NULL; p = proc.p_next) { 200 if (KREAD(kd, (u_long)p, &proc)) { 201 _kvm_err(kd, kd->program, "can't read proc at %x", p); 202 return (-1); 203 } 204 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 205 KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 206 &eproc.e_ucred); 207 208 switch(what) { 209 210 case KERN_PROC_PID: 211 if (proc.p_pid != (pid_t)arg) 212 continue; 213 break; 214 215 case KERN_PROC_UID: 216 if (eproc.e_ucred.cr_uid != (uid_t)arg) 217 continue; 218 break; 219 220 case KERN_PROC_RUID: 221 if (eproc.e_pcred.p_ruid != (uid_t)arg) 222 continue; 223 break; 224 } 225 /* 226 * We're going to add another proc to the set. If this 227 * will overflow the buffer, assume the reason is because 228 * nprocs (or the proc list) is corrupt and declare an error. 229 */ 230 if (cnt >= maxcnt) { 231 _kvm_err(kd, kd->program, "nprocs corrupt"); 232 return (-1); 233 } 234 /* 235 * gather eproc 236 */ 237 eproc.e_paddr = p; 238 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 239 _kvm_err(kd, kd->program, "can't read pgrp at %x", 240 proc.p_pgrp); 241 return (-1); 242 } 243 eproc.e_sess = pgrp.pg_session; 244 eproc.e_pgid = pgrp.pg_id; 245 eproc.e_jobc = pgrp.pg_jobc; 246 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 247 _kvm_err(kd, kd->program, "can't read session at %x", 248 pgrp.pg_session); 249 return (-1); 250 } 251 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 252 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 253 _kvm_err(kd, kd->program, 254 "can't read tty at %x", sess.s_ttyp); 255 return (-1); 256 } 257 eproc.e_tdev = tty.t_dev; 258 eproc.e_tsess = tty.t_session; 259 if (tty.t_pgrp != NULL) { 260 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 261 _kvm_err(kd, kd->program, 262 "can't read tpgrp at &x", 263 tty.t_pgrp); 264 return (-1); 265 } 266 eproc.e_tpgid = pgrp.pg_id; 267 } else 268 eproc.e_tpgid = -1; 269 } else 270 eproc.e_tdev = NODEV; 271 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 272 if (sess.s_leader == p) 273 eproc.e_flag |= EPROC_SLEADER; 274 if (proc.p_wmesg) 275 (void)kvm_read(kd, (u_long)proc.p_wmesg, 276 eproc.e_wmesg, WMESGLEN); 277 278 #ifdef sparc 279 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 280 (char *)&eproc.e_vm.vm_rssize, 281 sizeof(eproc.e_vm.vm_rssize)); 282 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 283 (char *)&eproc.e_vm.vm_tsize, 284 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */ 285 #else 286 (void)kvm_read(kd, (u_long)proc.p_vmspace, 287 (char *)&eproc.e_vm, sizeof(eproc.e_vm)); 288 #endif 289 eproc.e_xsize = eproc.e_xrssize = 0; 290 eproc.e_xccount = eproc.e_xswrss = 0; 291 292 switch (what) { 293 294 case KERN_PROC_PGRP: 295 if (eproc.e_pgid != (pid_t)arg) 296 continue; 297 break; 298 299 case KERN_PROC_TTY: 300 if ((proc.p_flag & P_CONTROLT) == 0 || 301 eproc.e_tdev != (dev_t)arg) 302 continue; 303 break; 304 } 305 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 306 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 307 ++bp; 308 ++cnt; 309 } 310 return (cnt); 311 } 312 313 /* 314 * Build proc info array by reading in proc list from a crash dump. 315 * Return number of procs read. maxcnt is the max we will read. 316 */ 317 static int 318 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 319 kvm_t *kd; 320 int what, arg; 321 u_long a_allproc; 322 u_long a_zombproc; 323 int maxcnt; 324 { 325 register struct kinfo_proc *bp = kd->procbase; 326 register int acnt, zcnt; 327 struct proc *p; 328 329 if (KREAD(kd, a_allproc, &p)) { 330 _kvm_err(kd, kd->program, "cannot read allproc"); 331 return (-1); 332 } 333 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 334 if (acnt < 0) 335 return (acnt); 336 337 if (KREAD(kd, a_zombproc, &p)) { 338 _kvm_err(kd, kd->program, "cannot read zombproc"); 339 return (-1); 340 } 341 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 342 if (zcnt < 0) 343 zcnt = 0; 344 345 return (acnt + zcnt); 346 } 347 348 struct kinfo_proc * 349 kvm_getprocs(kd, op, arg, cnt) 350 kvm_t *kd; 351 int op, arg; 352 int *cnt; 353 { 354 int mib[4], size, st, nprocs; 355 356 if (kd->procbase != 0) { 357 free((void *)kd->procbase); 358 /* 359 * Clear this pointer in case this call fails. Otherwise, 360 * kvm_close() will free it again. 