1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if 0 39 #if defined(LIBC_SCCS) && !defined(lint) 40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 41 #endif /* LIBC_SCCS and not lint */ 42 #endif 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 56 #include <sys/ucred.h> 57 #include <sys/user.h> 58 #include <sys/proc.h> 59 #include <sys/exec.h> 60 #include <sys/stat.h> 61 #include <sys/ioctl.h> 62 #include <sys/tty.h> 63 #include <sys/file.h> 64 #include <stdio.h> 65 #include <stdlib.h> 66 #include <unistd.h> 67 #include <nlist.h> 68 #include <kvm.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_param.h> 72 #include <vm/swap_pager.h> 73 74 #include <sys/sysctl.h> 75 76 #include <limits.h> 77 #include <memory.h> 78 #include <paths.h> 79 80 #include "kvm_private.h" 81 82 #define KREAD(kd, addr, obj) \ 83 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 84 85 /* 86 * Read proc's from memory file into buffer bp, which has space to hold 87 * at most maxcnt procs. 88 */ 89 static int 90 kvm_proclist(kd, what, arg, p, bp, maxcnt) 91 kvm_t *kd; 92 int what, arg; 93 struct proc *p; 94 struct kinfo_proc *bp; 95 int maxcnt; 96 { 97 int cnt = 0; 98 struct kinfo_proc kinfo_proc, *kp; 99 struct pgrp pgrp; 100 struct session sess; 101 struct tty tty; 102 struct vmspace vmspace; 103 struct procsig procsig; 104 struct pstats pstats; 105 struct ucred ucred; 106 struct thread mtd; 107 struct kse mke; 108 struct ksegrp mkg; 109 struct proc proc; 110 struct proc pproc; 111 struct timeval tv; 112 113 kp = &kinfo_proc; 114 kp->ki_structsize = sizeof(kinfo_proc); 115 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 116 memset(kp, 0, sizeof *kp); 117 if (KREAD(kd, (u_long)p, &proc)) { 118 _kvm_err(kd, kd->program, "can't read proc at %x", p); 119 return (-1); 120 } 121 if (proc.p_state != PRS_ZOMBIE) { 122 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 123 &mtd)) { 124 _kvm_err(kd, kd->program, 125 "can't read thread at %x", 126 TAILQ_FIRST(&proc.p_threads)); 127 return (-1); 128 } 129 if (proc.p_flag & P_THREADED == 0) { 130 if (KREAD(kd, 131 (u_long)TAILQ_FIRST(&proc.p_ksegrps), 132 &mkg)) { 133 _kvm_err(kd, kd->program, 134 "can't read ksegrp at %x", 135 TAILQ_FIRST(&proc.p_ksegrps)); 136 return (-1); 137 } 138 if (KREAD(kd, 139 (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) { 140 _kvm_err(kd, kd->program, 141 "can't read kse at %x", 142 TAILQ_FIRST(&mkg.kg_kseq)); 143 return (-1); 144 } 145 } 146 } 147 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 148 kp->ki_ruid = ucred.cr_ruid; 149 kp->ki_svuid = ucred.cr_svuid; 150 kp->ki_rgid = ucred.cr_rgid; 151 kp->ki_svgid = ucred.cr_svgid; 152 kp->ki_ngroups = ucred.cr_ngroups; 153 bcopy(ucred.cr_groups, kp->ki_groups, 154 NGROUPS * sizeof(gid_t)); 155 kp->ki_uid = ucred.cr_uid; 156 } 157 158 switch(what) { 159 160 case KERN_PROC_PID: 161 if (proc.p_pid != (pid_t)arg) 162 continue; 163 break; 164 165 case KERN_PROC_UID: 166 if (kp->ki_uid != (uid_t)arg) 167 continue; 168 break; 169 170 case KERN_PROC_RUID: 171 if (kp->ki_ruid != (uid_t)arg) 172 continue; 173 break; 174 } 175 /* 176 * We're going to add another proc to the set. If this 177 * will overflow the buffer, assume the reason is because 178 * nprocs (or the proc list) is corrupt and declare an error. 