1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #if 0 35 #if defined(LIBC_SCCS) && !defined(lint) 36 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 37 #endif /* LIBC_SCCS and not lint */ 38 #endif 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 /* 44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 45 * users of this code, so we've factored it out into a separate module. 46 * Thus, we keep this grunge out of the other kvm applications (i.e., 47 * most other applications are interested only in open/close/read/nlist). 48 */ 49 50 #include <sys/param.h> 51 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 52 #include <sys/ucred.h> 53 #include <sys/queue.h> 54 #include <sys/_lock.h> 55 #include <sys/_mutex.h> 56 #include <sys/_task.h> 57 #include <sys/cpuset.h> 58 #include <sys/user.h> 59 #include <sys/proc.h> 60 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 61 #include <sys/jail.h> 62 #include <sys/exec.h> 63 #include <sys/stat.h> 64 #include <sys/sysent.h> 65 #include <sys/ioctl.h> 66 #include <sys/tty.h> 67 #include <sys/file.h> 68 #include <sys/conf.h> 69 #include <stdio.h> 70 #include <stdlib.h> 71 #include <unistd.h> 72 #include <nlist.h> 73 #include <kvm.h> 74 75 #include <vm/vm.h> 76 #include <vm/vm_param.h> 77 78 #include <sys/sysctl.h> 79 80 #include <limits.h> 81 #include <memory.h> 82 #include <paths.h> 83 84 #include "kvm_private.h" 85 86 #define KREAD(kd, addr, obj) \ 87 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 88 89 static int ticks; 90 static int hz; 91 static uint64_t cpu_tick_frequency; 92 93 /* 94 * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is 95 * read/initialized before this function is ever called. 96 */ 97 static uint64_t 98 cputick2usec(uint64_t tick) 99 { 100 101 if (cpu_tick_frequency == 0) 102 return (0); 103 if (tick > 18446744073709551) /* floor(2^64 / 1000) */ 104 return (tick / (cpu_tick_frequency / 1000000)); 105 else if (tick > 18446744073709) /* floor(2^64 / 1000000) */ 106 return ((tick * 1000) / (cpu_tick_frequency / 1000)); 107 else 108 return ((tick * 1000000) / cpu_tick_frequency); 109 } 110 111 /* 112 * Read proc's from memory file into buffer bp, which has space to hold 113 * at most maxcnt procs. 114 */ 115 static int 116 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p, 117 struct kinfo_proc *bp, int maxcnt) 118 { 119 int cnt = 0; 120 struct kinfo_proc kinfo_proc, *kp; 121 struct pgrp pgrp; 122 struct session sess; 123 struct cdev t_cdev; 124 struct tty tty; 125 struct vmspace vmspace; 126 struct sigacts sigacts; 127 #if 0 128 struct pstats pstats; 129 #endif 130 struct ucred ucred; 131 struct prison pr; 132 struct thread mtd; 133 struct proc proc; 134 struct proc pproc; 135 struct sysentvec sysent; 136 char svname[KI_EMULNAMELEN]; 137 138 kp = &kinfo_proc; 139 kp->ki_structsize = sizeof(kinfo_proc); 140 /* 141 * Loop on the processes. this is completely broken because we need to be 142 * able to loop on the threads and merge the ones that are the same process some how. 143 */ 144 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 145 memset(kp, 0, sizeof *kp); 146 if (KREAD(kd, (u_long)p, &proc)) { 147 _kvm_err(kd, kd->program, "can't read proc at %p", p); 148 return (-1); 149 } 150 if (proc.p_state != PRS_ZOMBIE) { 151 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 152 &mtd)) { 153 _kvm_err(kd, kd->program, 154 "can't read thread at %p", 155 TAILQ_FIRST(&proc.p_threads)); 156 return (-1); 157 } 158 } 159 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 160 kp->ki_ruid = ucred.cr_ruid; 161 kp->ki_svuid = ucred.cr_svuid; 162 kp->ki_rgid = ucred.cr_rgid; 163 kp->ki_svgid = ucred.cr_svgid; 164 kp->ki_cr_flags = ucred.cr_flags; 165 if (ucred.cr_ngroups > KI_NGROUPS) { 166 kp->ki_ngroups = KI_NGROUPS; 167 