361 */ 362 kd->procbase = 0; 363 } 364 if (ISALIVE(kd)) { 365 size = 0; 366 mib[0] = CTL_KERN; 367 mib[1] = KERN_PROC; 368 mib[2] = op; 369 mib[3] = arg; 370 st = sysctl(mib, 4, NULL, &size, NULL, 0); 371 if (st == -1) { 372 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 373 return (0); 374 } 375 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 376 if (kd->procbase == 0) 377 return (0); 378 st = sysctl(mib, 4, kd->procbase, &size, NULL, 0); 379 if (st == -1) { 380 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 381 return (0); 382 } 383 if (size % sizeof(struct kinfo_proc) != 0) { 384 _kvm_err(kd, kd->program, 385 "proc size mismatch (%d total, %d chunks)", 386 size, sizeof(struct kinfo_proc)); 387 return (0); 388 } 389 nprocs = size / sizeof(struct kinfo_proc); 390 } else { 391 struct nlist nl[4], *p; 392 393 nl[0].n_name = "_nprocs"; 394 nl[1].n_name = "_allproc"; 395 nl[2].n_name = "_zombproc"; 396 nl[3].n_name = 0; 397 398 if (kvm_nlist(kd, nl) != 0) { 399 for (p = nl; p->n_type != 0; ++p) 400 ; 401 _kvm_err(kd, kd->program, 402 "%s: no such symbol", p->n_name); 403 return (0); 404 } 405 if (KREAD(kd, nl[0].n_value, &nprocs)) { 406 _kvm_err(kd, kd->program, "can't read nprocs"); 407 return (0); 408 } 409 size = nprocs * sizeof(struct kinfo_proc); 410 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 411 if (kd->procbase == 0) 412 return (0); 413 414 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 415 nl[2].n_value, nprocs); 416 #ifdef notdef 417 size = nprocs * sizeof(struct kinfo_proc); 418 (void)realloc(kd->procbase, size); 419 #endif 420 } 421 *cnt = nprocs; 422 return (kd->procbase); 423 } 424 425 void 426 _kvm_freeprocs(kd) 427 kvm_t *kd; 428 { 429 if (kd->procbase) { 430 free(kd->procbase); 431 kd->procbase = 0; 432 } 433 } 434 435 void * 436 _kvm_realloc(kd, p, n) 437 kvm_t *kd; 438 void *p; 439 size_t n; 440 { 441 void *np = (void *)realloc(p, n); 442 443 if (np == 0) 444 _kvm_err(kd, kd->program, "out of memory"); 445 return (np); 446 } 447 448 #ifndef MAX 449 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 450 #endif 451 452 /* 453 * Read in an argument vector from the user address space of process p. 454 * addr if the user-space base address of narg null-terminated contiguous 455 * strings. This is used to read in both the command arguments and 456 * environment strings. Read at most maxcnt characters of strings. 457 */ 458 static char ** 459 kvm_argv(kd, p, addr, narg, maxcnt) 460 kvm_t *kd; 461 struct proc *p; 462 register u_long addr; 463 register int narg; 464 register int maxcnt; 465 { 466 register char *cp; 467 register int len, cc; 468 register char **argv; 469 470 /* 471 * Check that there aren't an unreasonable number of agruments, 472 * and that the address is in user space. 473 */ 474 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 475 return (0); 476 477 if (kd->argv == 0) { 478 /* 479 * Try to avoid reallocs. 480 */ 481 kd->argc = MAX(narg + 1, 32); 482 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 483 sizeof(*kd->argv)); 484 if (kd->argv == 0) 485 return (0); 486 } else if (narg + 1 > kd->argc) { 487 kd->argc = MAX(2 * kd->argc, narg + 1); 488 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 489 sizeof(*kd->argv)); 490 if (kd->argv == 0) 491 return (0); 492 } 493 if (kd->argspc == 0) { 494 kd->argspc = (char *)_kvm_malloc(kd, NBPG); 495 if (kd->argspc == 0) 496 return (0); 497 kd->arglen = NBPG; 498 } 499 cp = kd->argspc; 500 argv = kd->argv; 501 *argv = cp; 502 len = 0; 503 /* 504 * Loop over pages, filling in the argument vector. 505 */ 506 while (addr < VM_MAXUSER_ADDRESS) { 507 cc = NBPG - (addr & PGOFSET); 508 if (maxcnt > 0 && cc > maxcnt - len) 509 cc = maxcnt - len;; 510 if (len + cc > kd->arglen) { 511 register int off; 512 register char **pp; 513 register char *op = kd->argspc; 514 515 kd->arglen *= 2; 516 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 517 kd->arglen); 518 if (kd->argspc == 0) 519 return (0); 520 cp = &kd->argspc[len]; 521 /* 522 * Adjust argv pointers in case realloc moved 523 * the string space. 