1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $FreeBSD$ 38 */ 39 40 #if defined(LIBC_SCCS) && !defined(lint) 41 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 42 #endif /* LIBC_SCCS and not lint */ 43 44 /* 45 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 46 * users of this code, so we've factored it out into a separate module. 47 * Thus, we keep this grunge out of the other kvm applications (i.e., 48 * most other applications are interested only in open/close/read/nlist). 49 */ 50 51 #include <sys/param.h> 52 #include <sys/user.h> 53 #include <sys/proc.h> 54 #include <sys/exec.h> 55 #include <sys/stat.h> 56 #include <sys/ioctl.h> 57 #define _KERNEL 58 #include <sys/select.h> 59 #undef _KERNEL 60 #include <sys/tty.h> 61 #include <sys/file.h> 62 #include <stdio.h> 63 #include <stdlib.h> 64 #include <unistd.h> 65 #include <nlist.h> 66 #include <kvm.h> 67 68 #include <vm/vm.h> 69 #include <vm/vm_param.h> 70 #include <vm/swap_pager.h> 71 72 #include <sys/sysctl.h> 73 74 #include <limits.h> 75 #include <memory.h> 76 #include <paths.h> 77 78 #include "kvm_private.h" 79 80 #if used 81 static char * 82 kvm_readswap(kd, p, va, cnt) 83 kvm_t *kd; 84 const struct proc *p; 85 u_long va; 86 u_long *cnt; 87 { 88 #ifdef __FreeBSD__ 89 /* XXX Stubbed out, our vm system is differnet */ 90 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 91 return(0); 92 #endif /* __FreeBSD__ */ 93 } 94 #endif 95 96 #define KREAD(kd, addr, obj) \ 97 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 98 99 /* 100 * Read proc's from memory file into buffer bp, which has space to hold 101 * at most maxcnt procs. 102 */ 103 static int 104 kvm_proclist(kd, what, arg, p, bp, maxcnt) 105 kvm_t *kd; 106 int what, arg; 107 struct proc *p; 108 struct kinfo_proc *bp; 109 int maxcnt; 110 { 111 register int cnt = 0; 112 struct eproc eproc; 113 struct pgrp pgrp; 114 struct session sess; 115 struct tty tty; 116 struct proc proc; 117 struct proc pproc; 118 119 for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) { 120 if (KREAD(kd, (u_long)p, &proc)) { 121 _kvm_err(kd, kd->program, "can't read proc at %x", p); 122 return (-1); 123 } 124 if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0) 125 (void)(KREAD(kd, (u_long)eproc.e_pcred.pc_ucred, 126 &eproc.e_ucred)); 127 128 switch(what) { 129 130 case KERN_PROC_PID: 131 if (proc.p_pid != (pid_t)arg) 132 continue; 133 break; 134 135 case KERN_PROC_UID: 136 if (eproc.e_ucred.cr_uid != (uid_t)arg) 137 continue; 138 break; 139 140 case KERN_PROC_RUID: 141 if (eproc.e_pcred.p_ruid != (uid_t)arg) 142 continue; 143 break; 144 } 145 /* 146 * We're going to add another proc to the set. If this 147 * will overflow the buffer, assume the reason is because 148 * nprocs (or the proc list) is corrupt and declare an error. 149 */ 150 if (cnt >= maxcnt) { 151 _kvm_err(kd, kd->program, "nprocs corrupt"); 152 return (-1); 153 } 154 /* 155 * gather eproc 156 */ 157 eproc.e_paddr = p; 158 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 159 _kvm_err(kd, kd->program, "can't read pgrp at %x", 160 proc.p_pgrp); 161 return (-1); 162 } 163 if (proc.p_oppid) 164 eproc.e_ppid = proc.p_oppid; 165 else if (proc.p_pptr) { 166 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 167 _kvm_err(kd, kd->program, "can't read pproc at %x", 168 proc.p_pptr); 169 return (-1); 170 } 171 eproc.e_ppid = pproc.p_pid; 172 } else 173 eproc.e_ppid = 0; 174 eproc.e_sess = pgrp.pg_session; 175 eproc.e_pgid = pgrp.pg_id; 176 eproc.e_jobc = pgrp.pg_jobc; 177 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 178 _kvm_err(kd, kd->program, "can't read session at %x", 179 pgrp.pg_session); 180 return (-1); 181 } 182 (void)memcpy(eproc.e_login, sess.s_login, 183 sizeof(eproc.e_login)); 184 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 185 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 