1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if 0 39 #if defined(LIBC_SCCS) && !defined(lint) 40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 41 #endif /* LIBC_SCCS and not lint */ 42 #endif 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 56 #include <sys/ucred.h> 57 #include <sys/user.h> 58 #include <sys/proc.h> 59 #include <sys/exec.h> 60 #include <sys/stat.h> 61 #include <sys/ioctl.h> 62 #include <sys/tty.h> 63 #include <sys/file.h> 64 #include <stdio.h> 65 #include <stdlib.h> 66 #include <unistd.h> 67 #include <nlist.h> 68 #include <kvm.h> 69 70 #include <vm/vm.h> 71 #include <vm/vm_param.h> 72 73 #include <sys/sysctl.h> 74 75 #include <limits.h> 76 #include <memory.h> 77 #include <paths.h> 78 79 #include "kvm_private.h" 80 81 #define KREAD(kd, addr, obj) \ 82 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 83 84 /* 85 * Read proc's from memory file into buffer bp, which has space to hold 86 * at most maxcnt procs. 87 */ 88 static int 89 kvm_proclist(kd, what, arg, p, bp, maxcnt) 90 kvm_t *kd; 91 int what, arg; 92 struct proc *p; 93 struct kinfo_proc *bp; 94 int maxcnt; 95 { 96 int cnt = 0; 97 struct kinfo_proc kinfo_proc, *kp; 98 struct pgrp pgrp; 99 struct session sess; 100 struct tty tty; 101 struct vmspace vmspace; 102 struct sigacts sigacts; 103 struct pstats pstats; 104 struct ucred ucred; 105 struct thread mtd; 106 struct kse mke; 107 struct ksegrp mkg; 108 struct proc proc; 109 struct proc pproc; 110 struct timeval tv; 111 112 kp = &kinfo_proc; 113 kp->ki_structsize = sizeof(kinfo_proc); 114 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 115 memset(kp, 0, sizeof *kp); 116 if (KREAD(kd, (u_long)p, &proc)) { 117 _kvm_err(kd, kd->program, "can't read proc at %x", p); 118 return (-1); 119 } 120 if (proc.p_state != PRS_ZOMBIE) { 121 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 122 &mtd)) { 123 _kvm_err(kd, kd->program, 124 "can't read thread at %x", 125 TAILQ_FIRST(&proc.p_threads)); 126 return (-1); 127 } 128 if (proc.p_flag & P_SA == 0) { 129 if (KREAD(kd, 130 (u_long)TAILQ_FIRST(&proc.p_ksegrps), 131 &mkg)) { 132 _kvm_err(kd, kd->program, 133 "can't read ksegrp at %x", 134 TAILQ_FIRST(&proc.p_ksegrps)); 135 return (-1); 136 } 137 if (KREAD(kd, 138 (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) { 139 _kvm_err(kd, kd->program, 140 "can't read kse at %x", 141 TAILQ_FIRST(&mkg.kg_kseq)); 142 return (-1); 143 } 144 } 145 } 146 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 147 kp->ki_ruid = ucred.cr_ruid; 148 kp->ki_svuid = ucred.cr_svuid; 149 kp->ki_rgid = ucred.cr_rgid; 150 kp->ki_svgid = ucred.cr_svgid; 151 kp->ki_ngroups = ucred.cr_ngroups; 152 bcopy(ucred.cr_groups, kp->ki_groups, 153 NGROUPS * sizeof(gid_t)); 154 kp->ki_uid = ucred.cr_uid; 155 } 156 157 switch(what) { 158 159 case KERN_PROC_PID: 160 if (proc.p_pid != (pid_t)arg) 161 continue; 162 break; 163 164 case KERN_PROC_UID: 165 if (kp->ki_uid != (uid_t)arg) 166 continue; 167 break; 168 169 case KERN_PROC_RUID: 170 if (kp->ki_ruid != (uid_t)arg) 171 continue; 172 break; 173 } 174 /* 175 * We're going to add another proc to the set. If this 176 * will overflow the buffer, assume the reason is because 177 * nprocs (or the proc list) is corrupt and declare an error. 