524 */ 525 off = kd->argspc - op; 526 for (pp = kd->argv; pp < argv; ++pp) 527 *pp += off; 528 } 529 if (kvm_uread(kd, p, addr, cp, cc) != cc) 530 /* XXX */ 531 return (0); 532 len += cc; 533 addr += cc; 534 535 if (maxcnt == 0 && len > 16 * NBPG) 536 /* sanity */ 537 return (0); 538 539 while (--cc >= 0) { 540 if (*cp++ == 0) { 541 if (--narg <= 0) { 542 *++argv = 0; 543 return (kd->argv); 544 } else 545 *++argv = cp; 546 } 547 } 548 if (maxcnt > 0 && len >= maxcnt) { 549 /* 550 * We're stopping prematurely. Terminate the 551 * argv and current string. 552 */ 553 *++argv = 0; 554 *cp = 0; 555 return (kd->argv); 556 } 557 } 558 } 559 560 static void 561 ps_str_a(p, addr, n) 562 struct ps_strings *p; 563 u_long *addr; 564 int *n; 565 { 566 *addr = (u_long)p->ps_argvstr; 567 *n = p->ps_nargvstr; 568 } 569 570 static void 571 ps_str_e(p, addr, n) 572 struct ps_strings *p; 573 u_long *addr; 574 int *n; 575 { 576 *addr = (u_long)p->ps_envstr; 577 *n = p->ps_nenvstr; 578 } 579 580 /* 581 * Determine if the proc indicated by p is still active. 582 * This test is not 100% foolproof in theory, but chances of 583 * being wrong are very low. 584 */ 585 static int 586 proc_verify(kd, kernp, p) 587 kvm_t *kd; 588 u_long kernp; 589 const struct proc *p; 590 { 591 struct proc kernproc; 592 593 /* 594 * Just read in the whole proc. It's not that big relative 595 * to the cost of the read system call. 596 */ 597 if (kvm_read(kd, kernp, (char *)&kernproc, sizeof(kernproc)) != 598 sizeof(kernproc)) 599 return (0); 600 return (p->p_pid == kernproc.p_pid && 601 (kernproc.p_stat != SZOMB || p->p_stat == SZOMB)); 602 } 603 604 static char ** 605 kvm_doargv(kd, kp, nchr, info) 606 kvm_t *kd; 607 const struct kinfo_proc *kp; 608 int nchr; 609 int (*info)(struct ps_strings*, u_long *, int *); 610 { 611 register const struct proc *p = &kp->kp_proc; 612 register char **ap; 613 u_long addr; 614 int cnt; 615 struct ps_strings arginfo; 616 617 /* 618 * Pointers are stored at the top of the user stack. 619 */ 620 if (p->p_stat == SZOMB || 621 kvm_uread(kd, p, USRSTACK - sizeof(arginfo), (char *)&arginfo, 622 sizeof(arginfo)) != sizeof(arginfo)) 623 return (0); 624 625 (*info)(&arginfo, &addr, &cnt); 626 ap = kvm_argv(kd, p, addr, cnt, nchr); 627 /* 628 * For live kernels, make sure this process didn't go away. 629 */ 630 if (ap != 0 && ISALIVE(kd) && 631 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 632 ap = 0; 633 return (ap); 634 } 635 636 /* 637 * Get the command args. This code is now machine independent. 638 */ 639 char ** 640 kvm_getargv(kd, kp, nchr) 641 kvm_t *kd; 642 const struct kinfo_proc *kp; 643 int nchr; 644 { 645 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 646 } 647 648 char ** 649 kvm_getenvv(kd, kp, nchr) 650 kvm_t *kd; 651 const struct kinfo_proc *kp; 652 int nchr; 653 { 654 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 655 } 656 657 /* 658 * Read from user space. The user context is given by p. 659 */ 660 ssize_t 661 kvm_uread(kd, p, uva, buf, len) 662 kvm_t *kd; 663 register struct proc *p; 664 register u_long uva; 665 register char *buf; 666 register size_t len; 667 { 668 register char *cp; 669 670 cp = buf; 671 while (len > 0) { 672 u_long pa; 673 register int cc; 674 675 cc = _kvm_uvatop(kd, p, uva, &pa); 676 if (cc > 0) { 677 if (cc > len) 678 cc = len; 679 errno = 0; 680 if (lseek(kd->pmfd, (off_t)pa, 0) == -1 && errno != 0) { 681 _kvm_err(kd, 0, "invalid address (%x)", uva); 682 break; 683 } 684 cc = read(kd->pmfd, cp, cc); 685 if (cc < 0) { 686 _kvm_syserr(kd, 0, _PATH_MEM); 687 break; 688 } else if (cc < len) { 689 _kvm_err(kd, kd->program, "short read"); 690 break; 691 } 692 } else if (ISALIVE(kd)) { 693 /* try swap */ 694 register char *dp; 695 int cnt; 696 697 dp = kvm_readswap(kd, p, uva, &cnt); 698 if (dp == 0) { 699 _kvm_err(kd, 0, "invalid address (%x)", uva); 700 return (0); 701 } 702 cc = MIN(cnt, len); 703 bcopy(dp, cp, cc); 704 } else 705 break; 706 cp += cc; 707 uva += cc; 708 len -= cc; 709 } 710 return (ssize_t)(cp - buf); 711 } 712