1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if defined(LIBC_SCCS) && !defined(lint) 39 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 40 #endif /* LIBC_SCCS and not lint */ 41 42 /* 43 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 44 * users of this code, so we've factored it out into a separate module. 45 * Thus, we keep this grunge out of the other kvm applications (i.e., 46 * most other applications are interested only in open/close/read/nlist). 47 */ 48 49 #include <sys/param.h> 50 #include <sys/user.h> 51 #include <sys/proc.h> 52 #include <sys/exec.h> 53 #include <sys/stat.h> 54 #include <sys/ioctl.h> 55 #include <sys/tty.h> 56 #include <sys/file.h> 57 #include <stdio.h> 58 #include <stdlib.h> 59 #include <unistd.h> 60 #include <nlist.h> 61 #include <kvm.h> 62 63 #include <vm/vm.h> 64 #include <vm/vm_param.h> 65 #include <vm/swap_pager.h> 66 67 #include <sys/sysctl.h> 68 69 #include <limits.h> 70 #include <memory.h> 71 #include <db.h> 72 #include <paths.h> 73 74 #include "kvm_private.h" 75 76 #if used 77 static char * 78 kvm_readswap(kd, p, va, cnt) 79 kvm_t *kd; 80 const struct proc *p; 81 u_long va; 82 u_long *cnt; 83 { 84 #ifdef __FreeBSD__ 85 /* XXX Stubbed out, our vm system is differnet */ 86 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 87 return(0); 88 #endif /* __FreeBSD__ */ 89 } 90 #endif 91 92 #define KREAD(kd, addr, obj) \ 93 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 94 95 /* 96 * Read proc's from memory file into buffer bp, which has space to hold 97 * at most maxcnt procs. 98 */ 99 static int 100 kvm_proclist(kd, what, arg, p, bp, maxcnt) 101 kvm_t *kd; 102 int what, arg; 103 struct proc *p; 104 struct kinfo_proc *bp; 105 int maxcnt; 106 { 107 register int cnt = 0; 108 struct eproc eproc; 109 struct pgrp pgrp; 110 struct session sess; 111 struct tty tty; 112 struct proc proc; 113 struct proc pproc; 114 115 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 116 if (KREAD(kd, (u_long)p, &proc)) { 117 _kvm_err(kd, kd->program, "can't read proc at %x", p); 118 return (-1); 119 } 120 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 121 (void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 122 &eproc.e_ucred)); 123 124 switch(what) { 125 126 case KERN_PROC_PID: 127 if (proc.p_pid != (pid_t)arg) 128 continue; 129 break; 130 131 case KERN_PROC_UID: 132 if (eproc.e_ucred.cr_uid != (uid_t)arg) 133 continue; 134 break; 135 136 case KERN_PROC_RUID: 137 if (eproc.e_pcred.p_ruid != (uid_t)arg) 138 continue; 139 break; 140 } 141 /* 142 * We're going to add another proc to the set. If this 143 * will overflow the buffer, assume the reason is because 144 * nprocs (or the proc list) is corrupt and declare an error. 145 */ 146 if (cnt >= maxcnt) { 147 _kvm_err(kd, kd->program, "nprocs corrupt"); 148 return (-1); 149 } 150 /* 151 * gather eproc 152 */ 153 eproc.e_paddr = p; 154 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 155 _kvm_err(kd, kd->program, "can't read pgrp at %x", 156 proc.p_pgrp); 157 return (-1); 158 } 159 if (proc.p_oppid) 160 eproc.e_ppid = proc.p_oppid; 161 else if (proc.p_pptr) { 162 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 163 _kvm_err(kd, kd->program, "can't read pproc at %x", 164 proc.p_pptr); 165 return (-1); 166 } 167 eproc.e_ppid = pproc.p_pid; 168 } else 169 eproc.e_ppid = 0; 170 eproc.e_sess = pgrp.pg_session; 171 eproc.e_pgid = pgrp.pg_id; 172 eproc.e_jobc = pgrp.pg_jobc; 173 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 174 _kvm_err(kd, kd->program, "can't read session at %x", 175 pgrp.pg_session); 176 return (-1); 177 } 178 (void)memcpy(eproc.e_login, sess.s_login, 179 sizeof(eproc.e_login)); 180 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 181 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 182 _kvm_err(kd, kd->program, 183 "can't read tty at %x", sess.s_ttyp); 184 return (-1); 185 } 186 eproc.e_tdev = tty.t_dev; 187 eproc.e_tsess = tty.t_session; 188 if (tty.t_pgrp != NULL) { 189 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 190 _kvm_err(kd, kd->program, 191 "can't read tpgrp at &x", 192 tty.t_pgrp); 193 return (-1); 194 } 195 eproc.e_tpgid = pgrp.pg_id; 196 } else 197 eproc.e_tpgid = -1; 198 } else 199 eproc.e_tdev = NODEV; 200 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 201 if (sess.s_leader == p) 202 eproc.e_flag |= EPROC_SLEADER; 203 if (proc.p_wmesg) 204 (void)kvm_read(kd, (u_long)proc.p_wmesg, 205 eproc.e_wmesg, WMESGLEN); 206 207 #ifdef sparc 208 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 209 (char *)&eproc.e_vm.vm_rssize, 210 sizeof(eproc.e_vm.vm_rssize)); 211 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 212 (char *)&eproc.e_vm.vm_tsize, 213 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */ 214 #else 215 (void)kvm_read(kd, (u_long)proc.p_vmspace, 216 (char *)&eproc.e_vm, sizeof(eproc.e_vm)); 217 #endif 218 eproc.e_xsize = eproc.e_xrssize = 0; 219 eproc.e_xccount = eproc.e_xswrss = 0; 220 221 switch (what) { 222 223 case KERN_PROC_PGRP: 224 if (eproc.e_pgid != (pid_t)arg) 225 continue; 226 break; 227 228 case KERN_PROC_TTY: 229 if ((proc.p_flag & P_CONTROLT) == 0 || 230 eproc.e_tdev != (dev_t)arg) 231 continue; 232 break; 233 } 234 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 235 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 236 ++bp; 237 ++cnt; 238 } 239 return (cnt); 240 } 241 242 /* 243 * Build proc info array by reading in proc list from a crash dump. 244 * Return number of procs read. maxcnt is the max we will read. 245 */ 246 static int 247 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 248 kvm_t *kd; 249 int what, arg; 250 u_long a_allproc; 251 u_long a_zombproc; 252 int maxcnt; 253 { 254 register struct kinfo_proc *bp = kd->procbase; 255 register int acnt, zcnt; 256 struct proc *p; 257 258 if (KREAD(kd, a_allproc, &p)) { 259 _kvm_err(kd, kd->program, "cannot read allproc"); 260 return (-1); 261 } 262 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 263 if (acnt < 0) 264 return (acnt); 265 266 if (KREAD(kd, a_zombproc, &p)) { 267 _kvm_err(kd, kd->program, "cannot read zombproc"); 268 return (-1); 269 } 270 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 271 if (zcnt < 0) 272 zcnt = 0; 273 274 return (acnt + zcnt); 275 } 276 277 struct kinfo_proc * 278 kvm_getprocs(kd, op, arg, cnt) 279 kvm_t *kd; 280 int op, arg; 281 int *cnt; 282 { 283 int mib[4], st, nprocs; 284 size_t size; 285 286 if (kd->procbase != 0) { 287 free((void *)kd->procbase); 288 /* 289 * Clear this pointer in case this call fails. Otherwise, 290 * kvm_close() will free it again. 291 */ 292 kd->procbase = 0; 293 } 294 if (ISALIVE(kd)) { 295 size = 0; 296 mib[0] = CTL_KERN; 297 mib[1] = KERN_PROC; 298 mib[2] = op; 299 mib[3] = arg; 300 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 301 if (st == -1) { 302 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 303 return (0); 304 } 305 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 306 if (kd->procbase == 0) 307 return (0); 308 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, kd->procbase, &size, NULL, 0); 309 if (st == -1) { 310 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 311 return (0); 312 } 313 if (size % sizeof(struct kinfo_proc) != 0) { 314 _kvm_err(kd, kd->program, 315 "proc size mismatch (%d total, %d chunks)", 316 size, sizeof(struct kinfo_proc)); 317 return (0); 318 } 319 nprocs = size / sizeof(struct kinfo_proc); 320 } else { 321 struct nlist nl[4], *p; 322 323 nl[0].n_name = "_nprocs"; 324 nl[1].n_name = "_allproc"; 325 nl[2].n_name = "_zombproc"; 326 nl[3].n_name = 0; 327 328 if (kvm_nlist(kd, nl) != 0) { 329 for (p = nl; p->n_type != 0; ++p) 330 ; 331 _kvm_err(kd, kd->program, 332 "%s: no such symbol", p->n_name); 333 return (0); 334 } 335 if (KREAD(kd, nl[0].n_value, &nprocs)) { 336 _kvm_err(kd, kd->program, "can't read nprocs"); 337 return (0); 338 } 339 size = nprocs * sizeof(struct kinfo_proc); 340 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 341 if (kd->procbase == 0) 342 return (0); 343 344 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 345 nl[2].n_value, nprocs); 346 #ifdef notdef 347 size = nprocs * sizeof(struct kinfo_proc); 348 (void)realloc(kd->procbase, size); 349 #endif 350 } 351 *cnt = nprocs; 352 return (kd->procbase); 353 } 354 355 void 356 _kvm_freeprocs(kd) 357 kvm_t *kd; 358 { 359 if (kd->procbase) { 360 free(kd->procbase); 361 kd->procbase = 0; 362 } 363 } 364 365 void * 366 _kvm_realloc(kd, p, n) 367 kvm_t *kd; 368 void *p; 369 size_t n; 370 { 371 void *np = (void *)realloc(p, n); 372 373 if (np == 0) 374 _kvm_err(kd, kd->program, "out of memory"); 375 return (np); 376 } 377 378 #ifndef MAX 379 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 380 #endif 381 382 /* 383 * Read in an argument vector from the user address space of process p. 384 * addr if the user-space base address of narg null-terminated contiguous 385 * strings. This is used to read in both the command arguments and 386 * environment strings. Read at most maxcnt characters of strings. 387 */ 388 static char ** 389 kvm_argv(kd, p, addr, narg, maxcnt) 390 kvm_t *kd; 391 const struct proc *p; 392 register u_long addr; 393 register int narg; 394 register int maxcnt; 395 { 396 register char *np, *cp, *ep, *ap; 397 register u_long oaddr = -1; 398 register int len, cc; 399 register char **argv; 400 401 /* 402 * Check that there aren't an unreasonable number of agruments, 403 * and that the address is in user space. 404 */ 405 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 406 return (0); 407 408 /* 409 * kd->argv : work space for fetching the strings from the target 410 * process's space, and is converted for returning to caller 411 */ 412 if (kd->argv == 0) { 413 /* 414 * Try to avoid reallocs. 415 */ 416 kd->argc = MAX(narg + 1, 32); 417 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 418 sizeof(*kd->argv)); 419 if (kd->argv == 0) 420 return (0); 421 } else if (narg + 1 > kd->argc) { 422 kd->argc = MAX(2 * kd->argc, narg + 1); 423 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 424 sizeof(*kd->argv)); 425 if (kd->argv == 0) 426 return (0); 427 } 428 /* 429 * kd->argspc : returned to user, this is where the kd->argv 430 * arrays are left pointing to the collected strings. 431 */ 432 if (kd->argspc == 0) { 433 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 434 if (kd->argspc == 0) 435 return (0); 436 kd->arglen = PAGE_SIZE; 437 } 438 /* 439 * kd->argbuf : used to pull in pages from the target process. 