1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1989, 1992, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software developed by the Computer Systems 8 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 9 * BG 91-66 and contributed to Berkeley. 10 * 11 * Redistribution and use in source and binary forms, with or without 12 * modification, are permitted provided that the following conditions 13 * are met: 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in the 18 * documentation and/or other materials provided with the distribution. 19 * 3. Neither the name of the University nor the names of its contributors 20 * may be used to endorse or promote products derived from this software 21 * without specific prior written permission. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 33 * SUCH DAMAGE. 34 */ 35 36 #include <sys/cdefs.h> 37 __FBSDID("$FreeBSD$"); 38 __SCCSID("@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"); 39 40 /* 41 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 42 * users of this code, so we've factored it out into a separate module. 43 * Thus, we keep this grunge out of the other kvm applications (i.e., 44 * most other applications are interested only in open/close/read/nlist). 45 */ 46 47 #include <sys/param.h> 48 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 49 #include <sys/ucred.h> 50 #include <sys/queue.h> 51 #include <sys/_lock.h> 52 #include <sys/_mutex.h> 53 #include <sys/_task.h> 54 #include <sys/cpuset.h> 55 #include <sys/user.h> 56 #include <sys/proc.h> 57 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 58 #include <sys/jail.h> 59 #include <sys/exec.h> 60 #include <sys/stat.h> 61 #include <sys/sysent.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <sys/file.h> 65 #include <sys/conf.h> 66 #define _WANT_KW_EXITCODE 67 #include <sys/wait.h> 68 #include <stdio.h> 69 #include <stdlib.h> 70 #include <stdbool.h> 71 #include <unistd.h> 72 #include <nlist.h> 73 #include <kvm.h> 74 75 #include <sys/sysctl.h> 76 77 #include <limits.h> 78 #include <memory.h> 79 #include <paths.h> 80 81 #include "kvm_private.h" 82 83 #define KREAD(kd, addr, obj) \ 84 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 85 86 static int ticks; 87 static int hz; 88 static uint64_t cpu_tick_frequency; 89 90 /* 91 * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is 92 * read/initialized before this function is ever called. 93 */ 94 static uint64_t 95 cputick2usec(uint64_t tick) 96 { 97 if (cpu_tick_frequency == 0) 98 return (0); 99 return ((tick / cpu_tick_frequency) * 1000000ULL) + 100 ((tick % cpu_tick_frequency) * 1000000ULL) / cpu_tick_frequency; 101 } 102 103 /* 104 * Read proc's from memory file into buffer bp, which has space to hold 105 * at most maxcnt procs. 106 */ 107 static int 108 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 109 struct kinfo_proc *bp, int maxcnt) 110 { 111 int cnt = 0; 112 struct kinfo_proc kinfo_proc, *kp; 113 struct pgrp pgrp; 114 struct session sess; 115 struct cdev t_cdev; 116 struct tty tty; 117 struct vmspace vmspace; 118 struct sigacts sigacts; 119 #if 0 120 struct pstats pstats; 121 #endif 122 struct ucred ucred; 123 struct prison pr; 124 struct thread mtd; 125 struct proc proc; 126 struct proc pproc; 127 struct sysentvec sysent; 128 char svname[KI_EMULNAMELEN]; 129 struct thread *td = NULL; 130 bool first_thread; 131 132 kp = &kinfo_proc; 133 kp->ki_structsize = sizeof(kinfo_proc); 134 /* 135 * Loop on the processes, then threads within the process if requested. 