178 */ 179 if (cnt >= maxcnt) { 180 _kvm_err(kd, kd->program, "nprocs corrupt"); 181 return (-1); 182 } 183 /* 184 * gather kinfo_proc 185 */ 186 kp->ki_paddr = p; 187 kp->ki_addr = proc.p_uarea; 188 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 189 kp->ki_args = proc.p_args; 190 kp->ki_tracep = proc.p_tracevp; 191 kp->ki_textvp = proc.p_textvp; 192 kp->ki_fd = proc.p_fd; 193 kp->ki_vmspace = proc.p_vmspace; 194 if (proc.p_sigacts != NULL) { 195 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 196 _kvm_err(kd, kd->program, 197 "can't read sigacts at %x", proc.p_sigacts); 198 return (-1); 199 } 200 kp->ki_sigignore = sigacts.ps_sigignore; 201 kp->ki_sigcatch = sigacts.ps_sigcatch; 202 } 203 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 204 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 205 _kvm_err(kd, kd->program, 206 "can't read stats at %x", proc.p_stats); 207 return (-1); 208 } 209 kp->ki_start = pstats.p_start; 210 kp->ki_rusage = pstats.p_ru; 211 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + 212 pstats.p_cru.ru_stime.tv_sec; 213 kp->ki_childtime.tv_usec = 214 pstats.p_cru.ru_utime.tv_usec + 215 pstats.p_cru.ru_stime.tv_usec; 216 } 217 if (proc.p_oppid) 218 kp->ki_ppid = proc.p_oppid; 219 else if (proc.p_pptr) { 220 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 221 _kvm_err(kd, kd->program, 222 "can't read pproc at %x", proc.p_pptr); 223 return (-1); 224 } 225 kp->ki_ppid = pproc.p_pid; 226 } else 227 kp->ki_ppid = 0; 228 if (proc.p_pgrp == NULL) 229 goto nopgrp; 230 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 231 _kvm_err(kd, kd->program, "can't read pgrp at %x", 232 proc.p_pgrp); 233 return (-1); 234 } 235 kp->ki_pgid = pgrp.pg_id; 236 kp->ki_jobc = pgrp.pg_jobc; 237 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 238 _kvm_err(kd, kd->program, "can't read session at %x", 239 pgrp.pg_session); 240 return (-1); 241 } 242 kp->ki_sid = sess.s_sid; 243 (void)memcpy(kp->ki_login, sess.s_login, 244 sizeof(kp->ki_login)); 245 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 246 if (sess.s_leader == p) 247 kp->ki_kiflag |= KI_SLEADER; 248 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 249 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 250 _kvm_err(kd, kd->program, 251 "can't read tty at %x", sess.s_ttyp); 252 return (-1); 253 } 254 kp->ki_tdev = tty.t_dev; 255 if (tty.t_pgrp != NULL) { 256 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 257 _kvm_err(kd, kd->program, 258 "can't read tpgrp at %x", 259 tty.t_pgrp); 260 return (-1); 261 } 262 kp->ki_tpgid = pgrp.pg_id; 263 } else 264 kp->ki_tpgid = -1; 265 if (tty.t_session != NULL) { 266 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 267 _kvm_err(kd, kd->program, 268 "can't read session at %x", 269 tty.t_session); 270 return (-1); 271 } 272 kp->ki_tsid = sess.s_sid; 273 } 274 } else { 275 nopgrp: 276 kp->ki_tdev = NODEV; 277 } 278 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 279 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 280 kp->ki_wmesg, WMESGLEN); 281 282 #ifdef sparc 283 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 284 (char *)&kp->ki_rssize, 285 sizeof(kp->ki_rssize)); 286 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 287 (char *)&kp->ki_tsize, 288 3 * sizeof(kp->ki_rssize)); /* XXX */ 289 #else 290 (void)kvm_read(kd, (u_long)proc.p_vmspace, 291 (char *)&vmspace, sizeof(vmspace)); 292 kp->ki_size = vmspace.vm_map.size; 293 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 294 kp->ki_swrss = vmspace.vm_swrss; 295 