186 _kvm_err(kd, kd->program, 187 "can't read tty at %x", sess.s_ttyp); 188 return (-1); 189 } 190 eproc.e_tdev = tty.t_dev; 191 eproc.e_tsess = tty.t_session; 192 if (tty.t_pgrp != NULL) { 193 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 194 _kvm_err(kd, kd->program, 195 "can't read tpgrp at &x", 196 tty.t_pgrp); 197 return (-1); 198 } 199 eproc.e_tpgid = pgrp.pg_id; 200 } else 201 eproc.e_tpgid = -1; 202 } else 203 eproc.e_tdev = NODEV; 204 eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0; 205 if (sess.s_leader == p) 206 eproc.e_flag |= EPROC_SLEADER; 207 if (proc.p_wmesg) 208 (void)kvm_read(kd, (u_long)proc.p_wmesg, 209 eproc.e_wmesg, WMESGLEN); 210 211 #ifdef sparc 212 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 213 (char *)&eproc.e_vm.vm_rssize, 214 sizeof(eproc.e_vm.vm_rssize)); 215 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 216 (char *)&eproc.e_vm.vm_tsize, 217 3 * sizeof(eproc.e_vm.vm_rssize)); /* XXX */ 218 #else 219 (void)kvm_read(kd, (u_long)proc.p_vmspace, 220 (char *)&eproc.e_vm, sizeof(eproc.e_vm)); 221 #endif 222 eproc.e_xsize = eproc.e_xrssize = 0; 223 eproc.e_xccount = eproc.e_xswrss = 0; 224 225 switch (what) { 226 227 case KERN_PROC_PGRP: 228 if (eproc.e_pgid != (pid_t)arg) 229 continue; 230 break; 231 232 case KERN_PROC_TTY: 233 if ((proc.p_flag & P_CONTROLT) == 0 || 234 eproc.e_tdev != (dev_t)arg) 235 continue; 236 break; 237 } 238 bcopy(&proc, &bp->kp_proc, sizeof(proc)); 239 bcopy(&eproc, &bp->kp_eproc, sizeof(eproc)); 240 ++bp; 241 ++cnt; 242 } 243 return (cnt); 244 } 245 246 /* 247 * Build proc info array by reading in proc list from a crash dump. 248 * Return number of procs read. maxcnt is the max we will read. 249 */ 250 static int 251 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 252 kvm_t *kd; 253 int what, arg; 254 u_long a_allproc; 255 u_long a_zombproc; 256 int maxcnt; 257 { 258 register struct kinfo_proc *bp = kd->procbase; 259 register int acnt, zcnt; 260 struct proc *p; 261 262 if (KREAD(kd, a_allproc, &p)) { 263 _kvm_err(kd, kd->program, "cannot read allproc"); 264 return (-1); 265 } 266 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 267 if (acnt < 0) 268 return (acnt); 269 270 if (KREAD(kd, a_zombproc, &p)) { 271 _kvm_err(kd, kd->program, "cannot read zombproc"); 272 return (-1); 273 } 274 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 275 if (zcnt < 0) 276 zcnt = 0; 277 278 return (acnt + zcnt); 279 } 280 281 struct kinfo_proc * 282 kvm_getprocs(kd, op, arg, cnt) 283 kvm_t *kd; 284 int op, arg; 285 int *cnt; 286 { 287 int mib[4], st, nprocs; 288 size_t size; 289 290 if (kd->procbase != 0) { 291 free((void *)kd->procbase); 292 /* 293 * Clear this pointer in case this call fails. Otherwise, 294 * kvm_close() will free it again. 295 */ 296 kd->procbase = 0; 297 } 298 if (ISALIVE(kd)) { 299 size = 0; 300 mib[0] = CTL_KERN; 301 mib[1] = KERN_PROC; 302 mib[2] = op; 303 mib[3] = arg; 304 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 305 if (st == -1) { 306 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 307 return (0); 308 } 309 do { 310 size += size / 10; 311 kd->procbase = (struct kinfo_proc *) 312 _kvm_realloc(kd, kd->procbase, size); 313 if (kd->procbase == 0) 314 return (0); 315 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 316 kd->procbase, &size, NULL, 0); 317 } while (st == -1 && errno == ENOMEM); 318 if (st == -1) { 319 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 320 return (0); 321 } 322 if (size % sizeof(struct kinfo_proc) != 0) { 323 _kvm_err(kd, kd->program, 324 "proc size mismatch (%d total, %d chunks)", 325 size, sizeof(struct kinfo_proc)); 326 return (0); 327 } 328 nprocs = size / sizeof(struct kinfo_proc); 329 } else { 330 struct nlist nl[4], *p; 331 332 nl[0].n_name = "_nprocs"; 333 nl[1].n_name = "_allproc"; 