xref: /freebsd/lib/libkvm/kvm_proc.c (revision 8fa113e5fc65fe6abc757f0089f477a87ee4d185)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  * $FreeBSD$
38  */
39 
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42 
43 #if defined(LIBC_SCCS) && !defined(lint)
44 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
45 #endif /* LIBC_SCCS and not lint */
46 
47 /*
48  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49  * users of this code, so we've factored it out into a separate module.
50  * Thus, we keep this grunge out of the other kvm applications (i.e.,
51  * most other applications are interested only in open/close/read/nlist).
52  */
53 
54 #include <sys/param.h>
55 #include <sys/user.h>
56 #include <sys/proc.h>
57 #include <sys/exec.h>
58 #include <sys/stat.h>
59 #include <sys/ioctl.h>
60 #include <sys/tty.h>
61 #include <sys/file.h>
62 #include <stdio.h>
63 #include <stdlib.h>
64 #include <unistd.h>
65 #include <nlist.h>
66 #include <kvm.h>
67 
68 #include <vm/vm.h>
69 #include <vm/vm_param.h>
70 #include <vm/swap_pager.h>
71 
72 #include <sys/sysctl.h>
73 
74 #include <limits.h>
75 #include <memory.h>
76 #include <paths.h>
77 
78 #include "kvm_private.h"
79 
80 #if used
81 static char *
82 kvm_readswap(kd, p, va, cnt)
83 	kvm_t *kd;
84 	const struct proc *p;
85 	u_long va;
86 	u_long *cnt;
87 {
88 #ifdef __FreeBSD__
89 	/* XXX Stubbed out, our vm system is differnet */
90 	_kvm_err(kd, kd->program, "kvm_readswap not implemented");
91 	return(0);
92 #endif	/* __FreeBSD__ */
93 }
94 #endif
95 
96 #define KREAD(kd, addr, obj) \
97 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
98 
99 /*
100  * Read proc's from memory file into buffer bp, which has space to hold
101  * at most maxcnt procs.
102  */
103 static int
104 kvm_proclist(kd, what, arg, p, bp, maxcnt)
105 	kvm_t *kd;
106 	int what, arg;
107 	struct proc *p;
108 	struct kinfo_proc *bp;
109 	int maxcnt;
110 {
111 	register int cnt = 0;
112 	struct kinfo_proc kinfo_proc, *kp;
113 	struct pgrp pgrp;
114 	struct session sess;
115 	struct tty tty;
116 	struct vmspace vmspace;
117 	struct procsig procsig;
118 	struct pstats pstats;
119 	struct ucred ucred;
120 	struct proc proc;
121 	struct proc pproc;
122 
123 	kp = &kinfo_proc;
124 	kp->ki_structsize = sizeof(kinfo_proc);
125 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
126 		memset(kp, 0, sizeof *kp);
127 		if (KREAD(kd, (u_long)p, &proc)) {
128 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
129 			return (-1);
130 		}
131 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
132 			kp->ki_ruid = ucred.cr_ruid;
133 			kp->ki_svuid = ucred.cr_svuid;
134 			kp->ki_rgid = ucred.cr_rgid;
135 			kp->ki_svgid = ucred.cr_svgid;
136 			kp->ki_ngroups = ucred.cr_ngroups;
137 			bcopy(ucred.cr_groups, kp->ki_groups,
138 			    NGROUPS * sizeof(gid_t));
139 			kp->ki_uid = ucred.cr_uid;
140 		}
141 
142 		switch(what) {
143 
144 		case KERN_PROC_PID:
145 			if (proc.p_pid != (pid_t)arg)
146 				continue;
147 			break;
148 
149 		case KERN_PROC_UID:
150 			if (kp->ki_uid != (uid_t)arg)
151 				continue;
152 			break;
153 
154 		case KERN_PROC_RUID:
155 			if (kp->ki_ruid != (uid_t)arg)
156 				continue;
157 			break;
158 		}
159 		/*
160 		 * We're going to add another proc to the set.  If this
161 		 * will overflow the buffer, assume the reason is because
162 		 * nprocs (or the proc list) is corrupt and declare an error.
