1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if 0 39 #if defined(LIBC_SCCS) && !defined(lint) 40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 41 #endif /* LIBC_SCCS and not lint */ 42 #endif 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 56 #include <sys/ucred.h> 57 #include <sys/user.h> 58 #include <sys/proc.h> 59 #include <sys/exec.h> 60 #include <sys/stat.h> 61 #include <sys/sysent.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <sys/file.h> 65 #include <stdio.h> 66 #include <stdlib.h> 67 #include <unistd.h> 68 #include <nlist.h> 69 #include <kvm.h> 70 71 #include <vm/vm.h> 72 #include <vm/vm_param.h> 73 74 #include <sys/sysctl.h> 75 76 #include <limits.h> 77 #include <memory.h> 78 #include <paths.h> 79 80 #include "kvm_private.h" 81 82 #define KREAD(kd, addr, obj) \ 83 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 84 85 /* 86 * Read proc's from memory file into buffer bp, which has space to hold 87 * at most maxcnt procs. 88 */ 89 static int 90 kvm_proclist(kd, what, arg, p, bp, maxcnt) 91 kvm_t *kd; 92 int what, arg; 93 struct proc *p; 94 struct kinfo_proc *bp; 95 int maxcnt; 96 { 97 int cnt = 0; 98 struct kinfo_proc kinfo_proc, *kp; 99 struct pgrp pgrp; 100 struct session sess; 101 struct tty tty; 102 struct vmspace vmspace; 103 struct sigacts sigacts; 104 struct pstats pstats; 105 struct ucred ucred; 106 struct thread mtd; 107 struct kse mke; 108 struct ksegrp mkg; 109 struct proc proc; 110 struct proc pproc; 111 struct timeval tv; 112 struct sysentvec sysent; 113 char svname[KI_EMULNAMELEN]; 114 115 kp = &kinfo_proc; 116 kp->ki_structsize = sizeof(kinfo_proc); 117 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 118 memset(kp, 0, sizeof *kp); 119 if (KREAD(kd, (u_long)p, &proc)) { 120 _kvm_err(kd, kd->program, "can't read proc at %x", p); 121 return (-1); 122 } 123 if (proc.p_state != PRS_ZOMBIE) { 124 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 125 &mtd)) { 126 _kvm_err(kd, kd->program, 127 "can't read thread at %x", 128 TAILQ_FIRST(&proc.p_threads)); 129 return (-1); 130 } 131 if ((proc.p_flag & P_SA) == 0) { 132 if (KREAD(kd, 133 (u_long)TAILQ_FIRST(&proc.p_ksegrps), 134 &mkg)) { 135 _kvm_err(kd, kd->program, 136 "can't read ksegrp at %x", 137 TAILQ_FIRST(&proc.p_ksegrps)); 138 return (-1); 139 } 140 if (KREAD(kd, 141 (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) { 142 _kvm_err(kd, kd->program, 143 "can't read kse at %x", 144 TAILQ_FIRST(&mkg.kg_kseq)); 145 return (-1); 146 } 147 } 148 } 149 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 150 kp->ki_ruid = ucred.cr_ruid; 151 kp->ki_svuid = ucred.cr_svuid; 152 kp->ki_rgid = ucred.cr_rgid; 153 kp->ki_svgid = ucred.cr_svgid; 154 kp->ki_ngroups = ucred.cr_ngroups; 155 bcopy(ucred.cr_groups, kp->ki_groups, 156 NGROUPS * sizeof(gid_t)); 157 kp->ki_uid = ucred.cr_uid; 158 } 159 160 switch(what & ~KERN_PROC_INC_THREAD) { 161 162 case KERN_PROC_GID: 163 if (kp->ki_groups[0] != (gid_t)arg) 164 continue; 165 break; 166 167 case KERN_PROC_PID: 168 if (proc.p_pid != (pid_t)arg) 169 continue; 170 break; 171 172 case KERN_PROC_RGID: 173 if (kp->ki_rgid != (gid_t)arg) 174 continue; 175 break; 176 177 case KERN_PROC_UID: 178 if (kp->ki_uid != (uid_t)arg) 179 continue; 180 break; 181 182 case KERN_PROC_RUID: 183 if (kp->ki_ruid != (uid_t)arg) 184 continue; 185 break; 186 } 187 /* 188 * We're going to add another proc to the set. If this 189 * will overflow the buffer, assume the reason is because 190 * nprocs (or the proc list) is corrupt and declare an error. 