kp->ki_tsize = vmspace.vm_tsize; 296 kp->ki_dsize = vmspace.vm_dsize; 297 kp->ki_ssize = vmspace.vm_ssize; 298 #endif 299 300 switch (what) { 301 302 case KERN_PROC_PGRP: 303 if (kp->ki_pgid != (pid_t)arg) 304 continue; 305 break; 306 307 case KERN_PROC_TTY: 308 if ((proc.p_flag & P_CONTROLT) == 0 || 309 kp->ki_tdev != (dev_t)arg) 310 continue; 311 break; 312 } 313 if (proc.p_comm[0] != 0) { 314 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 315 kp->ki_comm[MAXCOMLEN] = 0; 316 } 317 if ((proc.p_state != PRS_ZOMBIE) && 318 (mtd.td_blocked != 0)) { 319 kp->ki_kiflag |= KI_LOCKBLOCK; 320 if (mtd.td_lockname) 321 (void)kvm_read(kd, 322 (u_long)mtd.td_lockname, 323 kp->ki_lockname, LOCKNAMELEN); 324 kp->ki_lockname[LOCKNAMELEN] = 0; 325 } 326 bintime2timeval(&proc.p_runtime, &tv); 327 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 328 kp->ki_pid = proc.p_pid; 329 kp->ki_siglist = proc.p_siglist; 330 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 331 kp->ki_sigmask = mtd.td_sigmask; 332 kp->ki_xstat = proc.p_xstat; 333 kp->ki_acflag = proc.p_acflag; 334 kp->ki_lock = proc.p_lock; 335 if (proc.p_state != PRS_ZOMBIE) { 336 kp->ki_swtime = proc.p_swtime; 337 kp->ki_flag = proc.p_flag; 338 kp->ki_sflag = proc.p_sflag; 339 kp->ki_traceflag = proc.p_traceflag; 340 if (proc.p_state == PRS_NORMAL) { 341 if (TD_ON_RUNQ(&mtd) || 342 TD_CAN_RUN(&mtd) || 343 TD_IS_RUNNING(&mtd)) { 344 kp->ki_stat = SRUN; 345 } else if (mtd.td_state == 346 TDS_INHIBITED) { 347 if (P_SHOULDSTOP(&proc)) { 348 kp->ki_stat = SSTOP; 349 } else if ( 350 TD_IS_SLEEPING(&mtd)) { 351 kp->ki_stat = SSLEEP; 352 } else if (TD_ON_LOCK(&mtd)) { 353 kp->ki_stat = SLOCK; 354 } else { 355 kp->ki_stat = SWAIT; 356 } 357 } 358 } else { 359 kp->ki_stat = SIDL; 360 } 361 /* Stuff from the thread */ 362 kp->ki_pri.pri_level = mtd.td_priority; 363 kp->ki_pri.pri_native = mtd.td_base_pri; 364 kp->ki_lastcpu = mtd.td_lastcpu; 365 kp->ki_wchan = mtd.td_wchan; 366 kp->ki_oncpu = mtd.td_oncpu; 367 368 if (!(proc.p_flag & P_SA)) { 369 /* stuff from the ksegrp */ 370 kp->ki_slptime = mkg.kg_slptime; 371 kp->ki_pri.pri_class = mkg.kg_pri_class; 372 kp->ki_pri.pri_user = mkg.kg_user_pri; 373 kp->ki_nice = mkg.kg_nice; 374 kp->ki_estcpu = mkg.kg_estcpu; 375 376 /* Stuff from the kse */ 377 kp->ki_pctcpu = mke.ke_pctcpu; 378 kp->ki_rqindex = mke.ke_rqindex; 379 } else { 380 kp->ki_tdflags = -1; 381 /* All the rest are 0 for now */ 382 } 383 } else { 384 kp->ki_stat = SZOMB; 385 } 386 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 387 ++bp; 388 ++cnt; 389 } 390 return (cnt); 391 } 392 393 /* 394 * Build proc info array by reading in proc list from a crash dump. 395 * Return number of procs read. maxcnt is the max we will read. 396 */ 397 static int 398 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 399 kvm_t *kd; 400 int what, arg; 401 u_long a_allproc; 402 u_long a_zombproc; 403 int maxcnt; 404 { 405 struct kinfo_proc *bp = kd->procbase; 406 int acnt, zcnt; 407 struct proc *p; 408 409 if (KREAD(kd, a_allproc, &p)) { 410 _kvm_err(kd, kd->program, "cannot read allproc"); 411 return (-1); 412 } 413 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 414 if (acnt < 0) 415 return (acnt); 416 417 if (KREAD(kd, a_zombproc, &p)) { 418 _kvm_err(kd, kd->program, "cannot read zombproc"); 419 return (-1); 420 } 421 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 422 if (zcnt < 0) 423 zcnt = 0; 424 425 return (acnt + zcnt); 426 } 427 428 struct kinfo_proc * 429 kvm_getprocs(kd, op, arg, cnt) 430 kvm_t *kd; 431 int op, arg; 432 int *cnt; 433 { 434 int mib[4], st, nprocs; 435 size_t size; 436 437 if (kd->procbase != 0) { 438 free((void *)kd->procbase); 439 /* 440 * Clear this pointer in case this call fails. Otherwise, 441 * kvm_close() will free it again. 