136 */ 137 if (what == KERN_PROC_ALL) 138 what |= KERN_PROC_INC_THREAD; 139 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 140 memset(kp, 0, sizeof *kp); 141 if (KREAD(kd, (u_long)p, &proc)) { 142 _kvm_err(kd, kd->program, "can't read proc at %p", p); 143 return (-1); 144 } 145 if (proc.p_state == PRS_NEW) 146 continue; 147 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 148 kp->ki_ruid = ucred.cr_ruid; 149 kp->ki_svuid = ucred.cr_svuid; 150 kp->ki_rgid = ucred.cr_rgid; 151 kp->ki_svgid = ucred.cr_svgid; 152 kp->ki_cr_flags = ucred.cr_flags; 153 if (ucred.cr_ngroups > KI_NGROUPS) { 154 kp->ki_ngroups = KI_NGROUPS; 155 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 156 } else 157 kp->ki_ngroups = ucred.cr_ngroups; 158 kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, 159 kp->ki_ngroups * sizeof(gid_t)); 160 kp->ki_uid = ucred.cr_uid; 161 if (ucred.cr_prison != NULL) { 162 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 163 _kvm_err(kd, kd->program, 164 "can't read prison at %p", 165 ucred.cr_prison); 166 return (-1); 167 } 168 kp->ki_jid = pr.pr_id; 169 } 170 } 171 172 switch(what & ~KERN_PROC_INC_THREAD) { 173 174 case KERN_PROC_GID: 175 if (kp->ki_groups[0] != (gid_t)arg) 176 continue; 177 break; 178 179 case KERN_PROC_PID: 180 if (proc.p_pid != (pid_t)arg) 181 continue; 182 break; 183 184 case KERN_PROC_RGID: 185 if (kp->ki_rgid != (gid_t)arg) 186 continue; 187 break; 188 189 case KERN_PROC_UID: 190 if (kp->ki_uid != (uid_t)arg) 191 continue; 192 break; 193 194 case KERN_PROC_RUID: 195 if (kp->ki_ruid != (uid_t)arg) 196 continue; 197 break; 198 } 199 /* 200 * We're going to add another proc to the set. If this 201 * will overflow the buffer, assume the reason is because 202 * nprocs (or the proc list) is corrupt and declare an error. 203 */ 204 if (cnt >= maxcnt) { 205 _kvm_err(kd, kd->program, "nprocs corrupt"); 206 return (-1); 207 } 208 /* 209 * gather kinfo_proc 210 */ 211 kp->ki_paddr = p; 212 kp->ki_addr = 0; /* XXX uarea */ 213 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 214 kp->ki_args = proc.p_args; 215 kp->ki_numthreads = proc.p_numthreads; 216 kp->ki_tracep = NULL; /* XXXKIB do not expose ktr_io_params */ 217 kp->ki_textvp = proc.p_textvp; 218 kp->ki_fd = proc.p_fd; 219 kp->ki_pd = proc.p_pd; 220 kp->ki_vmspace = proc.p_vmspace; 221 if (proc.p_sigacts != NULL) { 222 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 223 _kvm_err(kd, kd->program, 224 "can't read sigacts at %p", proc.p_sigacts); 225 return (-1); 226 } 227 kp->ki_sigignore = sigacts.ps_sigignore; 228 kp->ki_sigcatch = sigacts.ps_sigcatch; 229 } 230 #if 0 231 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 232 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 233 _kvm_err(kd, kd->program, 234 "can't read stats at %x", proc.p_stats); 235 return (-1); 236 } 237 kp->ki_start = pstats.p_start; 238 239 /* 240 * XXX: The times here are probably zero and need 241 * to be calculated from the raw data in p_rux and 242 * p_crux. 243 */ 244 kp->ki_rusage = pstats.p_ru; 245 kp->ki_childstime = pstats.p_cru.ru_stime; 246 kp->ki_childutime = pstats.p_cru.ru_utime; 247 /* Some callers want child-times in a single value */ 248 timeradd(&kp->ki_childstime, &kp->ki_childutime, 249 &kp->ki_childtime); 250 } 251 #endif 252 if (proc.p_oppid) 253 kp->ki_ppid = proc.p_oppid; 254 else if (proc.p_pptr) { 255 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 256 _kvm_err(kd, kd->program, 257 "can't read pproc at %p", proc.p_pptr); 258 return (-1); 259 } 260 kp->ki_ppid = pproc.p_pid; 261 } else 262 kp->ki_ppid = 0; 263 if (proc.p_pgrp == NULL) 264 goto nopgrp; 265 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 266 _kvm_err(kd, kd->program, "can't read pgrp at %p", 267 proc.p_pgrp); 268 return (-1); 269 } 270 kp->ki_pgid = pgrp.pg_id; 271 kp->ki_jobc = -1; /* Or calculate? Arguably not. */ 272 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 273 _kvm_err(kd, kd->program, "can't read session at %p", 274 pgrp.pg_session); 275 return (-1); 276 } 277 kp->ki_sid = sess.s_sid; 278 (void)memcpy(kp->ki_login, sess.s_login, 279 sizeof(kp->ki_login)); 280 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 281 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 282 _kvm_err(kd, kd->program, 283 "can't read tty at %p", sess.s_ttyp); 284 return (-1); 285 } 286 if (tty.t_dev != NULL) { 287 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 288 _kvm_err(kd, kd->program, 289 "can't read cdev at %p", 290 tty.t_dev); 291 return (-1); 292 } 293 #if 0 294 kp->ki_tdev = t_cdev.si_udev; 295 #else 296 kp->ki_tdev = NODEV; 297 #endif 298 } 299 if (tty.t_pgrp != NULL) { 300 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 301 _kvm_err(kd, kd->program, 302 "can't read tpgrp at %p", 303 tty.t_pgrp); 304 return (-1); 305 } 306 kp->ki_tpgid = pgrp.pg_id; 307 } else 308 kp->ki_tpgid = -1; 309 if (tty.t_session != NULL) { 310 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 311 _kvm_err(kd, kd->program, 312 "can't read session at %p", 313 tty.t_session); 314 return (-1); 315 } 316 kp->ki_tsid = sess.s_sid; 317 } 318 } else { 319 nopgrp: 320 kp->ki_tdev = NODEV; 321 } 322 323 (void)kvm_read(kd, (u_long)proc.p_vmspace, 324 (char *)&vmspace, sizeof(vmspace)); 325 kp->ki_size = vmspace.vm_map.size; 326 /* 327 * Approximate the kernel's method of calculating 328 * this field. 329 */ 330 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) 331 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); 332 kp->ki_swrss = vmspace.vm_swrss; 333 kp->ki_tsize = vmspace.vm_tsize; 334 kp->ki_dsize = vmspace.vm_dsize; 335 kp->ki_ssize = vmspace.vm_ssize; 336 337 switch (what & ~KERN_PROC_INC_THREAD) { 338 339 case KERN_PROC_PGRP: 340 if (kp->ki_pgid != (pid_t)arg) 341 continue; 342 break; 343 344 case KERN_PROC_SESSION: 345 if (kp->ki_sid != (pid_t)arg) 346 continue; 347 break; 348 349 case KERN_PROC_TTY: 350 if ((proc.p_flag & P_CONTROLT) == 0 || 351 kp->ki_tdev != (dev_t)arg) 352 continue; 353 break; 354 } 355 if (proc.p_comm[0] != 0) 356 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 357 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 358 sizeof(sysent)); 359 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 360 sizeof(svname)); 361 if (svname[0] != 0) 362 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 363 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); 364 kp->ki_pid = proc.p_pid; 365 kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig); 366 kp->ki_acflag = proc.p_acflag; 367 kp->ki_lock = proc.p_lock; 368 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 369 370 /* Per-thread items; iterate as appropriate. */ 371 td = TAILQ_FIRST(&proc.p_threads); 372 for (first_thread = true; cnt < maxcnt && td != NULL && 373 (first_thread || (what & KERN_PROC_INC_THREAD)); 374 first_thread = false) { 375 if (proc.p_state != PRS_ZOMBIE) { 376 if (KREAD(kd, (u_long)td, &mtd)) { 377 _kvm_err(kd, kd->program, 378 "can't read thread at %p", td); 