179 */ 180 if (cnt >= maxcnt) { 181 _kvm_err(kd, kd->program, "nprocs corrupt"); 182 return (-1); 183 } 184 /* 185 * gather kinfo_proc 186 */ 187 kp->ki_paddr = p; 188 kp->ki_addr = proc.p_uarea; 189 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 190 kp->ki_args = proc.p_args; 191 kp->ki_tracep = proc.p_tracevp; 192 kp->ki_textvp = proc.p_textvp; 193 kp->ki_fd = proc.p_fd; 194 kp->ki_vmspace = proc.p_vmspace; 195 if (proc.p_procsig != NULL) { 196 if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) { 197 _kvm_err(kd, kd->program, 198 "can't read procsig at %x", proc.p_procsig); 199 return (-1); 200 } 201 kp->ki_sigignore = procsig.ps_sigignore; 202 kp->ki_sigcatch = procsig.ps_sigcatch; 203 } 204 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 205 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 206 _kvm_err(kd, kd->program, 207 "can't read stats at %x", proc.p_stats); 208 return (-1); 209 } 210 kp->ki_start = pstats.p_start; 211 kp->ki_rusage = pstats.p_ru; 212 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + 213 pstats.p_cru.ru_stime.tv_sec; 214 kp->ki_childtime.tv_usec = 215 pstats.p_cru.ru_utime.tv_usec + 216 pstats.p_cru.ru_stime.tv_usec; 217 } 218 if (proc.p_oppid) 219 kp->ki_ppid = proc.p_oppid; 220 else if (proc.p_pptr) { 221 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 222 _kvm_err(kd, kd->program, 223 "can't read pproc at %x", proc.p_pptr); 224 return (-1); 225 } 226 kp->ki_ppid = pproc.p_pid; 227 } else 228 kp->ki_ppid = 0; 229 if (proc.p_pgrp == NULL) 230 goto nopgrp; 231 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 232 _kvm_err(kd, kd->program, "can't read pgrp at %x", 233 proc.p_pgrp); 234 return (-1); 235 } 236 kp->ki_pgid = pgrp.pg_id; 237 kp->ki_jobc = pgrp.pg_jobc; 238 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 239 _kvm_err(kd, kd->program, "can't read session at %x", 240 pgrp.pg_session); 241 return (-1); 242 } 243 kp->ki_sid = sess.s_sid; 244 (void)memcpy(kp->ki_login, sess.s_login, 245 sizeof(kp->ki_login)); 246 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 247 if (sess.s_leader == p) 248 kp->ki_kiflag |= KI_SLEADER; 249 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 250 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 251 _kvm_err(kd, kd->program, 252 "can't read tty at %x", sess.s_ttyp); 253 return (-1); 254 } 255 kp->ki_tdev = tty.t_dev; 256 if (tty.t_pgrp != NULL) { 257 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 258 _kvm_err(kd, kd->program, 259 "can't read tpgrp at %x", 260 tty.t_pgrp); 261 return (-1); 262 } 263 kp->ki_tpgid = pgrp.pg_id; 264 } else 265 kp->ki_tpgid = -1; 266 if (tty.t_session != NULL) { 267 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 268 _kvm_err(kd, kd->program, 269 "can't read session at %x", 270 tty.t_session); 271 return (-1); 272 } 273 kp->ki_tsid = sess.s_sid; 274 } 275 } else { 276 nopgrp: 277 kp->ki_tdev = NODEV; 278 } 279 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 280 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 281 kp->ki_wmesg, WMESGLEN); 282 283 #ifdef sparc 284 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 285 (char *)&kp->ki_rssize, 286 sizeof(kp->ki_rssize)); 287 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 288 (char *)&kp->ki_tsize, 289 3 * sizeof(kp->ki_rssize)); /* XXX */ 290 #else 291 (void)kvm_read(kd, (u_long)proc.p_vmspace, 292 (char *)&vmspace, sizeof(vmspace)); 293 kp->ki_size = vmspace.vm_map.size; 294 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 295 kp->ki_swrss = vmspace.vm_swrss; 296 kp->ki_tsize = vmspace.vm_tsize; 297 kp->ki_dsize = vmspace.vm_dsize; 298 kp->ki_ssize = vmspace.vm_ssize; 299 #endif 300 301 switch (what) { 302 303 case KERN_PROC_PGRP: 304 if (kp->ki_pgid != (pid_t)arg) 305 continue; 306 break; 307 308 case KERN_PROC_TTY: 309 if ((proc.p_flag & P_CONTROLT) == 0 || 310 kp->ki_tdev != (dev_t)arg) 311 continue; 312 break; 313 } 314 if (proc.p_comm[0] != 0) { 315 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 316 kp->ki_comm[MAXCOMLEN] = 0; 317 } 318 if ((proc.p_state != PRS_ZOMBIE) && 319 (mtd.td_blocked != 0)) { 320 kp->ki_kiflag |= KI_LOCKBLOCK; 321 if (mtd.td_lockname) 322 (void)kvm_read(kd, 323 (u_long)mtd.td_lockname, 324 kp->ki_lockname, LOCKNAMELEN); 325 kp->ki_lockname[LOCKNAMELEN] = 0; 326 } 327 bintime2timeval(&proc.p_runtime, &tv); 328 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 329 kp->ki_pid = proc.p_pid; 330 kp->ki_siglist = proc.p_siglist; 331 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 332 kp->ki_sigmask = mtd.td_sigmask; 333 kp->ki_xstat = proc.p_xstat; 334 kp->ki_acflag = proc.p_acflag; 335 kp->ki_lock = proc.p_lock; 336 if (proc.p_state != PRS_ZOMBIE) { 337 kp->ki_swtime = proc.p_swtime; 338 kp->ki_flag = proc.p_flag; 339 kp->ki_sflag = proc.p_sflag; 340 kp->ki_traceflag = proc.p_traceflag; 341 if (proc.p_state == PRS_NORMAL) { 342 if (TD_ON_RUNQ(&mtd) || 343 TD_CAN_RUN(&mtd) || 344 TD_IS_RUNNING(&mtd)) { 345 kp->ki_stat = SRUN; 346 } else if (mtd.td_state == 347 TDS_INHIBITED) { 348 if (P_SHOULDSTOP(&proc)) { 349 kp->ki_stat = SSTOP; 350 } else if ( 351 TD_IS_SLEEPING(&mtd)) { 352 kp->ki_stat = SSLEEP; 353 } else if (TD_ON_LOCK(&mtd)) { 354 kp->ki_stat = SLOCK; 355 } else { 356 kp->ki_stat = SWAIT; 357 } 358 } 359 } else { 360 kp->ki_stat = SIDL; 361 } 362 /* Stuff from the thread */ 363 kp->ki_pri.pri_level = mtd.td_priority; 364 kp->ki_pri.pri_native = mtd.td_base_pri; 365 kp->ki_lastcpu = mtd.td_lastcpu; 366 kp->ki_wchan = mtd.td_wchan; 367 kp->ki_oncpu = mtd.td_oncpu; 368 369 if (!(proc.p_flag & P_THREADED)) { 370 /* stuff from the ksegrp */ 371 kp->ki_slptime = mkg.kg_slptime; 372 kp->ki_pri.pri_class = mkg.kg_pri_class; 373 kp->ki_pri.pri_user = mkg.kg_user_pri; 374 kp->ki_nice = mkg.kg_nice; 375 kp->ki_estcpu = mkg.kg_estcpu; 376 377 /* Stuff from the kse */ 378 kp->ki_pctcpu = mke.ke_pctcpu; 379 kp->ki_rqindex = mke.ke_rqindex; 380 } else { 381 kp->ki_tdflags = -1; 382 /* All the rest are 0 for now */ 383 } 384 } else { 385 kp->ki_stat = SZOMB; 386 } 387 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 388 ++bp; 389 ++cnt; 390 } 391 return (cnt); 392 } 393 394 /* 395 * Build proc info array by reading in proc list from a crash dump. 396 * Return number of procs read. maxcnt is the max we will read. 397 */ 398 static int 399 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 400 kvm_t *kd; 401 int what, arg; 402 u_long a_allproc; 403 u_long a_zombproc; 404 int maxcnt; 405 { 406 struct kinfo_proc *bp = kd->procbase; 407 int acnt, zcnt; 408 struct proc *p; 409 410 if (KREAD(kd, a_allproc, &p)) { 411 _kvm_err(kd, kd->program, "cannot read allproc"); 412 return (-1); 413 } 414 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 415 if (acnt < 0) 416 return (acnt); 417 418 if (KREAD(kd, a_zombproc, &p)) { 419 _kvm_err(kd, kd->program, "cannot read zombproc"); 420 return (-1); 421 } 422 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 423 if (zcnt < 0) 424 zcnt = 0; 425 426 return (acnt + zcnt); 427 } 428 429 struct kinfo_proc * 430 kvm_getprocs(kd, op, arg, cnt) 431 kvm_t *kd; 432 int op, arg; 433 int *cnt; 434 { 435 int mib[4], st, nprocs; 436 size_t size; 437 438 if (kd->procbase != 0) { 439 free((void *)kd->procbase); 440 /* 441 * Clear this pointer in case this call fails. Otherwise, 442 * kvm_close() will free it again. 