442 */ 443 kd->procbase = 0; 444 } 445 if (ISALIVE(kd)) { 446 size = 0; 447 mib[0] = CTL_KERN; 448 mib[1] = KERN_PROC; 449 mib[2] = op; 450 mib[3] = arg; 451 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 452 if (st == -1) { 453 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 454 return (0); 455 } 456 /* 457 * We can't continue with a size of 0 because we pass 458 * it to realloc() (via _kvm_realloc()), and passing 0 459 * to realloc() results in undefined behavior. 460 */ 461 if (size == 0) { 462 /* 463 * XXX: We should probably return an invalid, 464 * but non-NULL, pointer here so any client 465 * program trying to dereference it will 466 * crash. However, _kvm_freeprocs() calls 467 * free() on kd->procbase if it isn't NULL, 468 * and free()'ing a junk pointer isn't good. 469 * Then again, _kvm_freeprocs() isn't used 470 * anywhere . . . 471 */ 472 kd->procbase = _kvm_malloc(kd, 1); 473 goto liveout; 474 } 475 do { 476 size += size / 10; 477 kd->procbase = (struct kinfo_proc *) 478 _kvm_realloc(kd, kd->procbase, size); 479 if (kd->procbase == 0) 480 return (0); 481 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 482 kd->procbase, &size, NULL, 0); 483 } while (st == -1 && errno == ENOMEM); 484 if (st == -1) { 485 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 486 return (0); 487 } 488 /* 489 * We have to check the size again because sysctl() 490 * may "round up" oldlenp if oldp is NULL; hence it 491 * might've told us that there was data to get when 492 * there really isn't any. 493 */ 494 if (size > 0 && 495 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 496 _kvm_err(kd, kd->program, 497 "kinfo_proc size mismatch (expected %d, got %d)", 498 sizeof(struct kinfo_proc), 499 kd->procbase->ki_structsize); 500 return (0); 501 } 502 liveout: 503 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 504 } else { 505 struct nlist nl[4], *p; 506 507 nl[0].n_name = "_nprocs"; 508 nl[1].n_name = "_allproc"; 509 nl[2].n_name = "_zombproc"; 510 nl[3].n_name = 0; 511 512 if (kvm_nlist(kd, nl) != 0) { 513 for (p = nl; p->n_type != 0; ++p) 514 ; 515 _kvm_err(kd, kd->program, 516 "%s: no such symbol", p->n_name); 517 return (0); 518 } 519 if (KREAD(kd, nl[0].n_value, &nprocs)) { 520 _kvm_err(kd, kd->program, "can't read nprocs"); 521 return (0); 522 } 523 size = nprocs * sizeof(struct kinfo_proc); 524 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 525 if (kd->procbase == 0) 526 return (0); 527 528 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 529 nl[2].n_value, nprocs); 530 #ifdef notdef 531 size = nprocs * sizeof(struct kinfo_proc); 532 (void)realloc(kd->procbase, size); 533 #endif 534 } 535 *cnt = nprocs; 536 return (kd->procbase); 537 } 538 539 void 540 _kvm_freeprocs(kd) 541 kvm_t *kd; 542 { 543 if (kd->procbase) { 544 free(kd->procbase); 545 kd->procbase = 0; 546 } 547 } 548 549 void * 550 _kvm_realloc(kd, p, n) 551 kvm_t *kd; 552 void *p; 553 size_t n; 554 { 555 void *np = (void *)realloc(p, n); 556 557 if (np == 0) { 558 free(p); 559 _kvm_err(kd, kd->program, "out of memory"); 560 } 561 return (np); 562 } 563 564 #ifndef MAX 565 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 566 #endif 567 568 /* 569 * Read in an argument vector from the user address space of process kp. 570 * addr if the user-space base address of narg null-terminated contiguous 571 * strings. This is used to read in both the command arguments and 572 * environment strings. Read at most maxcnt characters of strings. 