379 return (-1); 380 } 381 if (what & KERN_PROC_INC_THREAD) 382 td = TAILQ_NEXT(&mtd, td_plist); 383 } else 384 td = NULL; 385 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 386 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 387 kp->ki_wmesg, WMESGLEN); 388 else 389 memset(kp->ki_wmesg, 0, WMESGLEN); 390 if (proc.p_pgrp == NULL) { 391 kp->ki_kiflag = 0; 392 } else { 393 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 394 if (sess.s_leader == p) 395 kp->ki_kiflag |= KI_SLEADER; 396 } 397 if ((proc.p_state != PRS_ZOMBIE) && 398 (mtd.td_blocked != 0)) { 399 kp->ki_kiflag |= KI_LOCKBLOCK; 400 if (mtd.td_lockname) 401 (void)kvm_read(kd, 402 (u_long)mtd.td_lockname, 403 kp->ki_lockname, LOCKNAMELEN); 404 else 405 memset(kp->ki_lockname, 0, 406 LOCKNAMELEN); 407 kp->ki_lockname[LOCKNAMELEN] = 0; 408 } else 409 kp->ki_kiflag &= ~KI_LOCKBLOCK; 410 kp->ki_siglist = proc.p_siglist; 411 if (proc.p_state != PRS_ZOMBIE) { 412 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 413 kp->ki_sigmask = mtd.td_sigmask; 414 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 415 kp->ki_flag = proc.p_flag; 416 kp->ki_sflag = 0; 417 kp->ki_nice = proc.p_nice; 418 kp->ki_traceflag = proc.p_traceflag; 419 if (proc.p_state == PRS_NORMAL) { 420 if (TD_ON_RUNQ(&mtd) || 421 TD_CAN_RUN(&mtd) || 422 TD_IS_RUNNING(&mtd)) { 423 kp->ki_stat = SRUN; 424 } else if (TD_GET_STATE(&mtd) == 425 TDS_INHIBITED) { 426 if (P_SHOULDSTOP(&proc)) { 427 kp->ki_stat = SSTOP; 428 } else if ( 429 TD_IS_SLEEPING(&mtd)) { 430 kp->ki_stat = SSLEEP; 431 } else if (TD_ON_LOCK(&mtd)) { 432 kp->ki_stat = SLOCK; 433 } else { 434 kp->ki_stat = SWAIT; 435 } 436 } 437 } else { 438 kp->ki_stat = SIDL; 439 } 440 /* Stuff from the thread */ 441 kp->ki_pri.pri_level = mtd.td_priority; 442 kp->ki_pri.pri_native = mtd.td_base_pri; 443 kp->ki_lastcpu = mtd.td_lastcpu; 444 kp->ki_wchan = mtd.td_wchan; 445 kp->ki_oncpu = mtd.td_oncpu; 446 if (mtd.td_name[0] != '\0') 447 strlcpy(kp->ki_tdname, mtd.td_name, 448 sizeof(kp->ki_tdname)); 449 else 450 memset(kp->ki_tdname, 0, 451 sizeof(kp->ki_tdname)); 452 kp->ki_pctcpu = 0; 453 kp->ki_rqindex = 0; 454 455 /* 456 * Note: legacy fields; wraps at NO_CPU_OLD 457 * or the old max CPU value as appropriate 458 */ 459 if (mtd.td_lastcpu == NOCPU) 460 kp->ki_lastcpu_old = NOCPU_OLD; 461 else if (mtd.td_lastcpu > MAXCPU_OLD) 462 kp->ki_lastcpu_old = MAXCPU_OLD; 463 else 464 kp->ki_lastcpu_old = mtd.td_lastcpu; 465 466 if (mtd.td_oncpu == NOCPU) 467 kp->ki_oncpu_old = NOCPU_OLD; 468 else if (mtd.td_oncpu > MAXCPU_OLD) 469 kp->ki_oncpu_old = MAXCPU_OLD; 470 else 471 kp->ki_oncpu_old = mtd.td_oncpu; 472 kp->ki_tid = mtd.td_tid; 473 } else { 474 memset(&kp->ki_sigmask, 0, 475 sizeof(kp->ki_sigmask)); 476 kp->ki_stat = SZOMB; 477 kp->ki_tid = 0; 478 } 479 480 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 481 ++bp; 482 ++cnt; 483 } 484 } 485 return (cnt); 486 } 487 488 /* 489 * Build proc info array by reading in proc list from a crash dump. 490 * Return number of procs read. maxcnt is the max we will read. 491 */ 492 static int 493 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 494 u_long a_zombproc, int maxcnt) 495 { 496 struct kinfo_proc *bp = kd->procbase; 497 int acnt, zcnt = 0; 498 struct proc *p; 499 500 if (KREAD(kd, a_allproc, &p)) { 501 _kvm_err(kd, kd->program, "cannot read allproc"); 502 return (-1); 503 } 504 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 505 if (acnt < 0) 506 return (acnt); 507 508 if (a_zombproc != 