334 nl[2].n_name = "_zombproc"; 335 nl[3].n_name = 0; 336 337 if (kvm_nlist(kd, nl) != 0) { 338 for (p = nl; p->n_type != 0; ++p) 339 ; 340 _kvm_err(kd, kd->program, 341 "%s: no such symbol", p->n_name); 342 return (0); 343 } 344 if (KREAD(kd, nl[0].n_value, &nprocs)) { 345 _kvm_err(kd, kd->program, "can't read nprocs"); 346 return (0); 347 } 348 size = nprocs * sizeof(struct kinfo_proc); 349 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 350 if (kd->procbase == 0) 351 return (0); 352 353 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 354 nl[2].n_value, nprocs); 355 #ifdef notdef 356 size = nprocs * sizeof(struct kinfo_proc); 357 (void)realloc(kd->procbase, size); 358 #endif 359 } 360 *cnt = nprocs; 361 return (kd->procbase); 362 } 363 364 void 365 _kvm_freeprocs(kd) 366 kvm_t *kd; 367 { 368 if (kd->procbase) { 369 free(kd->procbase); 370 kd->procbase = 0; 371 } 372 } 373 374 void * 375 _kvm_realloc(kd, p, n) 376 kvm_t *kd; 377 void *p; 378 size_t n; 379 { 380 void *np = (void *)realloc(p, n); 381 382 if (np == 0) { 383 free(p); 384 _kvm_err(kd, kd->program, "out of memory"); 385 } 386 return (np); 387 } 388 389 #ifndef MAX 390 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 391 #endif 392 393 /* 394 * Read in an argument vector from the user address space of process p. 395 * addr if the user-space base address of narg null-terminated contiguous 396 * strings. This is used to read in both the command arguments and 397 * environment strings. Read at most maxcnt characters of strings. 398 */ 399 static char ** 400 kvm_argv(kd, p, addr, narg, maxcnt) 401 kvm_t *kd; 402 const struct proc *p; 403 register u_long addr; 404 register int narg; 405 register int maxcnt; 406 { 407 register char *np, *cp, *ep, *ap; 408 register u_long oaddr = -1; 409 register int len, cc; 410 register char **argv; 411 412 /* 413 * Check that there aren't an unreasonable number of agruments, 414 * and that the address is in user space. 415 */ 416 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 417 return (0); 418 419 /* 420 * kd->argv : work space for fetching the strings from the target 421 * process's space, and is converted for returning to caller 422 */ 423 if (kd->argv == 0) { 424 /* 425 * Try to avoid reallocs. 426 */ 427 kd->argc = MAX(narg + 1, 32); 428 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 429 sizeof(*kd->argv)); 430 if (kd->argv == 0) 431 return (0); 432 } else if (narg + 1 > kd->argc) { 433 kd->argc = MAX(2 * kd->argc, narg + 1); 434 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 435 sizeof(*kd->argv)); 436 if (kd->argv == 0) 437 return (0); 438 } 439 /* 440 * kd->argspc : returned to user, this is where the kd->argv 441 * arrays are left pointing to the collected strings. 442 */ 443 if (kd->argspc == 0) { 444 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 445 if (kd->argspc == 0) 446 return (0); 447 kd->arglen = PAGE_SIZE; 448 } 449 /* 450 * kd->argbuf : used to pull in pages from the target process. 451 * the strings are copied out of here. 452 */ 453 if (kd->argbuf == 0) { 454 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 455 if (kd->argbuf == 0) 456 return (0); 457 } 458 459 /* Pull in the target process'es argv vector */ 460 cc = sizeof(char *) * narg; 461 if (kvm_uread(kd, p, addr, (char *)kd->argv, cc) != cc) 462 return (0); 463 /* 464 * ap : saved start address of string we're working on in kd->argspc 465 * np : pointer to next place to write in kd->argspc 466 * len: length of data in kd->argspc 467 * argv: pointer to the argv vector that we are hunting around the 468 * target process space for, and converting to addresses in 469 * our address space (kd->argspc). 470 */ 471 ap = np = kd->argspc; 472 argv = kd->argv; 473 len = 0; 474 /* 475 * Loop over pages, filling in the argument vector. 