163 		 */
164 		if (cnt >= maxcnt) {
165 			_kvm_err(kd, kd->program, "nprocs corrupt");
166 			return (-1);
167 		}
168 		/*
169 		 * gather kinfo_proc
170 		 */
171 		kp->ki_paddr = p;
172 		kp->ki_addr = proc.p_uarea;
173 		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
174 		kp->ki_args = proc.p_args;
175 		kp->ki_tracep = proc.p_tracep;
176 		kp->ki_textvp = proc.p_textvp;
177 		kp->ki_fd = proc.p_fd;
178 		kp->ki_vmspace = proc.p_vmspace;
179 		if (proc.p_procsig != NULL) {
180 			if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
181 				_kvm_err(kd, kd->program,
182 				    "can't read procsig at %x", proc.p_procsig);
183 				return (-1);
184 			}
185 			kp->ki_sigignore = procsig.ps_sigignore;
186 			kp->ki_sigcatch = procsig.ps_sigcatch;
187 		}
188 		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
189 			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
190 				_kvm_err(kd, kd->program,
191 				    "can't read stats at %x", proc.p_stats);
192 				return (-1);
193 			}
194 			kp->ki_start = pstats.p_start;
195 			kp->ki_rusage = pstats.p_ru;
196 			kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
197 			    pstats.p_cru.ru_stime.tv_sec;
198 			kp->ki_childtime.tv_usec =
199 			    pstats.p_cru.ru_utime.tv_usec +
200 			    pstats.p_cru.ru_stime.tv_usec;
201 		}
202 		if (proc.p_oppid)
203 			kp->ki_ppid = proc.p_oppid;
204 		else if (proc.p_pptr) {
205 			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
206 				_kvm_err(kd, kd->program,
207 				    "can't read pproc at %x", proc.p_pptr);
208 				return (-1);
209 			}
210 			kp->ki_ppid = pproc.p_pid;
211 		} else
212 			kp->ki_ppid = 0;
213 		if (proc.p_pgrp == NULL)
214 			goto nopgrp;
215 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
216 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
217 				 proc.p_pgrp);
218 			return (-1);
219 		}
220 		kp->ki_pgid = pgrp.pg_id;
221 		kp->ki_jobc = pgrp.pg_jobc;
222 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
223 			_kvm_err(kd, kd->program, "can't read session at %x",
224 				pgrp.pg_session);
225 			return (-1);
226 		}
227 		kp->ki_sid = sess.s_sid;
228 		(void)memcpy(kp->ki_login, sess.s_login,
229 						sizeof(kp->ki_login));
230 		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
231 		if (sess.s_leader == p)
232 			kp->ki_kiflag |= KI_SLEADER;
233 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
234 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
235 				_kvm_err(kd, kd->program,
236 					 "can't read tty at %x", sess.s_ttyp);
237 				return (-1);
238 			}
239 			kp->ki_tdev = tty.t_dev;
240 			if (tty.t_pgrp != NULL) {
241 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
242 					_kvm_err(kd, kd->program,
243 						 "can't read tpgrp at &x",
244 						tty.t_pgrp);
245 					return (-1);
246 				}
247 				kp->ki_tpgid = pgrp.pg_id;
248 			} else
249 				kp->ki_tpgid = -1;
250 			if (tty.t_session != NULL) {
251 				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