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 168 } else 169 kp->ki_ngroups = ucred.cr_ngroups; 170 kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups, 171 kp->ki_ngroups * sizeof(gid_t)); 172 kp->ki_uid = ucred.cr_uid; 173 if (ucred.cr_prison != NULL) { 174 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 175 _kvm_err(kd, kd->program, 176 "can't read prison at %p", 177 ucred.cr_prison); 178 return (-1); 179 } 180 kp->ki_jid = pr.pr_id; 181 } 182 } 183 184 switch(what & ~KERN_PROC_INC_THREAD) { 185 186 case KERN_PROC_GID: 187 if (kp->ki_groups[0] != (gid_t)arg) 188 continue; 189 break; 190 191 case KERN_PROC_PID: 192 if (proc.p_pid != (pid_t)arg) 193 continue; 194 break; 195 196 case KERN_PROC_RGID: 197 if (kp->ki_rgid != (gid_t)arg) 198 continue; 199 break; 200 201 case KERN_PROC_UID: 202 if (kp->ki_uid != (uid_t)arg) 203 continue; 204 break; 205 206 case KERN_PROC_RUID: 207 if (kp->ki_ruid != (uid_t)arg) 208 continue; 209 break; 210 } 211 /* 212 * We're going to add another proc to the set. If this 213 * will overflow the buffer, assume the reason is because 214 * nprocs (or the proc list) is corrupt and declare an error. 215 */ 216 if (cnt >= maxcnt) { 217 _kvm_err(kd, kd->program, "nprocs corrupt"); 218 return (-1); 219 } 220 /* 221 * gather kinfo_proc 222 */ 223 kp->ki_paddr = p; 224 kp->ki_addr = 0; /* XXX uarea */ 225 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 226 kp->ki_args = proc.p_args; 227 kp->ki_tracep = proc.p_tracevp; 228 kp->ki_textvp = proc.p_textvp; 229 kp->ki_fd = proc.p_fd; 230 kp->ki_vmspace = proc.p_vmspace; 231 if (proc.p_sigacts != NULL) { 232 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 233 _kvm_err(kd, kd->program, 234 "can't read sigacts at %p", proc.p_sigacts); 235 return (-1); 236 } 237 kp->ki_sigignore = sigacts.ps_sigignore; 238 kp->ki_sigcatch = sigacts.ps_sigcatch; 239 } 240 #if 0 241 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 242 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 243 _kvm_err(kd, kd->program, 244 "can't read stats at %x", proc.p_stats); 245 return (-1); 246 } 247 kp->ki_start = pstats.p_start; 248 249 /* 250 * XXX: The times here are probably zero and need 251 * to be calculated from the raw data in p_rux and 252 * p_crux. 253 */ 254 kp->ki_rusage = pstats.p_ru; 255 kp->ki_childstime = pstats.p_cru.ru_stime; 256 kp->ki_childutime = pstats.p_cru.ru_utime; 257 /* Some callers want child-times in a single value */ 258 timeradd(&kp->ki_childstime, &kp->ki_childutime, 259 &kp->ki_childtime); 260 } 261 #endif 262 if (proc.p_oppid) 263 kp->ki_ppid = proc.p_oppid; 264 else if (proc.p_pptr) { 265 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 266 _kvm_err(kd, kd->program, 267 "can't read pproc at %p", proc.p_pptr); 268 return (-1); 269 } 270 kp->ki_ppid = pproc.p_pid; 271 } else 272 kp->ki_ppid = 0; 273 if (proc.p_pgrp == NULL) 274 goto nopgrp; 275 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 276 _kvm_err(kd, kd->program, "can't read pgrp at %p", 277 proc.p_pgrp); 278 return (-1); 279 } 280 kp->ki_pgid = pgrp.pg_id; 281 kp->ki_jobc = pgrp.pg_jobc; 282 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 283 _kvm_err(kd, kd->program, "can't read session at %p", 284 pgrp.pg_session); 285 return (-1); 286 } 287 kp->ki_sid = sess.s_sid; 288 (void)memcpy(kp->ki_login, sess.s_login, 289 sizeof(kp->ki_login)); 290 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 291 if (sess.s_leader == p) 292 kp->ki_kiflag |= KI_SLEADER; 293 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 294 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 295 _kvm_err(kd, kd->program, 296 "can't read tty at %p", sess.s_ttyp); 297 return (-1); 298 } 299 if (tty.t_dev != NULL) { 300 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 