191 */ 192 if (cnt >= maxcnt) { 193 _kvm_err(kd, kd->program, "nprocs corrupt"); 194 return (-1); 195 } 196 /* 197 * gather kinfo_proc 198 */ 199 kp->ki_paddr = p; 200 kp->ki_addr = proc.p_uarea; 201 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 202 kp->ki_args = proc.p_args; 203 kp->ki_tracep = proc.p_tracevp; 204 kp->ki_textvp = proc.p_textvp; 205 kp->ki_fd = proc.p_fd; 206 kp->ki_vmspace = proc.p_vmspace; 207 if (proc.p_sigacts != NULL) { 208 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 209 _kvm_err(kd, kd->program, 210 "can't read sigacts at %x", proc.p_sigacts); 211 return (-1); 212 } 213 kp->ki_sigignore = sigacts.ps_sigignore; 214 kp->ki_sigcatch = sigacts.ps_sigcatch; 215 } 216 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 217 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 218 _kvm_err(kd, kd->program, 219 "can't read stats at %x", proc.p_stats); 220 return (-1); 221 } 222 kp->ki_start = pstats.p_start; 223 kp->ki_rusage = pstats.p_ru; 224 kp->ki_childstime = pstats.p_cru.ru_stime; 225 kp->ki_childutime = pstats.p_cru.ru_utime; 226 /* Some callers want child-times in a single value */ 227 timeradd(&kp->ki_childstime, &kp->ki_childutime, 228 &kp->ki_childtime); 229 } 230 if (proc.p_oppid) 231 kp->ki_ppid = proc.p_oppid; 232 else if (proc.p_pptr) { 233 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 234 _kvm_err(kd, kd->program, 235 "can't read pproc at %x", proc.p_pptr); 236 return (-1); 237 } 238 kp->ki_ppid = pproc.p_pid; 239 } else 240 kp->ki_ppid = 0; 241 if (proc.p_pgrp == NULL) 242 goto nopgrp; 243 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 244 _kvm_err(kd, kd->program, "can't read pgrp at %x", 245 proc.p_pgrp); 246 return (-1); 247 } 248 kp->ki_pgid = pgrp.pg_id; 249 kp->ki_jobc = pgrp.pg_jobc; 250 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 251 _kvm_err(kd, kd->program, "can't read session at %x", 252 pgrp.pg_session); 253 return (-1); 254 } 255 kp->ki_sid = sess.s_sid; 256 (void)memcpy(kp->ki_login, sess.s_login, 257 sizeof(kp->ki_login)); 258 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 259 if (sess.s_leader == p) 260 kp->ki_kiflag |= KI_SLEADER; 261 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 262 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 263 _kvm_err(kd, kd->program, 264 "can't read tty at %x", sess.s_ttyp); 265 return (-1); 266 } 267 kp->ki_tdev = tty.t_dev; /* XXX: wrong */ 268 if (tty.t_pgrp != NULL) { 269 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 270 _kvm_err(kd, kd->program, 271 "can't read tpgrp at %x", 272 tty.t_pgrp); 273 return (-1); 274 } 275 kp->ki_tpgid = pgrp.pg_id; 276 } else 277 kp->ki_tpgid = -1; 278 if (tty.t_session != NULL) { 279 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 280 _kvm_err(kd, kd->program, 281 "can't read session at %x", 282 tty.t_session); 283 return (-1); 284 } 285 kp->ki_tsid = sess.s_sid; 286 } 287 } else { 288 nopgrp: 289 