443 */ 444 kd->procbase = 0; 445 } 446 if (ISALIVE(kd)) { 447 size = 0; 448 mib[0] = CTL_KERN; 449 mib[1] = KERN_PROC; 450 mib[2] = op; 451 mib[3] = arg; 452 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 453 if (st == -1) { 454 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 455 return (0); 456 } 457 /* 458 * We can't continue with a size of 0 because we pass 459 * it to realloc() (via _kvm_realloc()), and passing 0 460 * to realloc() results in undefined behavior. 461 */ 462 if (size == 0) { 463 /* 464 * XXX: We should probably return an invalid, 465 * but non-NULL, pointer here so any client 466 * program trying to dereference it will 467 * crash. However, _kvm_freeprocs() calls 468 * free() on kd->procbase if it isn't NULL, 469 * and free()'ing a junk pointer isn't good. 470 * Then again, _kvm_freeprocs() isn't used 471 * anywhere . . . 472 */ 473 kd->procbase = _kvm_malloc(kd, 1); 474 goto liveout; 475 } 476 do { 477 size += size / 10; 478 kd->procbase = (struct kinfo_proc *) 479 _kvm_realloc(kd, kd->procbase, size); 480 if (kd->procbase == 0) 481 return (0); 482 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 483 kd->procbase, &size, NULL, 0); 484 } while (st == -1 && errno == ENOMEM); 485 if (st == -1) { 486 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 487 return (0); 488 } 489 /* 490 * We have to check the size again because sysctl() 491 * may "round up" oldlenp if oldp is NULL; hence it 492 * might've told us that there was data to get when 493 * there really isn't any. 494 */ 495 if (size > 0 && 496 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 497 _kvm_err(kd, kd->program, 498 "kinfo_proc size mismatch (expected %d, got %d)", 499 sizeof(struct kinfo_proc), 500 kd->procbase->ki_structsize); 501 return (0); 502 } 503 liveout: 504 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 505 } else { 506 struct nlist nl[4], *p; 507 508 nl[0].n_name = "_nprocs"; 509 nl[1].n_name = "_allproc"; 510 nl[2].n_name = "_zombproc"; 511 nl[3].n_name = 0; 512 513 if (kvm_nlist(kd, nl) != 0) { 514 for (p = nl; p->n_type != 0; ++p) 515 ; 516 _kvm_err(kd, kd->program, 517 "%s: no such symbol", p->n_name); 518 return (0); 519 } 520 if (KREAD(kd, nl[0].n_value, &nprocs)) { 521 _kvm_err(kd, kd->program, "can't read nprocs"); 522 return (0); 523 } 524 size = nprocs * sizeof(struct kinfo_proc); 525 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 526 if (kd->procbase == 0) 527 return (0); 528 529 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 530 nl[2].n_value, nprocs); 531 #ifdef notdef 532 size = nprocs * sizeof(struct kinfo_proc); 533 (void)realloc(kd->procbase, size); 534 #endif 535 } 536 *cnt = nprocs; 537 return (kd->procbase); 538 } 539 540 void 541 _kvm_freeprocs(kd) 542 kvm_t *kd; 543 { 544 if (kd->procbase) { 545 free(kd->procbase); 546 kd->procbase = 0; 547 } 548 } 549 550 void * 551 _kvm_realloc(kd, p, n) 552 kvm_t *kd; 553 void *p; 554 size_t n; 555 { 556 void *np = (void *)realloc(p, n); 557 558 if (np == 0) { 559 free(p); 560 _kvm_err(kd, kd->program, "out of memory"); 561 } 562 return (np); 563 } 564 565 #ifndef MAX 566 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 567 #endif 568 569 /* 570 * Read in an argument vector from the user address space of process kp. 571 * addr if the user-space base address of narg null-terminated contiguous 572 * strings. This is used to read in both the command arguments and 573 * environment strings. Read at most maxcnt characters of strings. 