1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $FreeBSD$ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #if defined(LIBC_SCCS) && !defined(lint) 44 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 45 #endif /* LIBC_SCCS and not lint */ 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #include <sys/user.h> 56 #include <sys/proc.h> 57 #include <sys/exec.h> 58 #include <sys/stat.h> 59 #include <sys/ioctl.h> 60 #include <sys/tty.h> 61 #include <sys/file.h> 62 #include <stdio.h> 63 #include <stdlib.h> 64 #include <unistd.h> 65 #include <nlist.h> 66 #include <kvm.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_param.h> 70 #include <vm/swap_pager.h> 71 72 #include <sys/sysctl.h> 73 74 #include <limits.h> 75 #include <memory.h> 76 #include <paths.h> 77 78 #include "kvm_private.h" 79 80 #if used 81 static char * 82 kvm_readswap(kd, p, va, cnt) 83 kvm_t *kd; 84 const struct proc *p; 85 u_long va; 86 u_long *cnt; 87 { 88 #ifdef __FreeBSD__ 89 /* XXX Stubbed out, our vm system is differnet */ 90 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 91 return(0); 92 #endif /* __FreeBSD__ */ 93 } 94 #endif 95 96 #define KREAD(kd, addr, obj) \ 97 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 98 99 /* 100 * Read proc's from memory file into buffer bp, which has space to hold 101 * at most maxcnt procs. 102 */ 103 static int 104 kvm_proclist(kd, what, arg, p, bp, maxcnt) 105 kvm_t *kd; 106 int what, arg; 107 struct proc *p; 108 struct kinfo_proc *bp; 109 int maxcnt; 110 { 111 register int cnt = 0; 112 struct kinfo_proc kinfo_proc, *kp; 113 struct pgrp pgrp; 114 struct session sess; 115 struct tty tty; 116 struct vmspace vmspace; 117 struct procsig procsig; 118 struct pstats pstats; 119 struct ucred ucred; 120 struct proc proc; 121 struct proc pproc; 122 123 kp = &kinfo_proc; 124 kp->ki_structsize = sizeof(kinfo_proc); 125 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 126 memset(kp, 0, sizeof *kp); 127 if (KREAD(kd, (u_long)p, &proc)) { 128 _kvm_err(kd, kd->program, "can't read proc at %x", p); 129 return (-1); 130 } 131 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 132 kp->ki_ruid = ucred.cr_ruid; 133 kp->ki_svuid = ucred.cr_svuid; 134 kp->ki_rgid = ucred.cr_rgid; 135 kp->ki_svgid = ucred.cr_svgid; 136 kp->ki_ngroups = ucred.cr_ngroups; 137 bcopy(ucred.cr_groups, kp->ki_groups, 138 NGROUPS * sizeof(gid_t)); 139 kp->ki_uid = ucred.cr_uid; 140 } 141 142 switch(what) { 143 144 case KERN_PROC_PID: 145 if (proc.p_pid != (pid_t)arg) 146 continue; 147 break; 148 149 case KERN_PROC_UID: 150 if (kp->ki_uid != (uid_t)arg) 151 continue; 152 break; 153 154 case KERN_PROC_RUID: 155 if (kp->ki_ruid != (uid_t)arg) 156 continue; 157 break; 158 } 159 /* 160 * We're going to add another proc to the set. If this 161 * will overflow the buffer, assume the reason is because 162 * nprocs (or the proc list) is corrupt and declare an error. 163 */ 164 if (cnt >= maxcnt) { 165 _kvm_err(kd, kd->program, "nprocs corrupt"); 166 return (-1); 167 } 168 /* 169 * gather kinfo_proc 170 */ 171 kp->ki_paddr = p; 172 kp->ki_addr = proc.p_uarea; 173 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 174 kp->ki_args = proc.p_args; 175 kp->ki_tracep = proc.p_tracep; 176 kp->ki_textvp = proc.p_textvp; 177 kp->ki_fd = proc.p_fd; 178 kp->ki_vmspace = proc.p_vmspace; 179 if (proc.p_procsig != NULL) { 180 if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) { 181 _kvm_err(kd, kd->program, 182 "can't read procsig at %x", proc.p_procsig); 183 return (-1); 184 } 185 kp->ki_sigignore = procsig.ps_sigignore; 186 kp->ki_sigcatch = procsig.ps_sigcatch; 187 } 188 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 