kp->ki_tdev = NODEV; 290 } 291 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 292 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 293 kp->ki_wmesg, WMESGLEN); 294 295 (void)kvm_read(kd, (u_long)proc.p_vmspace, 296 (char *)&vmspace, sizeof(vmspace)); 297 kp->ki_size = vmspace.vm_map.size; 298 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 299 kp->ki_swrss = vmspace.vm_swrss; 300 kp->ki_tsize = vmspace.vm_tsize; 301 kp->ki_dsize = vmspace.vm_dsize; 302 kp->ki_ssize = vmspace.vm_ssize; 303 304 switch (what & ~KERN_PROC_INC_THREAD) { 305 306 case KERN_PROC_PGRP: 307 if (kp->ki_pgid != (pid_t)arg) 308 continue; 309 break; 310 311 case KERN_PROC_SESSION: 312 if (kp->ki_sid != (pid_t)arg) 313 continue; 314 break; 315 316 case KERN_PROC_TTY: 317 if ((proc.p_flag & P_CONTROLT) == 0 || 318 kp->ki_tdev != (dev_t)arg) 319 continue; 320 break; 321 } 322 if (proc.p_comm[0] != 0) 323 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 324 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 325 sizeof(sysent)); 326 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 327 sizeof(svname)); 328 if (svname[0] != 0) 329 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 330 if ((proc.p_state != PRS_ZOMBIE) && 331 (mtd.td_blocked != 0)) { 332 kp->ki_kiflag |= KI_LOCKBLOCK; 333 if (mtd.td_lockname) 334 (void)kvm_read(kd, 335 (u_long)mtd.td_lockname, 336 kp->ki_lockname, LOCKNAMELEN); 337 kp->ki_lockname[LOCKNAMELEN] = 0; 338 } 339 bintime2timeval(&proc.p_runtime, &tv); 340 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 341 kp->ki_pid = proc.p_pid; 342 kp->ki_siglist = proc.p_siglist; 343 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 344 kp->ki_sigmask = mtd.td_sigmask; 345 kp->ki_xstat = proc.p_xstat; 346 kp->ki_acflag = proc.p_acflag; 347 kp->ki_lock = proc.p_lock; 348 if (proc.p_state != PRS_ZOMBIE) { 349 kp->ki_swtime = proc.p_swtime; 350 kp->ki_flag = proc.p_flag; 351 kp->ki_sflag = proc.p_sflag; 352 kp->ki_nice = proc.p_nice; 353 kp->ki_traceflag = proc.p_traceflag; 354 if (proc.p_state == PRS_NORMAL) { 355 if (TD_ON_RUNQ(&mtd) || 356 TD_CAN_RUN(&mtd) || 357 TD_IS_RUNNING(&mtd)) { 358 kp->ki_stat = SRUN; 359 } else if (mtd.td_state == 360 TDS_INHIBITED) { 361 if (P_SHOULDSTOP(&proc)) { 362 kp->ki_stat = SSTOP; 363 } else if ( 364 TD_IS_SLEEPING(&mtd)) { 365 kp->ki_stat = SSLEEP; 366 } else if (TD_ON_LOCK(&mtd)) { 367 kp->ki_stat = SLOCK; 368 } else { 369 kp->ki_stat = SWAIT; 370 } 371 } 372 } else { 373 kp->ki_stat = SIDL; 374 } 375 /* Stuff from the thread */ 376 kp->ki_pri.pri_level = mtd.td_priority; 377 kp->ki_pri.pri_native = mtd.td_base_pri; 378 kp->ki_lastcpu = mtd.td_lastcpu; 379 kp->ki_wchan = mtd.td_wchan; 380 kp->ki_oncpu = mtd.td_oncpu; 381 382 if (!(proc.p_flag & P_SA)) { 383 /* stuff from the ksegrp */ 384 kp->ki_slptime = mkg.kg_slptime; 385 kp->ki_pri.pri_class = mkg.kg_pri_class; 386 kp->ki_pri.pri_user = mkg.kg_user_pri; 387 kp->ki_estcpu = mkg.kg_estcpu; 388 389 /* Stuff from the kse */ 390 kp->ki_pctcpu = mke.ke_pctcpu; 391 kp->ki_rqindex = mke.ke_rqindex; 392 } else { 393 kp->ki_tdflags = -1; 394 /* All the rest are 0 for now */ 395 } 396 } else { 397 kp->ki_stat = SZOMB; 398 } 399 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 400 ++bp; 401 ++cnt; 402 } 403 return (cnt); 404 } 405 406 /* 407 * Build proc info array by reading in proc list from a crash dump. 408 * Return number of procs read. maxcnt is the max we will read. 409 */ 410 static int 411 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 412 kvm_t *kd; 413 int what, arg; 414 u_long a_allproc; 415 u_long a_zombproc; 416 int maxcnt; 417 { 418 struct kinfo_proc *bp = kd->procbase; 419 int acnt, zcnt; 420 struct proc *p; 421 422 if (KREAD(kd, a_allproc, &p)) { 423 _kvm_err(kd, kd->program, "cannot read allproc"); 424 return (-1); 425 } 426 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 427 if (acnt < 0) 428 return (acnt); 429 430 if (KREAD(kd, a_zombproc, &p)) { 431 _kvm_err(kd, kd->program, "cannot read zombproc"); 432 return (-1); 433 } 434 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 435 if (zcnt < 0) 436 zcnt = 0; 437 438 return (acnt + zcnt); 439 } 440 441 struct kinfo_proc * 442 kvm_getprocs(kd, op, arg, cnt) 443 kvm_t *kd; 444 int op, arg; 445 int *cnt; 446 { 447 int mib[4], st, nprocs; 448 size_t size; 449 int temp_op; 450 451 if (kd->procbase != 0) { 452 free((void *)kd->procbase); 453 /* 454 * Clear this pointer in case this call fails. Otherwise, 455 * kvm_close() will free it again. 456 */ 457 kd->procbase = 0; 458 } 459 if (ISALIVE(kd)) { 460 size = 0; 461 mib[0] = CTL_KERN; 462 mib[1] = KERN_PROC; 463 mib[2] = op; 464 mib[3] = arg; 465 temp_op = op & ~KERN_PROC_INC_THREAD; 466 st = sysctl(mib, 467 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 468 3 : 4, NULL, &size, NULL, 0); 469 if (st == -1) { 470 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 471 return (0); 472 } 473 /* 474 * We can't continue with a size of 0 because we pass 475 * it to realloc() (via _kvm_realloc()), and passing 0 476 * to realloc() results in undefined behavior. 477 */ 478 if (size == 0) { 479 /* 480 * XXX: We should probably return an invalid, 481 * but non-NULL, pointer here so any client 482 * program trying to dereference it will 483 * crash. However, _kvm_freeprocs() calls 484 * free() on kd->procbase if it isn't NULL, 485 * and free()'ing a junk pointer isn't good. 486 * Then again, _kvm_freeprocs() isn't used 487 * anywhere . . . 488 */ 489 kd->procbase = _kvm_malloc(kd, 1); 490 goto liveout; 491 } 492 do { 493 size += size / 10; 494 kd->procbase = (struct kinfo_proc *) 495 _kvm_realloc(kd, kd->procbase, size); 496 if (kd->procbase == 0) 497 return (0); 498 st = sysctl(mib, temp_op == KERN_PROC_ALL || 499 temp_op == KERN_PROC_PROC ? 3 : 4, 500 kd->procbase, &size, NULL, 0); 501 } while (st == -1 && errno == ENOMEM); 502 if (st == -1) { 503 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 504 return (0); 505 } 506 /* 507 * We have to check the size again because sysctl() 508 * may "round up" oldlenp if oldp is NULL; hence it 509 * might've told us that there was data to get when 510 * there really isn't any. 511 */ 512 if (size > 0 && 513 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 514 _kvm_err(kd, kd->program, 515 "kinfo_proc size mismatch (expected %d, got %d)", 516 sizeof(struct kinfo_proc), 517 kd->procbase->ki_structsize); 518 return (0); 519 } 520 liveout: 521 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 