301 _kvm_err(kd, kd->program, 302 "can't read cdev at %p", 303 tty.t_dev); 304 return (-1); 305 } 306 #if 0 307 kp->ki_tdev = t_cdev.si_udev; 308 #else 309 kp->ki_tdev = NODEV; 310 #endif 311 } 312 if (tty.t_pgrp != NULL) { 313 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 314 _kvm_err(kd, kd->program, 315 "can't read tpgrp at %p", 316 tty.t_pgrp); 317 return (-1); 318 } 319 kp->ki_tpgid = pgrp.pg_id; 320 } else 321 kp->ki_tpgid = -1; 322 if (tty.t_session != NULL) { 323 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 324 _kvm_err(kd, kd->program, 325 "can't read session at %p", 326 tty.t_session); 327 return (-1); 328 } 329 kp->ki_tsid = sess.s_sid; 330 } 331 } else { 332 nopgrp: 333 kp->ki_tdev = NODEV; 334 } 335 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 336 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 337 kp->ki_wmesg, WMESGLEN); 338 339 (void)kvm_read(kd, (u_long)proc.p_vmspace, 340 (char *)&vmspace, sizeof(vmspace)); 341 kp->ki_size = vmspace.vm_map.size; 342 /* 343 * Approximate the kernel's method of calculating 344 * this field. 345 */ 346 #define pmap_resident_count(pm) ((pm)->pm_stats.resident_count) 347 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); 348 kp->ki_swrss = vmspace.vm_swrss; 349 kp->ki_tsize = vmspace.vm_tsize; 350 kp->ki_dsize = vmspace.vm_dsize; 351 kp->ki_ssize = vmspace.vm_ssize; 352 353 switch (what & ~KERN_PROC_INC_THREAD) { 354 355 case KERN_PROC_PGRP: 356 if (kp->ki_pgid != (pid_t)arg) 357 continue; 358 break; 359 360 case KERN_PROC_SESSION: 361 if (kp->ki_sid != (pid_t)arg) 362 continue; 363 break; 364 365 case KERN_PROC_TTY: 366 if ((proc.p_flag & P_CONTROLT) == 0 || 367 kp->ki_tdev != (dev_t)arg) 368 continue; 369 break; 370 } 371 if (proc.p_comm[0] != 0) 372 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 373 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 374 sizeof(sysent)); 375 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 376 sizeof(svname)); 377 if (svname[0] != 0) 378 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 379 if ((proc.p_state != PRS_ZOMBIE) && 380 (mtd.td_blocked != 0)) { 381 kp->ki_kiflag |= KI_LOCKBLOCK; 382 if (mtd.td_lockname) 383 (void)kvm_read(kd, 384 (u_long)mtd.td_lockname, 385 kp->ki_lockname, LOCKNAMELEN); 386 kp->ki_lockname[LOCKNAMELEN] = 0; 387 } 388 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime); 389 kp->ki_pid = proc.p_pid; 390 kp->ki_siglist = proc.p_siglist; 391 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 392 kp->ki_sigmask = mtd.td_sigmask; 393 kp->ki_xstat = proc.p_xstat; 394 kp->ki_acflag = proc.p_acflag; 395 kp->ki_lock = proc.p_lock; 396 if (proc.p_state != PRS_ZOMBIE) { 397 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 398 kp->ki_flag = proc.p_flag; 399 kp->ki_sflag = 0; 400 kp->ki_nice = proc.p_nice; 401 kp->ki_traceflag = proc.p_traceflag; 402 if (proc.p_state == PRS_NORMAL) { 403 if (TD_ON_RUNQ(&mtd) || 404 TD_CAN_RUN(&mtd) || 405 TD_IS_RUNNING(&mtd)) { 406 kp->ki_stat = SRUN; 407 } else if (mtd.td_state == 408 TDS_INHIBITED) { 409 if (P_SHOULDSTOP(&proc)) { 410 kp->ki_stat = SSTOP; 411 } else if ( 412 TD_IS_SLEEPING(&mtd)) { 413 kp->ki_stat = SSLEEP; 414 } else if (TD_ON_LOCK(&mtd)) { 415 kp->ki_stat = SLOCK; 416 } else { 417 kp->ki_stat = SWAIT; 418 } 419 } 420 } else { 421 kp->ki_stat = SIDL; 422 } 423 /* Stuff from the thread */ 424 kp->ki_pri.pri_level = mtd.td_priority; 425 kp->ki_pri.pri_native = mtd.td_base_pri; 426 kp->ki_lastcpu = mtd.td_lastcpu; 427 kp->ki_wchan = mtd.td_wchan; 428 if (mtd.td_name[0] != 0) 429 strlcpy(kp->ki_ocomm, mtd.td_name, MAXCOMLEN); 430 kp->ki_oncpu = mtd.td_oncpu; 431 if (mtd.td_name[0] != '\0') 432 strlcpy(kp->ki_ocomm, mtd.td_name, sizeof(kp->ki_ocomm)); 433 kp->ki_pctcpu = 0; 434 kp->ki_rqindex = 0; 435 } else { 436 kp->ki_stat = SZOMB; 437 } 438 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 439 ++bp; 440 ++cnt; 441 } 442 return (cnt); 443 } 444 445 /* 446 * Build proc info array by reading in proc list from a crash dump. 447 * Return number of procs read. maxcnt is the max we will read. 448 */ 449 static int 450 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc, 451 u_long a_zombproc, int maxcnt) 452 { 453 struct kinfo_proc *bp = kd->procbase; 454 int acnt, zcnt; 455 struct proc *p; 456 457 if (KREAD(kd, a_allproc, &p)) { 458 _kvm_err(kd, kd->program, "cannot read allproc"); 459 return (-1); 460 } 461 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 462 if (acnt < 0) 463 return (acnt); 464 465 if (KREAD(kd, a_zombproc, &p)) { 466 _kvm_err(kd, kd->program, "cannot read zombproc"); 467 return (-1); 468 } 469 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 470 if (zcnt < 0) 471 zcnt = 0; 472 473 return (acnt + zcnt); 474 } 475 476 struct kinfo_proc * 477 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt) 478 { 479 int mib[4], st, nprocs; 480 size_t size; 481 int temp_op; 482 483 if (kd->procbase != 0) { 484 free((void *)kd->procbase); 485 /* 486 * Clear this pointer in case this call fails. Otherwise, 487 * kvm_close() will free it again. 488 */ 489 kd->procbase = 0; 490 } 491 if (ISALIVE(kd)) { 492 size = 0; 493 mib[0] = CTL_KERN; 494 mib[1] = KERN_PROC; 495 mib[2] = op; 496 mib[3] = arg; 497 temp_op = op & ~KERN_PROC_INC_THREAD; 498 st = sysctl(mib, 499 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 500 3 : 4, NULL, &size, NULL, 0); 501 if (st == -1) { 502 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 503 return (0); 504 } 505 /* 506 * We can't continue with a size of 0 because we pass 507 * it to realloc() (via _kvm_realloc()), and passing 0 508 * to realloc() results in undefined behavior. 509 */ 510 if (size == 0) { 511 /* 512 * XXX: We should probably return an invalid, 513 * but non-NULL, pointer here so any client 514 * program trying to dereference it will 515 * crash. However, _kvm_freeprocs() calls 516 * free() on kd->procbase if it isn't NULL, 517 * and free()'ing a junk pointer isn't good. 518 * Then again, _kvm_freeprocs() isn't used 519 * anywhere . . . 520 */ 521 kd->procbase = _kvm_malloc(kd, 1); 522 goto liveout; 523 } 524 do { 525 size += size / 10; 526 kd->procbase = (struct kinfo_proc *) 527 _kvm_realloc(kd, kd->procbase, size); 528 if (kd->procbase == 0) 529 return (0); 530 st = sysctl(mib, temp_op == KERN_PROC_ALL || 531 temp_op == KERN_PROC_PROC ? 3 : 4, 532 kd->procbase, &size, NULL, 0); 533 } while (st == -1 && errno == ENOMEM); 534 if (st == -1) { 535 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 536 return (0); 537 } 538 /* 539 * We have to check the size again because sysctl() 540 * may "round up" oldlenp if oldp is NULL; hence it 541 * might've told us that there was data to get when 542 * there really isn't any. 543 */ 544 if (size > 0 && 545 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 546 _kvm_err(kd, kd->program, 547 "kinfo_proc size mismatch (expected %zu, got %d)", 548 sizeof(struct kinfo_proc), 549 kd->procbase->ki_structsize); 550 return (0); 551 } 552 liveout: 553 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 554 } else { 555 struct nlist nl[7], *p; 556 557 nl[0].n_name = "_nprocs"; 558 nl[1].n_name = "_allproc"; 559 nl[2].n_name = "_zombproc"; 560 nl[3].n_name = "_ticks"; 561 nl[4].n_name = "_hz"; 562 nl[5].n_name = "_cpu_tick_frequency"; 563 nl[6].n_name = 0; 564 565 if (kvm_nlist(kd, nl) != 0) { 566 for (p = nl; p->n_type != 0; ++p) 567 ; 568 _kvm_err(kd, kd->program, 569 "%s: no such symbol", p->n_name); 570 return (0); 571 } 572 if (KREAD(kd, nl[0].n_value, &nprocs)) { 573 _kvm_err(kd, kd->program, "can't