440 * the strings are copied out of here. 441 */ 442 if (kd->argbuf == 0) { 443 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 444 if (kd->argbuf == 0) 445 return (0); 446 } 447 448 /* Pull in the target process'es argv vector */ 449 cc = sizeof(char *) * narg; 450 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc) 451 return (0); 452 /* 453 * ap : saved start address of string we're working on in kd->argspc 454 * np : pointer to next place to write in kd->argspc 455 * len: length of data in kd->argspc 456 * argv: pointer to the argv vector that we are hunting around the 457 * target process space for, and converting to addresses in 458 * our address space (kd->argspc). 459 */ 460 ap = np = kd->argspc; 461 argv = kd->argv; 462 len = 0; 463 /* 464 * Loop over pages, filling in the argument vector. 465 * Note that the argv strings could be pointing *anywhere* in 466 * the user address space and are no longer contiguous. 467 * Note that *argv is modified when we are going to fetch a string 468 * that crosses a page boundary. We copy the next part of the string 469 * into to "np" and eventually convert the pointer. 470 */ 471 while (argv < kd->argv + narg && *argv != 0) { 472 473 /* get the address that the current argv string is on */ 474 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 475 476 /* is it the same page as the last one? */ 477 if (addr != oaddr) { 478 if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) != 479 PAGE_SIZE) 480 return (0); 481 oaddr = addr; 482 } 483 484 /* offset within the page... kd->argbuf */ 485 addr = (u_long)*argv & (PAGE_SIZE - 1); 486 487 /* cp = start of string, cc = count of chars in this chunk */ 488 cp = kd->argbuf + addr; 489 cc = PAGE_SIZE - addr; 490 491 /* dont get more than asked for by user process */ 492 if (maxcnt > 0 && cc > maxcnt - len) 493 cc = maxcnt - len; 494 495 /* pointer to end of string if we found it in this page */ 496 ep = memchr(cp, '\0', cc); 497 if (ep != 0) 498 cc = ep - cp + 1; 499 /* 500 * at this point, cc is the count of the chars that we are 501 * going to retrieve this time. we may or may not have found 502 * the end of it. (ep points to the null if the end is known) 503 */ 504 505 /* will we exceed the malloc/realloced buffer? */ 506 if (len + cc > kd->arglen) { 507 register int off; 508 register char **pp; 509 register char *op = kd->argspc; 510 511 kd->arglen *= 2; 512 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 513 kd->arglen); 514 if (kd->argspc == 0) 515 return (0); 516 /* 517 * Adjust argv pointers in case realloc moved 518 * the string space. 519 */ 520 off = kd->argspc - op; 521 for (pp = kd->argv; pp < argv; pp++) 522 *pp += off; 523 ap += off; 524 np += off; 525 } 526 /* np = where to put the next part of the string in kd->argspc*/ 527 /* np is kinda redundant.. could use "kd->argspc + len" */ 528 memcpy(np, cp, cc); 529 np += cc; /* inc counters */ 530 len += cc; 531 532 /* 533 * if end of string found, set the *argv pointer to the 534 * saved beginning of string, and advance. argv points to 535 * somewhere in kd->argv.. This is initially relative 536 * to the target process, but when we close it off, we set 537 * it to point in our address space. 538 */ 539 if (ep != 0) { 540 *argv++ = ap; 541 ap = np; 542 } else { 543 /* update the address relative to the target process */ 544 *argv += cc; 545 } 546 547 if (maxcnt > 0 && len >= maxcnt) { 548 /* 549 * We're stopping prematurely. Terminate the 550 * current string. 551 */ 552 if (ep == 0) { 553 *np = '\0'; 554 *argv++ = ap; 555 } 556 break; 557 } 558 } 559 /* Make sure argv is terminated. */ 560 *argv = 0; 561 return (kd->argv); 562 } 563 564 static void 565 ps_str_a(p, addr, n) 566 struct ps_strings *p; 567 u_long *addr; 568 int *n; 569 { 570 *addr = (u_long)p->ps_argvstr; 571 *n = p->ps_nargvstr; 572 } 573 574 static void 575 ps_str_e(p, addr, n) 576 struct ps_strings *p; 577 u_long *addr; 578 int *n; 579 { 580 *addr = (u_long)p->ps_envstr; 581 *n = p->ps_nenvstr; 582 } 583 584 /* 585 * Determine if the proc indicated by p is still active. 