0) { 509 if (KREAD(kd, a_zombproc, &p)) { 510 _kvm_err(kd, kd->program, "cannot read zombproc"); 511 return (-1); 512 } 513 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 514 if (zcnt < 0) 515 zcnt = 0; 516 } 517 518 return (acnt + zcnt); 519 } 520 521 struct kinfo_proc * 522 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 523 { 524 int mib[4], st, nprocs; 525 size_t size, osize; 526 int temp_op; 527 528 if (kd->procbase != 0) { 529 free((void *)kd->procbase); 530 /* 531 * Clear this pointer in case this call fails. Otherwise, 532 * kvm_close() will free it again. 533 */ 534 kd->procbase = 0; 535 } 536 if (ISALIVE(kd)) { 537 size = 0; 538 mib[0] = CTL_KERN; 539 mib[1] = KERN_PROC; 540 mib[2] = op; 541 mib[3] = arg; 542 temp_op = op & ~KERN_PROC_INC_THREAD; 543 st = sysctl(mib, 544 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 545 3 : 4, NULL, &size, NULL, 0); 546 if (st == -1) { 547 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 548 return (0); 549 } 550 /* 551 * We can't continue with a size of 0 because we pass 552 * it to realloc() (via _kvm_realloc()), and passing 0 553 * to realloc() results in undefined behavior. 554 */ 555 if (size == 0) { 556 /* 557 * XXX: We should probably return an invalid, 558 * but non-NULL, pointer here so any client 559 * program trying to dereference it will 560 * crash. However, _kvm_freeprocs() calls 561 * free() on kd->procbase if it isn't NULL, 562 * and free()'ing a junk pointer isn't good. 563 * Then again, _kvm_freeprocs() isn't used 564 * anywhere . . . 565 */ 566 kd->procbase = _kvm_malloc(kd, 1); 567 goto liveout; 568 } 569 do { 570 size += size / 10; 571 kd->procbase = (struct kinfo_proc *) 572 _kvm_realloc(kd, kd->procbase, size); 573 if (kd->procbase == NULL) 574 return (0); 575 osize = size; 576 st = sysctl(mib, temp_op == KERN_PROC_ALL || 577 temp_op == KERN_PROC_PROC ? 3 : 4, 578 kd->procbase, &size, NULL, 0); 579 } while (st == -1 && errno == ENOMEM && size == osize); 580 if (st == -1) { 581 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 582 return (0); 583 } 584 /* 585 * We have to check the size again because sysctl() 586 * may "round up" oldlenp if oldp is NULL; hence it 587 * might've told us that there was data to get when 588 * there really isn't any. 589 */ 590 if (size > 0 && 591 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 592 _kvm_err(kd, kd->program, 593 "kinfo_proc size mismatch (expected %zu, got %d)", 594 sizeof(struct kinfo_proc), 595 kd->procbase->ki_structsize); 596 return (0); 597 } 598 liveout: 599 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 600 } else { 601 struct nlist nl[6], *p; 602 struct nlist nlz[2]; 603 604 nl[0].n_name = "_nprocs"; 605 nl[1].n_name = "_allproc"; 606 nl[2].n_name = "_ticks"; 607 nl[3].n_name = "_hz"; 608 nl[4].n_name = "_cpu_tick_frequency"; 609 nl[5].n_name = 0; 610 611 nlz[0].n_name = "_zombproc"; 612 nlz[1].n_name = 0; 613 614 if (!kd->arch->ka_native(kd)) { 615 _kvm_err(kd, kd->program, 616 "cannot read procs from non-native core"); 617 return (0); 618 } 619 620 if (kvm_nlist(kd, nl) != 0) { 621 for (p = nl; p->n_type != 0; ++p) 622 ; 623 _kvm_err(kd, kd->program, 624 "%s: no such symbol", p->n_name); 625 return (0); 626 } 627 (void) kvm_nlist(kd, nlz); /* attempt to get zombproc */ 628 if (KREAD(kd, nl[0].n_value, &nprocs)) { 629 _kvm_err(kd, kd->program, "can't read nprocs"); 630 return (0); 631 } 632 /* 633 * If returning all threads, we don't know how many that 634 * might be. Presume that there are, on average, no more 635 * than 10 threads per process. 