252 					_kvm_err(kd, kd->program,
253 					    "can't read session at %x",
254 					    tty.t_session);
255 					return (-1);
256 				}
257 				kp->ki_tsid = sess.s_sid;
258 			}
259 		} else {
260 nopgrp:
261 			kp->ki_tdev = NODEV;
262 		}
263 		if (proc.p_thread.td_wmesg)	/* XXXKSE */
264 			(void)kvm_read(kd, (u_long)proc.p_thread.td_wmesg,
265 			    kp->ki_wmesg, WMESGLEN);
266 
267 #ifdef sparc
268 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
269 		    (char *)&kp->ki_rssize,
270 		    sizeof(kp->ki_rssize));
271 		(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
272 		    (char *)&kp->ki_tsize,
273 		    3 * sizeof(kp->ki_rssize));	/* XXX */
274 #else
275 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
276 		    (char *)&vmspace, sizeof(vmspace));
277 		kp->ki_size = vmspace.vm_map.size;
278 		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
279 		kp->ki_swrss = vmspace.vm_swrss;
280 		kp->ki_tsize = vmspace.vm_tsize;
281 		kp->ki_dsize = vmspace.vm_dsize;
282 		kp->ki_ssize = vmspace.vm_ssize;
283 #endif
284 
285 		switch (what) {
286 
287 		case KERN_PROC_PGRP:
288 			if (kp->ki_pgid != (pid_t)arg)
289 				continue;
290 			break;
291 
292 		case KERN_PROC_TTY:
293 			if ((proc.p_flag & P_CONTROLT) == 0 ||
294 			     kp->ki_tdev != (dev_t)arg)
295 				continue;
296 			break;
297 		}
298 		if (proc.p_comm[0] != 0) {
299 			strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
300 			kp->ki_comm[MAXCOMLEN] = 0;
301 		}
302 		if (proc.p_thread.td_blocked != 0) {	/* XXXKSE */
303 			kp->ki_kiflag |= KI_MTXBLOCK;
304 			if (proc.p_thread.td_mtxname)	/* XXXKSE */
305 				(void)kvm_read(kd, (u_long)proc.p_thread.td_mtxname,
306 				    kp->ki_mtxname, MTXNAMELEN);
307 			kp->ki_mtxname[MTXNAMELEN] = 0;
308 		}
309 		kp->ki_runtime = proc.p_runtime;
310 		kp->ki_pid = proc.p_pid;
311 		kp->ki_siglist = proc.p_siglist;
312 		kp->ki_sigmask = proc.p_sigmask;
313 		kp->ki_xstat = proc.p_xstat;
314 		kp->ki_acflag = proc.p_acflag;
315 		kp->ki_pctcpu = proc.p_kse.ke_pctcpu;		/* XXXKSE */
316 		kp->ki_estcpu = proc.p_ksegrp.kg_estcpu;	/* XXXKSE */
317 		kp->ki_slptime = proc.p_kse.ke_slptime;		/* XXXKSE */
318 		kp->ki_swtime = proc.p_swtime;
319 		kp->ki_flag = proc.p_flag;
320 		kp->ki_sflag = proc.p_sflag;
321 		kp->ki_wchan = proc.p_thread.td_wchan;		/* XXXKSE */
322 		kp->ki_traceflag = proc.p_traceflag;
323 		kp->ki_stat = proc.p_stat;
324 		kp->ki_pri = proc.p_ksegrp.kg_pri;		/* XXXKSE */
325 		kp->ki_nice = proc.p_ksegrp.kg_nice;		/* XXXKSE */
326 		kp->ki_lock = proc.p_lock;
327 		kp->ki_rqindex = proc.p_kse.ke_rqindex;		/* XXXKSE */
328 		kp->ki_oncpu = proc.p_kse.ke_oncpu;		/* XXXKSE */
329 		kp->ki_lastcpu = proc.p_thread.td_lastcpu;	/* XXXKSE */
330 		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
331 		++bp;
332 		++cnt;
333 	}
334 	return (cnt);
335 }
336 
337 /*
338  * Build proc info array by reading in proc list from a crash dump.
339  * Return number of procs read.  maxcnt is the max we will read.