573 */ 574 static char ** 575 kvm_argv(kd, kp, addr, narg, maxcnt) 576 kvm_t *kd; 577 struct kinfo_proc *kp; 578 u_long addr; 579 int narg; 580 int maxcnt; 581 { 582 char *np, *cp, *ep, *ap; 583 u_long oaddr = -1; 584 int len, cc; 585 char **argv; 586 587 /* 588 * Check that there aren't an unreasonable number of agruments, 589 * and that the address is in user space. 590 */ 591 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 592 return (0); 593 594 /* 595 * kd->argv : work space for fetching the strings from the target 596 * process's space, and is converted for returning to caller 597 */ 598 if (kd->argv == 0) { 599 /* 600 * Try to avoid reallocs. 601 */ 602 kd->argc = MAX(narg + 1, 32); 603 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 604 sizeof(*kd->argv)); 605 if (kd->argv == 0) 606 return (0); 607 } else if (narg + 1 > kd->argc) { 608 kd->argc = MAX(2 * kd->argc, narg + 1); 609 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 610 sizeof(*kd->argv)); 611 if (kd->argv == 0) 612 return (0); 613 } 614 /* 615 * kd->argspc : returned to user, this is where the kd->argv 616 * arrays are left pointing to the collected strings. 617 */ 618 if (kd->argspc == 0) { 619 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 620 if (kd->argspc == 0) 621 return (0); 622 kd->arglen = PAGE_SIZE; 623 } 624 /* 625 * kd->argbuf : used to pull in pages from the target process. 626 * the strings are copied out of here. 627 */ 628 if (kd->argbuf == 0) { 629 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 630 if (kd->argbuf == 0) 631 return (0); 632 } 633 634 /* Pull in the target process'es argv vector */ 635 cc = sizeof(char *) * narg; 636 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 637 return (0); 638 /* 639 * ap : saved start address of string we're working on in kd->argspc 640 * np : pointer to next place to write in kd->argspc 641 * len: length of data in kd->argspc 642 * argv: pointer to the argv vector that we are hunting around the 643 * target process space for, and converting to addresses in 644 * our address space (kd->argspc). 645 */ 646 ap = np = kd->argspc; 647 argv = kd->argv; 648 len = 0; 649 /* 650 * Loop over pages, filling in the argument vector. 651 * Note that the argv strings could be pointing *anywhere* in 652 * the user address space and are no longer contiguous. 653 * Note that *argv is modified when we are going to fetch a string 654 * that crosses a page boundary. We copy the next part of the string 655 * into to "np" and eventually convert the pointer. 