586 * This test is not 100% foolproof in theory, but chances of 587 * being wrong are very low. 588 */ 589 static int 590 proc_verify(kd, kernp, p) 591 kvm_t *kd; 592 u_long kernp; 593 const struct proc *p; 594 { 595 struct kinfo_proc kp; 596 int mib[4], st; 597 size_t len; 598 599 mib[0] = CTL_KERN; 600 mib[1] = KERN_PROC; 601 mib[2] = KERN_PROC_PID; 602 mib[3] = p->p_pid; 603 604 len = sizeof kp; 605 606 st = sysctl(mib, 4, &kp, &len, NULL, 0); 607 if (st < 0) 608 return(0); 609 return (p->p_pid == kp.kp_proc.p_pid && 610 (kp.kp_proc.p_stat != SZOMB || p->p_stat == SZOMB)); 611 } 612 613 static char ** 614 kvm_doargv(kd, kp, nchr, info) 615 kvm_t *kd; 616 const struct kinfo_proc *kp; 617 int nchr; 618 void (*info)(struct ps_strings *, u_long *, int *); 619 { 620 register const struct proc *p = &kp->kp_proc; 621 register char **ap; 622 u_long addr; 623 int cnt; 624 static struct ps_strings arginfo, *ps_strings; 625 size_t len; 626 int i; 627 628 if (ps_strings == NULL) { 629 len = sizeof ps_strings; 630 i = sysctlbyname("kern.ps_strings", 631 &ps_strings, &len, 0, 0); 632 if (i < 0 || ps_strings == NULL) 633 ps_strings = PS_STRINGS; 634 } 635 636 /* 637 * Pointers are stored at the top of the user stack. 638 */ 639 if (p->p_stat == SZOMB || 640 kvm_uread(kd, p, ps_strings, (char *)&arginfo, 641 sizeof(arginfo)) != sizeof(arginfo)) 642 return (0); 643 644 (*info)(&arginfo, &addr, &cnt); 645 if (cnt == 0) 646 return (0); 647 ap = kvm_argv(kd, p, addr, cnt, nchr); 648 /* 649 * For live kernels, make sure this process didn't go away. 650 */ 651 if (ap != 0 && ISALIVE(kd) && 652 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 653 ap = 0; 654 return (ap); 655 } 656 657 /* 658 * Get the command args. This code is now machine independent. 659 */ 660 char ** 661 kvm_getargv(kd, kp, nchr) 662 kvm_t *kd; 663 const struct kinfo_proc *kp; 664 int nchr; 665 { 666 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 667 } 668 669 char ** 670 kvm_getenvv(kd, kp, nchr) 671 kvm_t *kd; 672 const struct kinfo_proc *kp; 673 int nchr; 674 { 675 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 676 } 677 678 /* 679 * Read from user space. The user context is given by p. 680 */ 681 ssize_t 682 kvm_uread(kd, p, uva, buf, len) 683 kvm_t *kd; 684 register const struct proc *p; 685 register u_long uva; 686 register char *buf; 687 register size_t len; 688 { 689 register char *cp; 690 char procfile[MAXPATHLEN]; 691 ssize_t amount; 692 int fd; 693 694 if (!ISALIVE(kd)) { 695 _kvm_err(kd, kd->program, 696 "cannot read user space from dead kernel"); 697 return (0); 698 } 699 700 sprintf(procfile, "/proc/%d/mem", p->p_pid); 701 fd = open(procfile, O_RDONLY, 0); 702 if (fd < 0) { 703 _kvm_err(kd, kd->program, "cannot open %s", procfile); 704 close(fd); 705 return (0); 706 } 707 708 cp = buf; 709 while (len > 0) { 710 errno = 0; 711 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 712 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 713 uva, procfile); 714 break; 715 } 716 amount = read(fd, cp, len); 717 if (amount < 0) { 718 _kvm_syserr(kd, kd->program, "error reading %s", 719 procfile); 720 break; 721 } 722 if (amount == 0) { 723 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 724 break; 725 } 726 cp += amount; 727 uva += amount; 728 len -= amount; 729 } 730 731 close(fd); 732 return ((ssize_t)(cp - buf)); 733 } 734