189 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 190 _kvm_err(kd, kd->program, 191 "can't read stats at %x", proc.p_stats); 192 return (-1); 193 } 194 kp->ki_start = pstats.p_start; 195 kp->ki_rusage = pstats.p_ru; 196 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + 197 pstats.p_cru.ru_stime.tv_sec; 198 kp->ki_childtime.tv_usec = 199 pstats.p_cru.ru_utime.tv_usec + 200 pstats.p_cru.ru_stime.tv_usec; 201 } 202 if (proc.p_oppid) 203 kp->ki_ppid = proc.p_oppid; 204 else if (proc.p_pptr) { 205 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 206 _kvm_err(kd, kd->program, 207 "can't read pproc at %x", proc.p_pptr); 208 return (-1); 209 } 210 kp->ki_ppid = pproc.p_pid; 211 } else 212 kp->ki_ppid = 0; 213 if (proc.p_pgrp == NULL) 214 goto nopgrp; 215 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 216 _kvm_err(kd, kd->program, "can't read pgrp at %x", 217 proc.p_pgrp); 218 return (-1); 219 } 220 kp->ki_pgid = pgrp.pg_id; 221 kp->ki_jobc = pgrp.pg_jobc; 222 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 223 _kvm_err(kd, kd->program, "can't read session at %x", 224 pgrp.pg_session); 225 return (-1); 226 } 227 kp->ki_sid = sess.s_sid; 228 (void)memcpy(kp->ki_login, sess.s_login, 229 sizeof(kp->ki_login)); 230 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 231 if (sess.s_leader == p) 232 kp->ki_kiflag |= KI_SLEADER; 233 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 234 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 235 _kvm_err(kd, kd->program, 236 "can't read tty at %x", sess.s_ttyp); 237 return (-1); 238 } 239 kp->ki_tdev = tty.t_dev; 240 if (tty.t_pgrp != NULL) { 241 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 242 _kvm_err(kd, kd->program, 243 "can't read tpgrp at &x", 244 tty.t_pgrp); 245 return (-1); 246 } 247 kp->ki_tpgid = pgrp.pg_id; 248 } else 249 kp->ki_tpgid = -1; 250 if (tty.t_session != NULL) { 251 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 252 _kvm_err(kd, kd->program, 253 "can't read session at %x", 254 tty.t_session); 255 return (-1); 256 } 257 kp->ki_tsid = sess.s_sid; 258 } 259 } else { 260 nopgrp: 261 kp->ki_tdev = NODEV; 262 } 263 if (proc.p_thread.td_wmesg) /* XXXKSE */ 264 (void)kvm_read(kd, (u_long)proc.p_thread.td_wmesg, 265 kp->ki_wmesg, WMESGLEN); 266 267 #ifdef sparc 268 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 269 (char *)&kp->ki_rssize, 270 sizeof(kp->ki_rssize)); 271 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 272 (char *)&kp->ki_tsize, 273 3 * sizeof(kp->ki_rssize)); /* XXX */ 274 #else 275 (void)kvm_read(kd, (u_long)proc.p_vmspace, 276 (char *)&vmspace, sizeof(vmspace)); 277 kp->ki_size = vmspace.vm_map.size; 278 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 279 kp->ki_swrss = vmspace.vm_swrss; 280 kp->ki_tsize = vmspace.vm_tsize; 281 kp->ki_dsize = vmspace.vm_dsize; 282 kp->ki_ssize = vmspace.vm_ssize; 283 #endif 284 285 switch (what) { 286 287 case KERN_PROC_PGRP: 288 if (kp->ki_pgid != (pid_t)arg) 289 continue; 290 break; 291 292 case KERN_PROC_TTY: 293 if ((proc.p_flag & P_CONTROLT) == 0 || 294 kp->ki_tdev != (dev_t)arg) 295 continue; 296 break; 297 } 298 if (proc.p_comm[0] != 0) { 299 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 300 kp->ki_comm[MAXCOMLEN] = 0; 301 } 302 if (proc.p_thread.td_blocked != 0) { /* XXXKSE */ 303 kp->ki_kiflag |= KI_MTXBLOCK; 304 if (proc.p_thread.td_mtxname) /* XXXKSE */ 305 (void)kvm_read(kd, (u_long)proc.p_thread.td_mtxname, 306 kp->ki_mtxname, MTXNAMELEN); 307 kp->ki_mtxname[MTXNAMELEN] = 0; 308 } 309 kp->ki_runtime = proc.p_runtime; 310 kp->ki_pid = proc.p_pid; 311 kp->ki_siglist = proc.p_siglist; 312 kp->ki_sigmask = proc.p_sigmask; 313 kp->ki_xstat = proc.p_xstat; 314 kp->ki_acflag = proc.p_acflag; 315 kp->ki_pctcpu = proc.p_kse.ke_pctcpu; /* XXXKSE */ 316 kp->ki_estcpu = proc.p_ksegrp.kg_estcpu; /* XXXKSE */ 317 kp->ki_slptime = proc.p_kse.ke_slptime; /* XXXKSE */ 318 kp->ki_swtime = proc.p_swtime; 319 kp->ki_flag = proc.p_flag; 320 kp->ki_sflag = proc.p_sflag; 321 kp->ki_wchan = proc.p_thread.td_wchan; /* XXXKSE */ 322 kp->ki_traceflag = proc.p_traceflag; 323 kp->ki_stat = proc.p_stat; 324 kp->ki_pri = proc.p_ksegrp.kg_pri; /* XXXKSE */ 325 kp->ki_nice = proc.p_ksegrp.kg_nice; /* XXXKSE */ 326 kp->ki_lock = proc.p_lock; 327 kp->ki_rqindex = proc.p_kse.ke_rqindex; /* XXXKSE */ 328 kp->ki_oncpu = proc.p_kse.ke_oncpu; /* XXXKSE */ 329 kp->ki_lastcpu = proc.p_thread.td_lastcpu; /* XXXKSE */ 330 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 331 ++bp; 332 ++cnt; 333 } 334 return (cnt); 335 } 336 337 /* 338 * Build proc info array by reading in proc list from a crash dump. 339 * Return number of procs read. maxcnt is the max we will read. 340 */ 341 static int 342 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 343 kvm_t *kd; 344 int what, arg; 345 u_long a_allproc; 346 u_long a_zombproc; 347 int maxcnt; 348 { 349 register struct kinfo_proc *bp = kd->procbase; 350 register int acnt, zcnt; 351 struct proc *p; 352 353 if (KREAD(kd, a_allproc, &p)) { 354 _kvm_err(kd, kd->program, "cannot read allproc"); 355 return (-1); 356 } 357 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 358 if (acnt < 0) 359 return (acnt); 360 361 if (KREAD(kd, a_zombproc, &p)) { 362 _kvm_err(kd, kd->program, "cannot read zombproc"); 363 return (-1); 364 } 365 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 366 if (zcnt < 0) 367 zcnt = 0; 368 369 return (acnt + zcnt); 370 } 371 372 struct kinfo_proc * 373 kvm_getprocs(kd, op, arg, cnt) 374 kvm_t *kd; 375 int op, arg; 376 int *cnt; 377 { 378 int mib[4], st, nprocs; 379 size_t size; 380 381 if (kd->procbase != 0) { 382 free((void *)kd->procbase); 383 /* 384 * Clear this pointer in case this call fails. Otherwise, 385 * kvm_close() will free it again. 386 */ 387 kd->procbase = 0; 388 } 389 if (ISALIVE(kd)) { 390 size = 0; 391 mib[0] = CTL_KERN; 392 mib[1] = KERN_PROC; 393 mib[2] = op; 394 mib[3] = arg; 395 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 396 if (st == -1) { 397 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 398 return (0); 399 } 400 do { 401 size += size / 10; 402 kd->procbase = (struct kinfo_proc *) 403 _kvm_realloc(kd, kd->procbase, size); 404 if (kd->procbase == 0) 405 return (0); 406 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 407 kd->procbase, &size, NULL, 0); 408 } while (st == -1 && errno == ENOMEM); 409 if (st == -1) { 410 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 411 return (0); 412 } 413 if (size > 0 && 414 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 415 _kvm_err(kd, kd->program, 416 "kinfo_proc size mismatch (expected %d, got %d)", 417 sizeof(struct kinfo_proc), 418 kd->procbase->ki_structsize); 419 return (0); 420 } 421 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 422 } else { 423 struct nlist nl[4], *p; 424 425 nl[0].n_name = "_nprocs"; 426 nl[1].n_name = "_allproc"; 427 nl[2].n_name = "_zombproc"; 428 nl[3].n_name = 0; 429 430 if (kvm_nlist(kd, nl) != 0) { 431 for (p = nl; p->n_type != 0; ++p) 432 ; 433 _kvm_err(kd, kd->program, 434 "%s: no such symbol", p->n_name); 435 return (0); 436 } 437 if (KREAD(kd, nl[0].n_value, &nprocs)) { 438 _kvm_err(kd, kd->program, "can't read nprocs"); 439 return (0); 440 } 441 size = nprocs * sizeof(struct kinfo_proc); 442 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 