340  */
341 static int
342 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
343 	kvm_t *kd;
344 	int what, arg;
345 	u_long a_allproc;
346 	u_long a_zombproc;
347 	int maxcnt;
348 {
349 	register struct kinfo_proc *bp = kd->procbase;
350 	register int acnt, zcnt;
351 	struct proc *p;
352 
353 	if (KREAD(kd, a_allproc, &p)) {
354 		_kvm_err(kd, kd->program, "cannot read allproc");
355 		return (-1);
356 	}
357 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
358 	if (acnt < 0)
359 		return (acnt);
360 
361 	if (KREAD(kd, a_zombproc, &p)) {
362 		_kvm_err(kd, kd->program, "cannot read zombproc");
363 		return (-1);
364 	}
365 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
366 	if (zcnt < 0)
367 		zcnt = 0;
368 
369 	return (acnt + zcnt);
370 }
371 
372 struct kinfo_proc *
373 kvm_getprocs(kd, op, arg, cnt)
374 	kvm_t *kd;
375 	int op, arg;
376 	int *cnt;
377 {
378 	int mib[4], st, nprocs;
379 	size_t size;
380 
381 	if (kd->procbase != 0) {
382 		free((void *)kd->procbase);
383 		/*
384 		 * Clear this pointer in case this call fails.  Otherwise,
385 		 * kvm_close() will free it again.
386 		 */
387 		kd->procbase = 0;
388 	}
389 	if (ISALIVE(kd)) {
390 		size = 0;
391 		mib[0] = CTL_KERN;
392 		mib[1] = KERN_PROC;
393 		mib[2] = op;
394 		mib[3] = arg;
395 		st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
396 		if (st == -1) {
397 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
398 			return (0);
399 		}
400 		do {
401 			size += size / 10;
402 			kd->procbase = (struct kinfo_proc *)
403 			    _kvm_realloc(kd, kd->procbase, size);
404 			if (kd->procbase == 0)
405 				return (0);
406 			st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
407 			    kd->procbase, &size, NULL, 0);
408 		} while (st == -1 && errno == ENOMEM);
409 		if (st == -1) {
410 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
411 			return (0);
412 		}
413 		if (size > 0 &&
414 		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
415 			_kvm_err(kd, kd->program,
416 			    "kinfo_proc size mismatch (expected %d, got %d)",
417 			    sizeof(struct kinfo_proc),
418 			    kd->procbase->ki_structsize);
419 			return (0);
420 		}
421 		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
422 	} else {
423 		struct nlist nl[4], *p;
424 
425 		nl[0].n_name = "_nprocs";
426 		nl[1].n_name = "_allproc";
427 		nl[2].n_name = "_zombproc";
428 		nl[3].n_name = 0;
429 
430 		if (kvm_nlist(kd, nl) != 0) {
431 			for (p = nl; p->n_type != 0; ++p)
432 				;
433 			_kvm_err(kd, kd->program,
434 				 "%s: no such symbol", p->n_name);
435 			return (0);
436 		}
437 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
438 			_kvm_err(kd, kd->program, "can't read nprocs");
439 			return (0);
440 		}
441 		size = nprocs * sizeof(struct kinfo_proc);
442 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
443 		if (kd->procbase == 0)
444 			return (0);
445 
446 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
447 				      nl[2].n_value, nprocs);
448 #ifdef notdef
449 		size = nprocs * sizeof(struct kinfo_proc);
450 		(void)realloc(kd->procbase, size);
451 #endif
452 	}
453 	*cnt = nprocs;
454 	return (kd->procbase);
455 }
456 
457 void
458 _kvm_freeprocs(kd)
459 	kvm_t *kd;
460 {
461 	if (kd->procbase) {
462 		free(kd->procbase);
463 		kd->procbase = 0;
464 	}
465 }
466 
467 void *
468 _kvm_realloc(kd, p, n)
469 	kvm_t *kd;
470 	void *p;
471 	size_t n;
472 {
473 	void *np = (void *)realloc(p, n);
474 
475 	if (np == 0) {
476 		free(p);
477 		_kvm_err(kd, kd->program, "out of memory");
478 	}
479 	return (np);
480 }
481 
482 #ifndef MAX
483 #define MAX(a, b) ((a) > (b) ? (a) : (b))
484 #endif
485 
486 /*
487  * Read in an argument vector from the user address space of process kp.