read nprocs"); 574 return (0); 575 } 576 if (KREAD(kd, nl[3].n_value, &ticks)) { 577 _kvm_err(kd, kd->program, "can't read ticks"); 578 return (0); 579 } 580 if (KREAD(kd, nl[4].n_value, &hz)) { 581 _kvm_err(kd, kd->program, "can't read hz"); 582 return (0); 583 } 584 if (KREAD(kd, nl[5].n_value, &cpu_tick_frequency)) { 585 _kvm_err(kd, kd->program, 586 "can't read cpu_tick_frequency"); 587 return (0); 588 } 589 size = nprocs * sizeof(struct kinfo_proc); 590 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 591 if (kd->procbase == 0) 592 return (0); 593 594 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 595 nl[2].n_value, nprocs); 596 #ifdef notdef 597 size = nprocs * sizeof(struct kinfo_proc); 598 (void)realloc(kd->procbase, size); 599 #endif 600 } 601 *cnt = nprocs; 602 return (kd->procbase); 603 } 604 605 void 606 _kvm_freeprocs(kvm_t *kd) 607 { 608 if (kd->procbase) { 609 free(kd->procbase); 610 kd->procbase = 0; 611 } 612 } 613 614 void * 615 _kvm_realloc(kvm_t *kd, void *p, size_t n) 616 { 617 void *np = (void *)realloc(p, n); 618 619 if (np == 0) { 620 free(p); 621 _kvm_err(kd, kd->program, "out of memory"); 622 } 623 return (np); 624 } 625 626 #ifndef MAX 627 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 628 #endif 629 630 /* 631 * Read in an argument vector from the user address space of process kp. 632 * addr if the user-space base address of narg null-terminated contiguous 633 * strings. This is used to read in both the command arguments and 634 * environment strings. Read at most maxcnt characters of strings. 635 */ 636 static char ** 637 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, u_long addr, int narg, 638 int maxcnt) 639 { 640 char *np, *cp, *ep, *ap; 641 u_long oaddr = -1; 642 int len, cc; 643 char **argv; 644 645 /* 646 * Check that there aren't an unreasonable number of arguments, 647 * and that the address is in user space. Special test for 648 * VM_MIN_ADDRESS as it evaluates to zero, but is not a simple zero 649 * constant for some archs. We cannot use the pre-processor here and 650 * for some archs the compiler would trigger a signedness warning. 651 */ 652 if (narg > 512 || addr + 1 < VM_MIN_ADDRESS + 1 || addr >= VM_MAXUSER_ADDRESS) 653 return (0); 654 655 /* 656 * kd->argv : work space for fetching the strings from the target 657 * process's space, and is converted for returning to caller 658 */ 659 if (kd->argv == 0) { 660 /* 661 * Try to avoid reallocs. 662 */ 663 kd->argc = MAX(narg + 1, 32); 664 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 665 sizeof(*kd->argv)); 666 if (kd->argv == 0) 667 return (0); 668 } else if (narg + 1 > kd->argc) { 669 kd->argc = MAX(2 * kd->argc, narg + 1); 670 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 671 sizeof(*kd->argv)); 672 if (kd->argv == 0) 673 return (0); 674 } 675 /* 676 * kd->argspc : returned to user, this is where the kd->argv 677 * arrays are left pointing to the collected strings. 678 */ 679 if (kd->argspc == 0) { 680 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 681 if (kd->argspc == 0) 682 return (0); 683 kd->arglen = PAGE_SIZE; 684 } 685 /* 686 * kd->argbuf : used to pull in pages from the target process. 687 * the strings are copied out of here. 688 */ 689 if (kd->argbuf == 0) { 690 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 691 if (kd->argbuf == 0) 692 return (0); 693 } 694 695 /* Pull in the target process'es argv vector */ 696 cc = sizeof(char *) * narg; 697 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 698 return (0); 699 /* 700 * ap : saved start address of string we're working on in kd->argspc 701 * np : pointer to next place to write in kd->argspc 702 * len: length of data in kd->argspc 703 * argv: pointer to the argv vector that we are hunting around the 704 * target process space for, and converting to addresses in 705 * our address space (kd->argspc). 