443 if (kd->procbase == 0) 444 return (0); 445 446 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 447 nl[2].n_value, nprocs); 448 #ifdef notdef 449 size = nprocs * sizeof(struct kinfo_proc); 450 (void)realloc(kd->procbase, size); 451 #endif 452 } 453 *cnt = nprocs; 454 return (kd->procbase); 455 } 456 457 void 458 _kvm_freeprocs(kd) 459 kvm_t *kd; 460 { 461 if (kd->procbase) { 462 free(kd->procbase); 463 kd->procbase = 0; 464 } 465 } 466 467 void * 468 _kvm_realloc(kd, p, n) 469 kvm_t *kd; 470 void *p; 471 size_t n; 472 { 473 void *np = (void *)realloc(p, n); 474 475 if (np == 0) { 476 free(p); 477 _kvm_err(kd, kd->program, "out of memory"); 478 } 479 return (np); 480 } 481 482 #ifndef MAX 483 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 484 #endif 485 486 /* 487 * Read in an argument vector from the user address space of process kp. 488 * addr if the user-space base address of narg null-terminated contiguous 489 * strings. This is used to read in both the command arguments and 490 * environment strings. Read at most maxcnt characters of strings. 491 */ 492 static char ** 493 kvm_argv(kd, kp, addr, narg, maxcnt) 494 kvm_t *kd; 495 struct kinfo_proc *kp; 496 register u_long addr; 497 register int narg; 498 register int maxcnt; 499 { 500 register char *np, *cp, *ep, *ap; 501 register u_long oaddr = -1; 502 register int len, cc; 503 register char **argv; 504 505 /* 506 * Check that there aren't an unreasonable number of agruments, 507 * and that the address is in user space. 508 */ 509 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 510 return (0); 511 512 /* 513 * kd->argv : work space for fetching the strings from the target 514 * process's space, and is converted for returning to caller 515 */ 516 if (kd->argv == 0) { 517 /* 518 * Try to avoid reallocs. 519 */ 520 kd->argc = MAX(narg + 1, 32); 521 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 522 sizeof(*kd->argv)); 523 if (kd->argv == 0) 524 return (0); 525 } else if (narg + 1 > kd->argc) { 526 kd->argc = MAX(2 * kd->argc, narg + 1); 527 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 528 sizeof(*kd->argv)); 529 if (kd->argv == 0) 530 return (0); 531 } 532 /* 533 * kd->argspc : returned to user, this is where the kd->argv 534 * arrays are left pointing to the collected strings. 535 */ 536 if (kd->argspc == 0) { 537 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 538 if (kd->argspc == 0) 539 return (0); 540 kd->arglen = PAGE_SIZE; 541 } 542 /* 543 * kd->argbuf : used to pull in pages from the target process. 544 * the strings are copied out of here. 545 */ 546 if (kd->argbuf == 0) { 547 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 548 if (kd->argbuf == 0) 549 return (0); 550 } 551 552 /* Pull in the target process'es argv vector */ 553 cc = sizeof(char *) * narg; 554 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 555 return (0); 556 /* 557 * ap : saved start address of string we're working on in kd->argspc 558 * np : pointer to next place to write in kd->argspc 559 * len: length of data in kd->argspc 560 * argv: pointer to the argv vector that we are hunting around the 561 * target process space for, and converting to addresses in 562 * our address space (kd->argspc). 563 */ 564 ap = np = kd->argspc; 565 argv = kd->argv; 566 len = 0; 567 /* 568 * Loop over pages, filling in the argument vector. 569 * Note that the argv strings could be pointing *anywhere* in 570 * the user address space and are no longer contiguous. 571 * Note that *argv is modified when we are going to fetch a string 572 * that crosses a page boundary. We copy the next part of the string 573 * into to "np" and eventually convert the pointer. 