488  * addr if the user-space base address of narg null-terminated contiguous
489  * strings.  This is used to read in both the command arguments and
490  * environment strings.  Read at most maxcnt characters of strings.
491  */
492 static char **
493 kvm_argv(kd, kp, addr, narg, maxcnt)
494 	kvm_t *kd;
495 	struct kinfo_proc *kp;
496 	register u_long addr;
497 	register int narg;
498 	register int maxcnt;
499 {
500 	register char *np, *cp, *ep, *ap;
501 	register u_long oaddr = -1;
502 	register int len, cc;
503 	register char **argv;
504 
505 	/*
506 	 * Check that there aren't an unreasonable number of agruments,
507 	 * and that the address is in user space.
508 	 */
509 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
510 		return (0);
511 
512 	/*
513 	 * kd->argv : work space for fetching the strings from the target
514 	 *            process's space, and is converted for returning to caller
515 	 */
516 	if (kd->argv == 0) {
517 		/*
518 		 * Try to avoid reallocs.
519 		 */
520 		kd->argc = MAX(narg + 1, 32);
521 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
522 						sizeof(*kd->argv));
523 		if (kd->argv == 0)
524 			return (0);
525 	} else if (narg + 1 > kd->argc) {
526 		kd->argc = MAX(2 * kd->argc, narg + 1);
527 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
528 						sizeof(*kd->argv));
529 		if (kd->argv == 0)
530 			return (0);
531 	}
532 	/*
533 	 * kd->argspc : returned to user, this is where the kd->argv
534 	 *              arrays are left pointing to the collected strings.
535 	 */
536 	if (kd->argspc == 0) {
537 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
538 		if (kd->argspc == 0)
539 			return (0);
540 		kd->arglen = PAGE_SIZE;
541 	}
542 	/*
543 	 * kd->argbuf : used to pull in pages from the target process.
544 	 *              the strings are copied out of here.
545 	 */
546 	if (kd->argbuf == 0) {
547 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
548 		if (kd->argbuf == 0)
549 			return (0);
550 	}
551 
552 	/* Pull in the target process'es argv vector */
553 	cc = sizeof(char *) * narg;
554 	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
555 		return (0);
556 	/*
557 	 * ap : saved start address of string we're working on in kd->argspc
558 	 * np : pointer to next place to write in kd->argspc
559 	 * len: length of data in kd->argspc
560 	 * argv: pointer to the argv vector that we are hunting around the
561 	 *       target process space for, and converting to addresses in
562 	 *       our address space (kd->argspc).
563 	 */
564 	ap = np = kd->argspc;
565 	argv = kd->argv;
566 	len = 0;
567 	/*
568 	 * Loop over pages, filling in the argument vector.
569 	 * Note that the argv strings could be pointing *anywhere* in
570 	 * the user address space and are no longer contiguous.
571 	 * Note that *argv is modified when we are going to fetch a string
572 	 * that crosses a page boundary.  We copy the next part of the string
573 	 * into to "np" and eventually convert the pointer.
574 	 */
575 	while (argv < kd->argv + narg && *argv != 0) {
576 
577 		/* get the address that the current argv string is on */
578 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
579 
580 		/* is it the same page as the last one? */
581 		if (addr != oaddr) {
582 			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
583 			    PAGE_SIZE)
584 				return (0);
585 			oaddr = addr;
586 		}
587 
588 		/* offset within the page... kd->argbuf */
589 		addr = (u_long)*argv & (PAGE_SIZE - 1);
590 
591 		/* cp = start of string, cc = count of chars in this chunk */
592 		cp = kd->argbuf + addr;
593 		cc = PAGE_SIZE - addr;
594 
595 		/* dont get more than asked for by user process */
596 		if (maxcnt > 0 && cc > maxcnt - len)
597 			cc = maxcnt - len;
598 
599 		/* pointer to end of string if we found it in this page */
600 		ep = memchr(cp, '\0', cc);
601 		if (ep != 0)
602 			cc = ep - cp + 1;
603 		/*
604 		 * at this point, cc is the count of the chars that we are
605 		 * going to retrieve this time. we may or may not have found
606 		 * the end of it.  (ep points to the null if the end is known)
607 		 */
608 
609 		/* will we exceed the malloc/realloced buffer? */
610 		if (len + cc > kd->arglen) {
611 			register int off;
612 			register char **pp;
613 			register char *op = kd->argspc;
614 
615 			kd->arglen *= 2;
616 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
617 							  kd->arglen);
618 			if (kd->argspc == 0)
619 				return (0);
620 			/*
621 			 * Adjust argv pointers in case realloc moved
622 			 * the string space.