476 * Note that the argv strings could be pointing *anywhere* in 477 * the user address space and are no longer contiguous. 478 * Note that *argv is modified when we are going to fetch a string 479 * that crosses a page boundary. We copy the next part of the string 480 * into to "np" and eventually convert the pointer. 481 */ 482 while (argv < kd->argv + narg && *argv != 0) { 483 484 /* get the address that the current argv string is on */ 485 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 486 487 /* is it the same page as the last one? */ 488 if (addr != oaddr) { 489 if (kvm_uread(kd, p, addr, kd->argbuf, PAGE_SIZE) != 490 PAGE_SIZE) 491 return (0); 492 oaddr = addr; 493 } 494 495 /* offset within the page... kd->argbuf */ 496 addr = (u_long)*argv & (PAGE_SIZE - 1); 497 498 /* cp = start of string, cc = count of chars in this chunk */ 499 cp = kd->argbuf + addr; 500 cc = PAGE_SIZE - addr; 501 502 /* dont get more than asked for by user process */ 503 if (maxcnt > 0 && cc > maxcnt - len) 504 cc = maxcnt - len; 505 506 /* pointer to end of string if we found it in this page */ 507 ep = memchr(cp, '\0', cc); 508 if (ep != 0) 509 cc = ep - cp + 1; 510 /* 511 * at this point, cc is the count of the chars that we are 512 * going to retrieve this time. we may or may not have found 513 * the end of it. (ep points to the null if the end is known) 514 */ 515 516 /* will we exceed the malloc/realloced buffer? */ 517 if (len + cc > kd->arglen) { 518 register int off; 519 register char **pp; 520 register char *op = kd->argspc; 521 522 kd->arglen *= 2; 523 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 524 kd->arglen); 525 if (kd->argspc == 0) 526 return (0); 527 /* 528 * Adjust argv pointers in case realloc moved 529 * the string space. 530 */ 531 off = kd->argspc - op; 532 for (pp = kd->argv; pp < argv; pp++) 533 *pp += off; 534 ap += off; 535 np += off; 536 } 537 /* np = where to put the next part of the string in kd->argspc*/ 538 /* np is kinda redundant.. could use "kd->argspc + len" */ 539 memcpy(np, cp, cc); 540 np += cc; /* inc counters */ 541 len += cc; 542 543 /* 544 * if end of string found, set the *argv pointer to the 545 * saved beginning of string, and advance. argv points to 546 * somewhere in kd->argv.. This is initially relative 547 * to the target process, but when we close it off, we set 548 * it to point in our address space. 549 */ 550 if (ep != 0) { 551 *argv++ = ap; 552 ap = np; 553 } else { 554 /* update the address relative to the target process */ 555 *argv += cc; 556 } 557 558 if (maxcnt > 0 && len >= maxcnt) { 559 /* 560 * We're stopping prematurely. Terminate the 561 * current string. 562 */ 563 if (ep == 0) { 564 *np = '\0'; 565 *argv++ = ap; 566 } 567 break; 568 } 569 } 570 /* Make sure argv is terminated. */ 571 *argv = 0; 572 return (kd->argv); 573 } 574 575 static void 576 ps_str_a(p, addr, n) 577 struct ps_strings *p; 578 u_long *addr; 579 int *n; 580 { 581 *addr = (u_long)p->ps_argvstr; 582 *n = p->ps_nargvstr; 583 } 584 585 static void 586 ps_str_e(p, addr, n) 587 struct ps_strings *p; 588 u_long *addr; 589 int *n; 590 { 591 *addr = (u_long)p->ps_envstr; 592 *n = p->ps_nenvstr; 593 } 594 595 /* 596 * Determine if the proc indicated by p is still active. 597 * This test is not 100% foolproof in theory, but chances of 598 * being wrong are very low. 599 */ 600 static int 601 proc_verify(kd, kernp, p) 602 kvm_t *kd; 603 u_long kernp; 604 const struct proc *p; 605 { 606 struct kinfo_proc kp; 607 int mib[4]; 608 size_t len; 609 610 mib[0] = CTL_KERN; 611 mib[1] = KERN_PROC; 612 mib[2] = KERN_PROC_PID; 613 mib[3] = p->p_pid; 614 len = sizeof(kp); 615 if (sysctl(mib, 4, &kp, &len, NULL, 0) == -1) 616 return (0); 617 return (p->p_pid == kp.kp_proc.p_pid && 618 (kp.kp_proc.p_stat != SZOMB || p->p_stat == SZOMB)); 619 } 620 621 static char ** 622 kvm_doargv(kd, kp, nchr, info) 623 kvm_t *kd; 624 const struct kinfo_proc *kp; 625 int nchr; 626 void (*info)(struct ps_strings *, u_long *, int *); 627 { 628 register const struct proc *p = &kp->kp_proc; 629 register char **ap; 630 u_long addr; 631 int cnt; 632 static struct ps_strings arginfo; 633 static u_long ps_strings; 634 size_t len; 635 636 if (ps_strings == NULL) { 637 len = sizeof(ps_strings); 638 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 639 0) == -1) 640 ps_strings = PS_STRINGS; 641 } 642 643 /* 644 * Pointers are stored at the top of the user stack. 