574 */ 575 static char ** 576 kvm_argv(kd, kp, addr, narg, maxcnt) 577 kvm_t *kd; 578 struct kinfo_proc *kp; 579 u_long addr; 580 int narg; 581 int maxcnt; 582 { 583 char *np, *cp, *ep, *ap; 584 u_long oaddr = -1; 585 int len, cc; 586 char **argv; 587 588 /* 589 * Check that there aren't an unreasonable number of agruments, 590 * and that the address is in user space. 591 */ 592 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 593 return (0); 594 595 /* 596 * kd->argv : work space for fetching the strings from the target 597 * process's space, and is converted for returning to caller 598 */ 599 if (kd->argv == 0) { 600 /* 601 * Try to avoid reallocs. 602 */ 603 kd->argc = MAX(narg + 1, 32); 604 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 605 sizeof(*kd->argv)); 606 if (kd->argv == 0) 607 return (0); 608 } else if (narg + 1 > kd->argc) { 609 kd->argc = MAX(2 * kd->argc, narg + 1); 610 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 611 sizeof(*kd->argv)); 612 if (kd->argv == 0) 613 return (0); 614 } 615 /* 616 * kd->argspc : returned to user, this is where the kd->argv 617 * arrays are left pointing to the collected strings. 618 */ 619 if (kd->argspc == 0) { 620 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 621 if (kd->argspc == 0) 622 return (0); 623 kd->arglen = PAGE_SIZE; 624 } 625 /* 626 * kd->argbuf : used to pull in pages from the target process. 627 * the strings are copied out of here. 628 */ 629 if (kd->argbuf == 0) { 630 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 631 if (kd->argbuf == 0) 632 return (0); 633 } 634 635 /* Pull in the target process'es argv vector */ 636 cc = sizeof(char *) * narg; 637 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 638 return (0); 639 /* 640 * ap : saved start address of string we're working on in kd->argspc 641 * np : pointer to next place to write in kd->argspc 642 * len: length of data in kd->argspc 643 * argv: pointer to the argv vector that we are hunting around the 644 * target process space for, and converting to addresses in 645 * our address space (kd->argspc). 646 */ 647 ap = np = kd->argspc; 648 argv = kd->argv; 649 len = 0; 650 /* 651 * Loop over pages, filling in the argument vector. 652 * Note that the argv strings could be pointing *anywhere* in 653 * the user address space and are no longer contiguous. 654 * Note that *argv is modified when we are going to fetch a string 655 * that crosses a page boundary. We copy the next part of the string 656 * into to "np" and eventually convert the pointer. 