656 */ 657 while (argv < kd->argv + narg && *argv != 0) { 658 659 /* get the address that the current argv string is on */ 660 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 661 662 /* is it the same page as the last one? */ 663 if (addr != oaddr) { 664 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 665 PAGE_SIZE) 666 return (0); 667 oaddr = addr; 668 } 669 670 /* offset within the page... kd->argbuf */ 671 addr = (u_long)*argv & (PAGE_SIZE - 1); 672 673 /* cp = start of string, cc = count of chars in this chunk */ 674 cp = kd->argbuf + addr; 675 cc = PAGE_SIZE - addr; 676 677 /* dont get more than asked for by user process */ 678 if (maxcnt > 0 && cc > maxcnt - len) 679 cc = maxcnt - len; 680 681 /* pointer to end of string if we found it in this page */ 682 ep = memchr(cp, '\0', cc); 683 if (ep != 0) 684 cc = ep - cp + 1; 685 /* 686 * at this point, cc is the count of the chars that we are 687 * going to retrieve this time. we may or may not have found 688 * the end of it. (ep points to the null if the end is known) 689 */ 690 691 /* will we exceed the malloc/realloced buffer? */ 692 if (len + cc > kd->arglen) { 693 int off; 694 char **pp; 695 char *op = kd->argspc; 696 697 kd->arglen *= 2; 698 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 699 kd->arglen); 700 if (kd->argspc == 0) 701 return (0); 702 /* 703 * Adjust argv pointers in case realloc moved 704 * the string space. 705 */ 706 off = kd->argspc - op; 707 for (pp = kd->argv; pp < argv; pp++) 708 *pp += off; 709 ap += off; 710 np += off; 711 } 712 /* np = where to put the next part of the string in kd->argspc*/ 713 /* np is kinda redundant.. could use "kd->argspc + len" */ 714 memcpy(np, cp, cc); 715 np += cc; /* inc counters */ 716 len += cc; 717 718 /* 719 * if end of string found, set the *argv pointer to the 720 * saved beginning of string, and advance. argv points to 721 * somewhere in kd->argv.. This is initially relative 722 * to the target process, but when we close it off, we set 723 * it to point in our address space. 724 */ 725 if (ep != 0) { 726 *argv++ = ap; 727 ap = np; 728 } else { 729 /* update the address relative to the target process */ 730 *argv += cc; 731 } 732 733 if (maxcnt > 0 && len >= maxcnt) { 734 /* 735 * We're stopping prematurely. Terminate the 736 * current string. 737 */ 738 if (ep == 0) { 739 *np = '\0'; 740 *argv++ = ap; 741 } 742 break; 743 } 744 } 745 /* Make sure argv is terminated. */ 746 *argv = 0; 747 return (kd->argv); 748 } 749 750 static void 751 ps_str_a(p, addr, n) 752 struct ps_strings *p; 753 u_long *addr; 754 int *n; 755 { 756 *addr = (u_long)p->ps_argvstr; 757 *n = p->ps_nargvstr; 758 } 759 760 static void 761 ps_str_e(p, addr, n) 762 struct ps_strings *p; 763 u_long *addr; 764 int *n; 765 { 766 *addr = (u_long)p->ps_envstr; 767 *n = p->ps_nenvstr; 768 } 769 770 /* 771 * Determine if the proc indicated by p is still active. 772 * This test is not 100% foolproof in theory, but chances of 773 * being wrong are very low. 774 */ 775 static int 776 proc_verify(curkp) 777 struct kinfo_proc *curkp; 778 { 779 struct kinfo_proc newkp; 780 int mib[4]; 781 size_t len; 782 783 mib[0] = CTL_KERN; 784 mib[1] = KERN_PROC; 785 mib[2] = KERN_PROC_PID; 786 mib[3] = curkp->ki_pid; 787 len = sizeof(newkp); 788 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 789 return (0); 790 return (curkp->ki_pid == newkp.ki_pid && 791 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 792 } 793 794 static char ** 795 kvm_doargv(kd, kp, nchr, info) 796 kvm_t *kd; 797 struct kinfo_proc *kp; 798 int nchr; 799 void (*info)(struct ps_strings *, u_long *, int *); 800 { 801 char **ap; 802 u_long addr; 803 int cnt; 804 static struct ps_strings arginfo; 805 static u_long ps_strings; 806 size_t len; 807 808 if (ps_strings == NULL) { 809 len = sizeof(ps_strings); 810 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 811 0) == -1) 812 ps_strings = PS_STRINGS; 813 } 814 815 /* 816 * Pointers are stored at the top of the user stack. 