706 */ 707 ap = np = kd->argspc; 708 argv = kd->argv; 709 len = 0; 710 /* 711 * Loop over pages, filling in the argument vector. 712 * Note that the argv strings could be pointing *anywhere* in 713 * the user address space and are no longer contiguous. 714 * Note that *argv is modified when we are going to fetch a string 715 * that crosses a page boundary. We copy the next part of the string 716 * into to "np" and eventually convert the pointer. 717 */ 718 while (argv < kd->argv + narg && *argv != 0) { 719 720 /* get the address that the current argv string is on */ 721 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 722 723 /* is it the same page as the last one? */ 724 if (addr != oaddr) { 725 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 726 PAGE_SIZE) 727 return (0); 728 oaddr = addr; 729 } 730 731 /* offset within the page... kd->argbuf */ 732 addr = (u_long)*argv & (PAGE_SIZE - 1); 733 734 /* cp = start of string, cc = count of chars in this chunk */ 735 cp = kd->argbuf + addr; 736 cc = PAGE_SIZE - addr; 737 738 /* dont get more than asked for by user process */ 739 if (maxcnt > 0 && cc > maxcnt - len) 740 cc = maxcnt - len; 741 742 /* pointer to end of string if we found it in this page */ 743 ep = memchr(cp, '\0', cc); 744 if (ep != 0) 745 cc = ep - cp + 1; 746 /* 747 * at this point, cc is the count of the chars that we are 748 * going to retrieve this time. we may or may not have found 749 * the end of it. (ep points to the null if the end is known) 750 */ 751 752 /* will we exceed the malloc/realloced buffer? */ 753 if (len + cc > kd->arglen) { 754 int off; 755 char **pp; 756 char *op = kd->argspc; 757 758 kd->arglen *= 2; 759 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 760 kd->arglen); 761 if (kd->argspc == 0) 762 return (0); 763 /* 764 * Adjust argv pointers in case realloc moved 765 * the string space. 766 */ 767 off = kd->argspc - op; 768 for (pp = kd->argv; pp < argv; pp++) 769 *pp += off; 770 ap += off; 771 np += off; 772 } 773 /* np = where to put the next part of the string in kd->argspc*/ 774 /* np is kinda redundant.. could use "kd->argspc + len" */ 775 memcpy(np, cp, cc); 776 np += cc; /* inc counters */ 777 len += cc; 778 779 /* 780 * if end of string found, set the *argv pointer to the 781 * saved beginning of string, and advance. argv points to 782 * somewhere in kd->argv.. This is initially relative 783 * to the target process, but when we close it off, we set 784 * it to point in our address space. 785 */ 786 if (ep != 0) { 787 *argv++ = ap; 788 ap = np; 789 } else { 790 /* update the address relative to the target process */ 791 *argv += cc; 792 } 793 794 if (maxcnt > 0 && len >= maxcnt) { 795 /* 796 * We're stopping prematurely. Terminate the 797 * current string. 798 */ 799 if (ep == 0) { 800 *np = '\0'; 801 *argv++ = ap; 802 } 803 break; 804 } 805 } 806 /* Make sure argv is terminated. */ 807 *argv = 0; 808 return (kd->argv); 809 } 810 811 static void 812 ps_str_a(struct ps_strings *p, u_long *addr, int *n) 813 { 814 *addr = (u_long)p->ps_argvstr; 815 *n = p->ps_nargvstr; 816 } 817 818 static void 819 ps_str_e (struct ps_strings *p, u_long *addr, int *n) 820 { 821 *addr = (u_long)p->ps_envstr; 822 *n = p->ps_nenvstr; 823 } 824 825 /* 826 * Determine if the proc indicated by p is still active. 