657 */ 658 while (argv < kd->argv + narg && *argv != 0) { 659 660 /* get the address that the current argv string is on */ 661 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 662 663 /* is it the same page as the last one? */ 664 if (addr != oaddr) { 665 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 666 PAGE_SIZE) 667 return (0); 668 oaddr = addr; 669 } 670 671 /* offset within the page... kd->argbuf */ 672 addr = (u_long)*argv & (PAGE_SIZE - 1); 673 674 /* cp = start of string, cc = count of chars in this chunk */ 675 cp = kd->argbuf + addr; 676 cc = PAGE_SIZE - addr; 677 678 /* dont get more than asked for by user process */ 679 if (maxcnt > 0 && cc > maxcnt - len) 680 cc = maxcnt - len; 681 682 /* pointer to end of string if we found it in this page */ 683 ep = memchr(cp, '\0', cc); 684 if (ep != 0) 685 cc = ep - cp + 1; 686 /* 687 * at this point, cc is the count of the chars that we are 688 * going to retrieve this time. we may or may not have found 689 * the end of it. (ep points to the null if the end is known) 690 */ 691 692 /* will we exceed the malloc/realloced buffer? */ 693 if (len + cc > kd->arglen) { 694 int off; 695 char **pp; 696 char *op = kd->argspc; 697 698 kd->arglen *= 2; 699 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 700 kd->arglen); 701 if (kd->argspc == 0) 702 return (0); 703 /* 704 * Adjust argv pointers in case realloc moved 705 * the string space. 706 */ 707 off = kd->argspc - op; 708 for (pp = kd->argv; pp < argv; pp++) 709 *pp += off; 710 ap += off; 711 np += off; 712 } 713 /* np = where to put the next part of the string in kd->argspc*/ 714 /* np is kinda redundant.. could use "kd->argspc + len" */ 715 memcpy(np, cp, cc); 716 np += cc; /* inc counters */ 717 len += cc; 718 719 /* 720 * if end of string found, set the *argv pointer to the 721 * saved beginning of string, and advance. argv points to 722 * somewhere in kd->argv.. This is initially relative 723 * to the target process, but when we close it off, we set 724 * it to point in our address space. 725 */ 726 if (ep != 0) { 727 *argv++ = ap; 728 ap = np; 729 } else { 730 /* update the address relative to the target process */ 731 *argv += cc; 732 } 733 734 if (maxcnt > 0 && len >= maxcnt) { 735 /* 736 * We're stopping prematurely. Terminate the 737 * current string. 738 */ 739 if (ep == 0) { 740 *np = '\0'; 741 *argv++ = ap; 742 } 743 break; 744 } 745 } 746 /* Make sure argv is terminated. */ 747 *argv = 0; 748 return (kd->argv); 749 } 750 751 static void 752 ps_str_a(p, addr, n) 753 struct ps_strings *p; 754 u_long *addr; 755 int *n; 756 { 757 *addr = (u_long)p->ps_argvstr; 758 *n = p->ps_nargvstr; 759 } 760 761 static void 762 ps_str_e(p, addr, n) 763 struct ps_strings *p; 764 u_long *addr; 765 int *n; 766 { 767 *addr = (u_long)p->ps_envstr; 768 *n = p->ps_nenvstr; 769 } 770 771 /* 772 * Determine if the proc indicated by p is still active. 773 * This test is not 100% foolproof in theory, but chances of 774 * being wrong are very low. 775 */ 776 static int 777 proc_verify(curkp) 778 struct kinfo_proc *curkp; 779 { 780 struct kinfo_proc newkp; 781 int mib[4]; 782 size_t len; 783 784 mib[0] = CTL_KERN; 785 mib[1] = KERN_PROC; 786 mib[2] = KERN_PROC_PID; 787 mib[3] = curkp->ki_pid; 788 len = sizeof(newkp); 789 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 790 return (0); 791 return (curkp->ki_pid == newkp.ki_pid && 792 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 793 } 794 795 static char ** 796 kvm_doargv(kd, kp, nchr, info) 797 kvm_t *kd; 798 struct kinfo_proc *kp; 799 int nchr; 800 void (*info)(struct ps_strings *, u_long *, int *); 801 { 802 char **ap; 803 u_long addr; 804 int cnt; 805 static struct ps_strings arginfo; 806 static u_long ps_strings; 807 size_t len; 808 809 if (ps_strings == NULL) { 810 len = sizeof(ps_strings); 811 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 812 0) == -1) 813 ps_strings = PS_STRINGS; 814 } 815 816 /* 817 * Pointers are stored at the top of the user stack. 