574 */ 575 while (argv < kd->argv + narg && *argv != 0) { 576 577 /* get the address that the current argv string is on */ 578 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 579 580 /* is it the same page as the last one? */ 581 if (addr != oaddr) { 582 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 583 PAGE_SIZE) 584 return (0); 585 oaddr = addr; 586 } 587 588 /* offset within the page... kd->argbuf */ 589 addr = (u_long)*argv & (PAGE_SIZE - 1); 590 591 /* cp = start of string, cc = count of chars in this chunk */ 592 cp = kd->argbuf + addr; 593 cc = PAGE_SIZE - addr; 594 595 /* dont get more than asked for by user process */ 596 if (maxcnt > 0 && cc > maxcnt - len) 597 cc = maxcnt - len; 598 599 /* pointer to end of string if we found it in this page */ 600 ep = memchr(cp, '\0', cc); 601 if (ep != 0) 602 cc = ep - cp + 1; 603 /* 604 * at this point, cc is the count of the chars that we are 605 * going to retrieve this time. we may or may not have found 606 * the end of it. (ep points to the null if the end is known) 607 */ 608 609 /* will we exceed the malloc/realloced buffer? */ 610 if (len + cc > kd->arglen) { 611 register int off; 612 register char **pp; 613 register char *op = kd->argspc; 614 615 kd->arglen *= 2; 616 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 617 kd->arglen); 618 if (kd->argspc == 0) 619 return (0); 620 /* 621 * Adjust argv pointers in case realloc moved 622 * the string space. 623 */ 624 off = kd->argspc - op; 625 for (pp = kd->argv; pp < argv; pp++) 626 *pp += off; 627 ap += off; 628 np += off; 629 } 630 /* np = where to put the next part of the string in kd->argspc*/ 631 /* np is kinda redundant.. could use "kd->argspc + len" */ 632 memcpy(np, cp, cc); 633 np += cc; /* inc counters */ 634 len += cc; 635 636 /* 637 * if end of string found, set the *argv pointer to the 638 * saved beginning of string, and advance. argv points to 639 * somewhere in kd->argv.. This is initially relative 640 * to the target process, but when we close it off, we set 641 * it to point in our address space. 642 */ 643 if (ep != 0) { 644 *argv++ = ap; 645 ap = np; 646 } else { 647 /* update the address relative to the target process */ 648 *argv += cc; 649 } 650 651 if (maxcnt > 0 && len >= maxcnt) { 652 /* 653 * We're stopping prematurely. Terminate the 654 * current string. 655 */ 656 if (ep == 0) { 657 *np = '\0'; 658 *argv++ = ap; 659 } 660 break; 661 } 662 } 663 /* Make sure argv is terminated. */ 664 *argv = 0; 665 return (kd->argv); 666 } 667 668 static void 669 ps_str_a(p, addr, n) 670 struct ps_strings *p; 671 u_long *addr; 672 int *n; 673 { 674 *addr = (u_long)p->ps_argvstr; 675 *n = p->ps_nargvstr; 676 } 677 678 static void 679 ps_str_e(p, addr, n) 680 struct ps_strings *p; 681 u_long *addr; 682 int *n; 683 { 684 *addr = (u_long)p->ps_envstr; 685 *n = p->ps_nenvstr; 686 } 687 688 /* 689 * Determine if the proc indicated by p is still active. 690 * This test is not 100% foolproof in theory, but chances of 691 * being wrong are very low. 692 */ 693 static int 694 proc_verify(curkp) 695 struct kinfo_proc *curkp; 696 { 697 struct kinfo_proc newkp; 698 int mib[4]; 699 size_t len; 700 701 mib[0] = CTL_KERN; 702 mib[1] = KERN_PROC; 703 mib[2] = KERN_PROC_PID; 704 mib[3] = curkp->ki_pid; 705 len = sizeof(newkp); 706 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 707 return (0); 708 return (curkp->ki_pid == newkp.ki_pid && 709 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 710 } 711 712 static char ** 713 kvm_doargv(kd, kp, nchr, info) 714 kvm_t *kd; 715 struct kinfo_proc *kp; 716 int nchr; 717 void (*info)(struct ps_strings *, u_long *, int *); 718 { 719 char **ap; 720 u_long addr; 721 int cnt; 722 static struct ps_strings arginfo; 723 static u_long ps_strings; 724 size_t len; 725 726 if (ps_strings == NULL) { 727 len = sizeof(ps_strings); 728 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 729 0) == -1) 730 ps_strings = PS_STRINGS; 731 } 732 733 /* 734 * Pointers are stored at the top of the user stack. 