817 */ 818 if (kp->ki_stat == SZOMB || 819 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 820 sizeof(arginfo)) != sizeof(arginfo)) 821 return (0); 822 823 (*info)(&arginfo, &addr, &cnt); 824 if (cnt == 0) 825 return (0); 826 ap = kvm_argv(kd, kp, addr, cnt, nchr); 827 /* 828 * For live kernels, make sure this process didn't go away. 829 */ 830 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 831 ap = 0; 832 return (ap); 833 } 834 835 /* 836 * Get the command args. This code is now machine independent. 837 */ 838 char ** 839 kvm_getargv(kd, kp, nchr) 840 kvm_t *kd; 841 const struct kinfo_proc *kp; 842 int nchr; 843 { 844 int oid[4]; 845 int i; 846 size_t bufsz; 847 static unsigned long buflen; 848 static char *buf, *p; 849 static char **bufp; 850 static int argc; 851 852 if (!ISALIVE(kd)) { 853 _kvm_err(kd, kd->program, 854 "cannot read user space from dead kernel"); 855 return (0); 856 } 857 858 if (!buflen) { 859 bufsz = sizeof(buflen); 860 i = sysctlbyname("kern.ps_arg_cache_limit", 861 &buflen, &bufsz, NULL, 0); 862 if (i == -1) { 863 buflen = 0; 864 } else { 865 buf = malloc(buflen); 866 if (buf == NULL) 867 buflen = 0; 868 argc = 32; 869 bufp = malloc(sizeof(char *) * argc); 870 } 871 } 872 if (buf != NULL) { 873 oid[0] = CTL_KERN; 874 oid[1] = KERN_PROC; 875 oid[2] = KERN_PROC_ARGS; 876 oid[3] = kp->ki_pid; 877 bufsz = buflen; 878 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 879 if (i == 0 && bufsz > 0) { 880 i = 0; 881 p = buf; 882 do { 883 bufp[i++] = p; 884 p += strlen(p) + 1; 885 if (i >= argc) { 886 argc += argc; 887 bufp = realloc(bufp, 888 sizeof(char *) * argc); 889 } 890 } while (p < buf + bufsz); 891 bufp[i++] = 0; 892 return (bufp); 893 } 894 } 895 if (kp->ki_flag & P_SYSTEM) 896 return (NULL); 897 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 898 } 899 900 char ** 901 kvm_getenvv(kd, kp, nchr) 902 kvm_t *kd; 903 const struct kinfo_proc *kp; 904 int nchr; 905 { 906 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 907 } 908 909 /* 910 * Read from user space. The user context is given by p. 911 */ 912 ssize_t 913 kvm_uread(kd, kp, uva, buf, len) 914 kvm_t *kd; 915 struct kinfo_proc *kp; 916 u_long uva; 917 char *buf; 918 size_t len; 919 { 920 char *cp; 921 char procfile[MAXPATHLEN]; 922 ssize_t amount; 923 int fd; 924 925 if (!ISALIVE(kd)) { 926 _kvm_err(kd, kd->program, 927 "cannot read user space from dead kernel"); 928 return (0); 929 } 930 931 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 932 fd = open(procfile, O_RDONLY, 0); 933 if (fd < 0) { 934 _kvm_err(kd, kd->program, "cannot open %s", procfile); 935 close(fd); 936 return (0); 937 } 938 939 cp = buf; 940 while (len > 0) { 941 errno = 0; 942 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 943 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 944 uva, procfile); 945 break; 946 } 947 amount = read(fd, cp, len); 948 if (amount < 0) { 949 _kvm_syserr(kd, kd->program, "error reading %s", 950 procfile); 951 break; 952 } 953 if (amount == 0) { 954 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 955 break; 956 } 957 cp += amount; 958 uva += amount; 959 len -= amount; 960 } 961 962 close(fd); 963 return ((ssize_t)(cp - buf)); 964 } 965