636 */ 637 if (op == KERN_PROC_ALL || (op & KERN_PROC_INC_THREAD)) 638 nprocs *= 10; /* XXX */ 639 if (KREAD(kd, nl[2].n_value, &ticks)) { 640 _kvm_err(kd, kd->program, "can't read ticks"); 641 return (0); 642 } 643 if (KREAD(kd, nl[3].n_value, &hz)) { 644 _kvm_err(kd, kd->program, "can't read hz"); 645 return (0); 646 } 647 if (KREAD(kd, nl[4].n_value, &cpu_tick_frequency)) { 648 _kvm_err(kd, kd->program, 649 "can't read cpu_tick_frequency"); 650 return (0); 651 } 652 size = nprocs * sizeof(struct kinfo_proc); 653 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 654 if (kd->procbase == NULL) 655 return (0); 656 657 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 658 nlz[0].n_value, nprocs); 659 if (nprocs <= 0) { 660 _kvm_freeprocs(kd); 661 nprocs = 0; 662 } 663 #ifdef notdef 664 else { 665 size = nprocs * sizeof(struct kinfo_proc); 666 kd->procbase = realloc(kd->procbase, size); 667 } 668 #endif 669 } 670 *cnt = nprocs; 671 return (kd->procbase); 672 } 673 674 void 675 _kvm_freeprocs(kvm_t *kd) 676 { 677 678 free(kd->procbase); 679 kd->procbase = NULL; 680 } 681 682 void * 683 _kvm_realloc(kvm_t *kd, void *p, size_t n) 684 { 685 void *np; 686 687 np = reallocf(p, n); 688 if (np == NULL) 689 _kvm_err(kd, kd->program, "out of memory"); 690 return (np); 691 } 692 693 /* 694 * Get the command args or environment. 695 */ 696 static char ** 697 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr) 698 { 699 int oid[4]; 700 int i; 701 size_t bufsz; 702 static int buflen; 703 static char *buf, *p; 704 static char **bufp; 705 static int argc; 706 char **nbufp; 707 708 if (!ISALIVE(kd)) { 709 _kvm_err(kd, kd->program, 710 "cannot read user space from dead kernel"); 711 return (NULL); 712 } 713 714 if (nchr == 0 || nchr > ARG_MAX) 715 nchr = ARG_MAX; 716 if (buflen == 0) { 717 buf = malloc(nchr); 718 if (buf == NULL) { 719 _kvm_err(kd, kd->program, "cannot allocate memory"); 720 return (NULL); 721 } 722 argc = 32; 723 bufp = malloc(sizeof(char *) * argc); 724 if (bufp == NULL) { 725 free(buf); 726 buf = NULL; 727 _kvm_err(kd, kd->program, "cannot allocate memory"); 728 return (NULL); 729 } 730 buflen = nchr; 731 } else if (nchr > buflen) { 732 p = realloc(buf, nchr); 733 if (p != NULL) { 734 buf = p; 735 buflen = nchr; 736 } 737 } 738 oid[0] = CTL_KERN; 739 oid[1] = KERN_PROC; 740 oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS; 741 oid[3] = kp->ki_pid; 742 bufsz = buflen; 743 if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) { 744 /* 745 * If the supplied buf is too short to hold the requested 746 * value the sysctl returns with ENOMEM. The buf is filled 747 * with the truncated value and the returned bufsz is equal 748 * to the requested len. 749 */ 750 if (errno != ENOMEM || bufsz != (size_t)buflen) 751 return (NULL); 752 buf[bufsz - 1] = '\0'; 753 errno = 0; 754 } else if (bufsz == 0) 755 return (NULL); 756 i = 0; 757 p = buf; 758 do { 759 bufp[i++] = p; 760 p += strlen(p) + 1; 761 if (i >= argc) { 762 argc += argc; 763 nbufp = realloc(bufp, sizeof(char *) * argc); 764 if (nbufp == NULL) 765 return (NULL); 766 bufp = nbufp; 767 } 768 } while (p < buf + bufsz); 769 bufp[i++] = 0; 770 return (bufp); 771 } 772 773 char ** 774 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 775 { 776 return (kvm_argv(kd, kp, 0, nchr)); 777 } 778 779 char ** 780 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 781 { 782 return (kvm_argv(kd, kp, 1, nchr)); 783 } 784