623 			 */
624 			off = kd->argspc - op;
625 			for (pp = kd->argv; pp < argv; pp++)
626 				*pp += off;
627 			ap += off;
628 			np += off;
629 		}
630 		/* np = where to put the next part of the string in kd->argspc*/
631 		/* np is kinda redundant.. could use "kd->argspc + len" */
632 		memcpy(np, cp, cc);
633 		np += cc;	/* inc counters */
634 		len += cc;
635 
636 		/*
637 		 * if end of string found, set the *argv pointer to the
638 		 * saved beginning of string, and advance. argv points to
639 		 * somewhere in kd->argv..  This is initially relative
640 		 * to the target process, but when we close it off, we set
641 		 * it to point in our address space.
642 		 */
643 		if (ep != 0) {
644 			*argv++ = ap;
645 			ap = np;
646 		} else {
647 			/* update the address relative to the target process */
648 			*argv += cc;
649 		}
650 
651 		if (maxcnt > 0 && len >= maxcnt) {
652 			/*
653 			 * We're stopping prematurely.  Terminate the
654 			 * current string.
655 			 */
656 			if (ep == 0) {
657 				*np = '\0';
658 				*argv++ = ap;
659 			}
660 			break;
661 		}
662 	}
663 	/* Make sure argv is terminated. */
664 	*argv = 0;
665 	return (kd->argv);
666 }
667 
668 static void
669 ps_str_a(p, addr, n)
670 	struct ps_strings *p;
671 	u_long *addr;
672 	int *n;
673 {
674 	*addr = (u_long)p->ps_argvstr;
675 	*n = p->ps_nargvstr;
676 }
677 
678 static void
679 ps_str_e(p, addr, n)
680 	struct ps_strings *p;
681 	u_long *addr;
682 	int *n;
683 {
684 	*addr = (u_long)p->ps_envstr;
685 	*n = p->ps_nenvstr;
686 }
687 
688 /*
689  * Determine if the proc indicated by p is still active.
690  * This test is not 100% foolproof in theory, but chances of
691  * being wrong are very low.
692  */
693 static int
694 proc_verify(curkp)
695 	struct kinfo_proc *curkp;
696 {
697 	struct kinfo_proc newkp;
698 	int mib[4];
699 	size_t len;
700 
701 	mib[0] = CTL_KERN;
702 	mib[1] = KERN_PROC;
703 	mib[2] = KERN_PROC_PID;
704 	mib[3] = curkp->ki_pid;
705 	len = sizeof(newkp);
706 	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
707 		return (0);
708 	return (curkp->ki_pid == newkp.ki_pid &&
709 	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
710 }
711 
712 static char **
713 kvm_doargv(kd, kp, nchr, info)
714 	kvm_t *kd;
715 	struct kinfo_proc *kp;
716 	int nchr;
717 	void (*info)(struct ps_strings *, u_long *, int *);
718 {
719 	char **ap;
720 	u_long addr;
721 	int cnt;
722 	static struct ps_strings arginfo;
723 	static u_long ps_strings;
724 	size_t len;
725 
726 	if (ps_strings == NULL) {
727 		len = sizeof(ps_strings);
728 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
729 		    0) == -1)
730 			ps_strings = PS_STRINGS;
731 	}
732 
733 	/*
734 	 * Pointers are stored at the top of the user stack.