827 * This test is not 100% foolproof in theory, but chances of 828 * being wrong are very low. 829 */ 830 static int 831 proc_verify(const struct kinfo_proc *curkp) 832 { 833 struct kinfo_proc newkp; 834 int mib[4]; 835 size_t len; 836 837 mib[0] = CTL_KERN; 838 mib[1] = KERN_PROC; 839 mib[2] = KERN_PROC_PID; 840 mib[3] = curkp->ki_pid; 841 len = sizeof(newkp); 842 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 843 return (0); 844 return (curkp->ki_pid == newkp.ki_pid && 845 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 846 } 847 848 static char ** 849 kvm_doargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr, 850 void (*info)(struct ps_strings *, u_long *, int *)) 851 { 852 char **ap; 853 u_long addr; 854 int cnt; 855 static struct ps_strings arginfo; 856 static u_long ps_strings; 857 size_t len; 858 859 if (ps_strings == 0) { 860 len = sizeof(ps_strings); 861 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 862 0) == -1) 863 ps_strings = PS_STRINGS; 864 } 865 866 /* 867 * Pointers are stored at the top of the user stack. 868 */ 869 if (kp->ki_stat == SZOMB || 870 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 871 sizeof(arginfo)) != sizeof(arginfo)) 872 return (0); 873 874 (*info)(&arginfo, &addr, &cnt); 875 if (cnt == 0) 876 return (0); 877 ap = kvm_argv(kd, kp, addr, cnt, nchr); 878 /* 879 * For live kernels, make sure this process didn't go away. 880 */ 881 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 882 ap = 0; 883 return (ap); 884 } 885 886 /* 887 * Get the command args. This code is now machine independent. 888 */ 889 char ** 890 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 891 { 892 int oid[4]; 893 int i; 894 size_t bufsz; 895 static unsigned long buflen; 896 static char *buf, *p; 897 static char **bufp; 898 static int argc; 899 900 if (!ISALIVE(kd)) { 901 _kvm_err(kd, kd->program, 902 "cannot read user space from dead kernel"); 903 return (0); 904 } 905 906 if (!buflen) { 907 bufsz = sizeof(buflen); 908 i = sysctlbyname("kern.ps_arg_cache_limit", 909 &buflen, &bufsz, NULL, 0); 910 if (i == -1) { 911 buflen = 0; 912 } else { 913 buf = malloc(buflen); 914 if (buf == NULL) 915 buflen = 0; 916 argc = 32; 917 bufp = malloc(sizeof(char *) * argc); 918 } 919 } 920 if (buf != NULL) { 921 oid[0] = CTL_KERN; 922 oid[1] = KERN_PROC; 923 oid[2] = KERN_PROC_ARGS; 924 oid[3] = kp->ki_pid; 925 bufsz = buflen; 926 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 927 if (i == 0 && bufsz > 0) { 928 i = 0; 929 p = buf; 930 do { 931 bufp[i++] = p; 932 p += strlen(p) + 1; 933 if (i >= argc) { 934 argc += argc; 935 bufp = realloc(bufp, 936 sizeof(char *) * argc); 937 } 938 } while (p < buf + bufsz); 939 bufp[i++] = 0; 940 return (bufp); 941 } 942 } 943 if (kp->ki_flag & P_SYSTEM) 944 return (NULL); 945 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 946 } 947 948 char ** 949 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr) 950 { 951 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 952 } 953 954 /* 955 * Read from user space. The user context is given by p. 956 */ 957 ssize_t 958 kvm_uread(kvm_t *kd, const struct kinfo_proc *kp, u_long uva, char *buf, 959 size_t len) 960 { 961 char *cp; 962 char procfile[MAXPATHLEN]; 963 ssize_t amount; 964 int fd; 965 966 if (!ISALIVE(kd)) { 967 _kvm_err(kd, kd->program, 968 "cannot read user space from dead kernel"); 969 return (0); 970 } 971 972 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 973 fd = open(procfile, O_RDONLY, 0); 974 if (fd < 0) { 975 _kvm_err(kd, kd->program, "cannot open %s", procfile); 976 return (0); 977 } 978 979 cp = buf; 980 while (len > 0) { 981 errno = 0; 982 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 983 _kvm_err(kd, kd->program, "invalid address (%lx) in %s", 984 uva, procfile); 985 break; 986 } 987 amount = read(fd, cp, len); 988 if (amount < 0) { 989 _kvm_syserr(kd, kd->program, "error reading %s", 990 procfile); 991 break; 992 } 993 if (amount == 0) { 994 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 995 break; 996 } 997 cp += amount; 998 uva += amount; 999 len -= amount; 1000 } 1001 1002 close(fd); 1003 return ((ssize_t)(cp - buf)); 1004 } 1005