818 */ 819 if (kp->ki_stat == SZOMB || 820 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 821 sizeof(arginfo)) != sizeof(arginfo)) 822 return (0); 823 824 (*info)(&arginfo, &addr, &cnt); 825 if (cnt == 0) 826 return (0); 827 ap = kvm_argv(kd, kp, addr, cnt, nchr); 828 /* 829 * For live kernels, make sure this process didn't go away. 830 */ 831 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 832 ap = 0; 833 return (ap); 834 } 835 836 /* 837 * Get the command args. This code is now machine independent. 838 */ 839 char ** 840 kvm_getargv(kd, kp, nchr) 841 kvm_t *kd; 842 const struct kinfo_proc *kp; 843 int nchr; 844 { 845 int oid[4]; 846 int i; 847 size_t bufsz; 848 static unsigned long buflen; 849 static char *buf, *p; 850 static char **bufp; 851 static int argc; 852 853 if (!ISALIVE(kd)) { 854 _kvm_err(kd, kd->program, 855 "cannot read user space from dead kernel"); 856 return (0); 857 } 858 859 if (!buflen) { 860 bufsz = sizeof(buflen); 861 i = sysctlbyname("kern.ps_arg_cache_limit", 862 &buflen, &bufsz, NULL, 0); 863 if (i == -1) { 864 buflen = 0; 865 } else { 866 buf = malloc(buflen); 867 if (buf == NULL) 868 buflen = 0; 869 argc = 32; 870 bufp = malloc(sizeof(char *) * argc); 871 } 872 } 873 if (buf != NULL) { 874 oid[0] = CTL_KERN; 875 oid[1] = KERN_PROC; 876 oid[2] = KERN_PROC_ARGS; 877 oid[3] = kp->ki_pid; 878 bufsz = buflen; 879 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 880 if (i == 0 && bufsz > 0) { 881 i = 0; 882 p = buf; 883 do { 884 bufp[i++] = p; 885 p += strlen(p) + 1; 886 if (i >= argc) { 887 argc += argc; 888 bufp = realloc(bufp, 889 sizeof(char *) * argc); 890 } 891 } while (p < buf + bufsz); 892 bufp[i++] = 0; 893 return (bufp); 894 } 895 } 896 if (kp->ki_flag & P_SYSTEM) 897 return (NULL); 898 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 899 } 900 901 char ** 902 kvm_getenvv(kd, kp, nchr) 903 kvm_t *kd; 904 const struct kinfo_proc *kp; 905 int nchr; 906 { 907 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 908 } 909 910 /* 911 * Read from user space. The user context is given by p. 912 */ 913 ssize_t 914 kvm_uread(kd, kp, uva, buf, len) 915 kvm_t *kd; 916 struct kinfo_proc *kp; 917 u_long uva; 918 char *buf; 919 size_t len; 920 { 921 char *cp; 922 char procfile[MAXPATHLEN]; 923 ssize_t amount; 924 int fd; 925 926 if (!ISALIVE(kd)) { 927 _kvm_err(kd, kd->program, 928 "cannot read user space from dead kernel"); 929 return (0); 930 } 931 932 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 933 fd = open(procfile, O_RDONLY, 0); 934 if (fd < 0) { 935 _kvm_err(kd, kd->program, "cannot open %s", procfile); 936 close(fd); 937 return (0); 938 } 939 940 cp = buf; 941 while (len > 0) { 942 errno = 0; 943 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 944 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 945 uva, procfile); 946 break; 947 } 948 amount = read(fd, cp, len); 949 if (amount < 0) { 950 _kvm_syserr(kd, kd->program, "error reading %s", 951 procfile); 952 break; 953 } 954 if (amount == 0) { 955 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 956 break; 957 } 958 cp += amount; 959 uva += amount; 960 len -= amount; 961 } 962 963 close(fd); 964 return ((ssize_t)(cp - buf)); 965 } 966