645 */ 646 if (p->p_stat == SZOMB || 647 kvm_uread(kd, p, ps_strings, (char *)&arginfo, 648 sizeof(arginfo)) != sizeof(arginfo)) 649 return (0); 650 651 (*info)(&arginfo, &addr, &cnt); 652 if (cnt == 0) 653 return (0); 654 ap = kvm_argv(kd, p, addr, cnt, nchr); 655 /* 656 * For live kernels, make sure this process didn't go away. 657 */ 658 if (ap != 0 && ISALIVE(kd) && 659 !proc_verify(kd, (u_long)kp->kp_eproc.e_paddr, p)) 660 ap = 0; 661 return (ap); 662 } 663 664 /* 665 * Get the command args. This code is now machine independent. 666 */ 667 char ** 668 kvm_getargv(kd, kp, nchr) 669 kvm_t *kd; 670 const struct kinfo_proc *kp; 671 int nchr; 672 { 673 int oid[4]; 674 int i; 675 size_t bufsz; 676 static int buflen; 677 static char *buf, *p; 678 static char **bufp; 679 static int argc; 680 681 if (!ISALIVE(kd)) { 682 _kvm_err(kd, kd->program, 683 "cannot read user space from dead kernel"); 684 return (0); 685 } 686 687 if (!buflen) { 688 bufsz = sizeof(buflen); 689 i = sysctlbyname("kern.ps_arg_cache_limit", 690 &buflen, &bufsz, NULL, 0); 691 if (i == -1) { 692 buflen = 0; 693 } else { 694 buf = malloc(buflen); 695 if (buf == NULL) 696 buflen = 0; 697 argc = 32; 698 bufp = malloc(sizeof(char *) * argc); 699 } 700 } 701 if (buf != NULL) { 702 oid[0] = CTL_KERN; 703 oid[1] = KERN_PROC; 704 oid[2] = KERN_PROC_ARGS; 705 oid[3] = kp->kp_proc.p_pid; 706 bufsz = buflen; 707 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 708 if (i == 0 && bufsz > 0) { 709 i = 0; 710 p = buf; 711 do { 712 bufp[i++] = p; 713 p += strlen(p) + 1; 714 if (i >= argc) { 715 argc += argc; 716 bufp = realloc(bufp, 717 sizeof(char *) * argc); 718 } 719 } while (p < buf + bufsz); 720 bufp[i++] = 0; 721 return (bufp); 722 } 723 } 724 if (kp->kp_proc.p_flag & P_SYSTEM) 725 return (NULL); 726 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 727 } 728 729 char ** 730 kvm_getenvv(kd, kp, nchr) 731 kvm_t *kd; 732 const struct kinfo_proc *kp; 733 int nchr; 734 { 735 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 736 } 737 738 /* 739 * Read from user space. The user context is given by p. 740 */ 741 ssize_t 742 kvm_uread(kd, p, uva, buf, len) 743 kvm_t *kd; 744 register const struct proc *p; 745 register u_long uva; 746 register char *buf; 747 register size_t len; 748 { 749 register char *cp; 750 char procfile[MAXPATHLEN]; 751 ssize_t amount; 752 int fd; 753 754 if (!ISALIVE(kd)) { 755 _kvm_err(kd, kd->program, 756 "cannot read user space from dead kernel"); 757 return (0); 758 } 759 760 sprintf(procfile, "/proc/%d/mem", p->p_pid); 761 fd = open(procfile, O_RDONLY, 0); 762 if (fd < 0) { 763 _kvm_err(kd, kd->program, "cannot open %s", procfile); 764 close(fd); 765 return (0); 766 } 767 768 cp = buf; 769 while (len > 0) { 770 errno = 0; 771 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 772 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 773 uva, procfile); 774 break; 775 } 776 amount = read(fd, cp, len); 777 if (amount < 0) { 778 _kvm_syserr(kd, kd->program, "error reading %s", 779 procfile); 780 break; 781 } 782 if (amount == 0) { 783 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 784 break; 785 } 786 cp += amount; 787 uva += amount; 788 len -= amount; 789 } 790 791 close(fd); 792 return ((ssize_t)(cp - buf)); 793 } 794