735 	 */
736 	if (kp->ki_stat == SZOMB ||
737 	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
738 		      sizeof(arginfo)) != sizeof(arginfo))
739 		return (0);
740 
741 	(*info)(&arginfo, &addr, &cnt);
742 	if (cnt == 0)
743 		return (0);
744 	ap = kvm_argv(kd, kp, addr, cnt, nchr);
745 	/*
746 	 * For live kernels, make sure this process didn't go away.
747 	 */
748 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
749 		ap = 0;
750 	return (ap);
751 }
752 
753 /*
754  * Get the command args.  This code is now machine independent.
755  */
756 char **
757 kvm_getargv(kd, kp, nchr)
758 	kvm_t *kd;
759 	const struct kinfo_proc *kp;
760 	int nchr;
761 {
762 	int oid[4];
763 	int i;
764 	size_t bufsz;
765 	static unsigned long buflen;
766 	static char *buf, *p;
767 	static char **bufp;
768 	static int argc;
769 
770 	if (!ISALIVE(kd)) {
771 		_kvm_err(kd, kd->program,
772 		    "cannot read user space from dead kernel");
773 		return (0);
774 	}
775 
776 	if (!buflen) {
777 		bufsz = sizeof(buflen);
778 		i = sysctlbyname("kern.ps_arg_cache_limit",
779 		    &buflen, &bufsz, NULL, 0);
780 		if (i == -1) {
781 			buflen = 0;
782 		} else {
783 			buf = malloc(buflen);
784 			if (buf == NULL)
785 				buflen = 0;
786 			argc = 32;
787 			bufp = malloc(sizeof(char *) * argc);
788 		}
789 	}
790 	if (buf != NULL) {
791 		oid[0] = CTL_KERN;
792 		oid[1] = KERN_PROC;
793 		oid[2] = KERN_PROC_ARGS;
794 		oid[3] = kp->ki_pid;
795 		bufsz = buflen;
796 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
797 		if (i == 0 && bufsz > 0) {
798 			i = 0;
799 			p = buf;
800 			do {
801 				bufp[i++] = p;
802 				p += strlen(p) + 1;
803 				if (i >= argc) {
804 					argc += argc;
805 					bufp = realloc(bufp,
806 					    sizeof(char *) * argc);
807 				}
808 			} while (p < buf + bufsz);
809 			bufp[i++] = 0;
810 			return (bufp);
811 		}
812 	}
813 	if (kp->ki_flag & P_SYSTEM)
814 		return (NULL);
815 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
816 }
817 
818 char **
819 kvm_getenvv(kd, kp, nchr)
820 	kvm_t *kd;
821 	const struct kinfo_proc *kp;
822 	int nchr;
823 {
824 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
825 }
826 
827 /*
828  * Read from user space.  The user context is given by p.
829  */
830 ssize_t
831 kvm_uread(kd, kp, uva, buf, len)
832 	kvm_t *kd;
833 	struct kinfo_proc *kp;
834 	register u_long uva;
835 	register char *buf;
836 	register size_t len;
837 {
838 	register char *cp;
839 	char procfile[MAXPATHLEN];
840 	ssize_t amount;
841 	int fd;
842 
843 	if (!ISALIVE(kd)) {
844 		_kvm_err(kd, kd->program,
845 		    "cannot read user space from dead kernel");
846 		return (0);
847 	}
848 
849 	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
850 	fd = open(procfile, O_RDONLY, 0);
851 	if (fd < 0) {
852 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
853 		close(fd);
854 		return (0);
855 	}
856 
857 	cp = buf;
858 	while (len > 0) {
859 		errno = 0;
860 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
861 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
862 			    uva, procfile);
863 			break;
864 		}
865 		amount = read(fd, cp, len);
866 		if (amount < 0) {
867 			_kvm_syserr(kd, kd->program, "error reading %s",
868 			    procfile);
869 			break;
870 		}
871 		if (amount == 0) {
872 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
873 			break;
874 		}
875 		cp += amount;
876 		uva += amount;
877 		len -= amount;
878 	}
879 
880 	close(fd);
881 	return ((ssize_t)(cp - buf));
882 }
883