735 */ 736 if (kp->ki_stat == SZOMB || 737 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 738 sizeof(arginfo)) != sizeof(arginfo)) 739 return (0); 740 741 (*info)(&arginfo, &addr, &cnt); 742 if (cnt == 0) 743 return (0); 744 ap = kvm_argv(kd, kp, addr, cnt, nchr); 745 /* 746 * For live kernels, make sure this process didn't go away. 747 */ 748 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 749 ap = 0; 750 return (ap); 751 } 752 753 /* 754 * Get the command args. This code is now machine independent. 755 */ 756 char ** 757 kvm_getargv(kd, kp, nchr) 758 kvm_t *kd; 759 const struct kinfo_proc *kp; 760 int nchr; 761 { 762 int oid[4]; 763 int i; 764 size_t bufsz; 765 static unsigned long buflen; 766 static char *buf, *p; 767 static char **bufp; 768 static int argc; 769 770 if (!ISALIVE(kd)) { 771 _kvm_err(kd, kd->program, 772 "cannot read user space from dead kernel"); 773 return (0); 774 } 775 776 if (!buflen) { 777 bufsz = sizeof(buflen); 778 i = sysctlbyname("kern.ps_arg_cache_limit", 779 &buflen, &bufsz, NULL, 0); 780 if (i == -1) { 781 buflen = 0; 782 } else { 783 buf = malloc(buflen); 784 if (buf == NULL) 785 buflen = 0; 786 argc = 32; 787 bufp = malloc(sizeof(char *) * argc); 788 } 789 } 790 if (buf != NULL) { 791 oid[0] = CTL_KERN; 792 oid[1] = KERN_PROC; 793 oid[2] = KERN_PROC_ARGS; 794 oid[3] = kp->ki_pid; 795 bufsz = buflen; 796 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 797 if (i == 0 && bufsz > 0) { 798 i = 0; 799 p = buf; 800 do { 801 bufp[i++] = p; 802 p += strlen(p) + 1; 803 if (i >= argc) { 804 argc += argc; 805 bufp = realloc(bufp, 806 sizeof(char *) * argc); 807 } 808 } while (p < buf + bufsz); 809 bufp[i++] = 0; 810 return (bufp); 811 } 812 } 813 if (kp->ki_flag & P_SYSTEM) 814 return (NULL); 815 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 816 } 817 818 char ** 819 kvm_getenvv(kd, kp, nchr) 820 kvm_t *kd; 821 const struct kinfo_proc *kp; 822 int nchr; 823 { 824 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 825 } 826 827 /* 828 * Read from user space. The user context is given by p. 829 */ 830 ssize_t 831 kvm_uread(kd, kp, uva, buf, len) 832 kvm_t *kd; 833 struct kinfo_proc *kp; 834 register u_long uva; 835 register char *buf; 836 register size_t len; 837 { 838 register char *cp; 839 char procfile[MAXPATHLEN]; 840 ssize_t amount; 841 int fd; 842 843 if (!ISALIVE(kd)) { 844 _kvm_err(kd, kd->program, 845 "cannot read user space from dead kernel"); 846 return (0); 847 } 848 849 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 850 fd = open(procfile, O_RDONLY, 0); 851 if (fd < 0) { 852 _kvm_err(kd, kd->program, "cannot open %s", procfile); 853 close(fd); 854 return (0); 855 } 856 857 cp = buf; 858 while (len > 0) { 859 errno = 0; 860 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 861 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 862 uva, procfile); 863 break; 864 } 865 amount = read(fd, cp, len); 866 if (amount < 0) { 867 _kvm_syserr(kd, kd->program, "error reading %s", 868 procfile); 869 break; 870 } 871 if (amount == 0) { 872 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 873 break; 874 } 875 cp += amount; 876 uva += amount; 877 len -= amount; 878 } 879 880 close(fd); 881 return ((ssize_t)(cp - buf)); 882 } 883