522 } else { 523 struct nlist nl[4], *p; 524 525 nl[0].n_name = "_nprocs"; 526 nl[1].n_name = "_allproc"; 527 nl[2].n_name = "_zombproc"; 528 nl[3].n_name = 0; 529 530 if (kvm_nlist(kd, nl) != 0) { 531 for (p = nl; p->n_type != 0; ++p) 532 ; 533 _kvm_err(kd, kd->program, 534 "%s: no such symbol", p->n_name); 535 return (0); 536 } 537 if (KREAD(kd, nl[0].n_value, &nprocs)) { 538 _kvm_err(kd, kd->program, "can't read nprocs"); 539 return (0); 540 } 541 size = nprocs * sizeof(struct kinfo_proc); 542 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 543 if (kd->procbase == 0) 544 return (0); 545 546 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 547 nl[2].n_value, nprocs); 548 #ifdef notdef 549 size = nprocs * sizeof(struct kinfo_proc); 550 (void)realloc(kd->procbase, size); 551 #endif 552 } 553 *cnt = nprocs; 554 return (kd->procbase); 555 } 556 557 void 558 _kvm_freeprocs(kd) 559 kvm_t *kd; 560 { 561 if (kd->procbase) { 562 free(kd->procbase); 563 kd->procbase = 0; 564 } 565 } 566 567 void * 568 _kvm_realloc(kd, p, n) 569 kvm_t *kd; 570 void *p; 571 size_t n; 572 { 573 void *np = (void *)realloc(p, n); 574 575 if (np == 0) { 576 free(p); 577 _kvm_err(kd, kd->program, "out of memory"); 578 } 579 return (np); 580 } 581 582 #ifndef MAX 583 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 584 #endif 585 586 /* 587 * Read in an argument vector from the user address space of process kp. 588 * addr if the user-space base address of narg null-terminated contiguous 589 * strings. This is used to read in both the command arguments and 590 * environment strings. Read at most maxcnt characters of strings. 591 */ 592 static char ** 593 kvm_argv(kd, kp, addr, narg, maxcnt) 594 kvm_t *kd; 595 struct kinfo_proc *kp; 596 u_long addr; 597 int narg; 598 int maxcnt; 599 { 600 char *np, *cp, *ep, *ap; 601 u_long oaddr = -1; 602 int len, cc; 603 char **argv; 604 605 /* 606 * Check that there aren't an unreasonable number of agruments, 607 * and that the address is in user space. 608 */ 609 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 610 return (0); 611 612 /* 613 * kd->argv : work space for fetching the strings from the target 614 * process's space, and is converted for returning to caller 615 */ 616 if (kd->argv == 0) { 617 /* 618 * Try to avoid reallocs. 619 */ 620 kd->argc = MAX(narg + 1, 32); 621 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 622 sizeof(*kd->argv)); 623 if (kd->argv == 0) 624 return (0); 625 } else if (narg + 1 > kd->argc) { 626 kd->argc = MAX(2 * kd->argc, narg + 1); 627 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 628 sizeof(*kd->argv)); 629 if (kd->argv == 0) 630 return (0); 631 } 632 /* 633 * kd->argspc : returned to user, this is where the kd->argv 634 * arrays are left pointing to the collected strings. 635 */ 636 if (kd->argspc == 0) { 637 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 638 if (kd->argspc == 0) 639 return (0); 640 kd->arglen = PAGE_SIZE; 641 } 642 /* 643 * kd->argbuf : used to pull in pages from the target process. 644 * the strings are copied out of here. 645 */ 646 if (kd->argbuf == 0) { 647 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 648 if (kd->argbuf == 0) 649 return (0); 650 } 651 652 /* Pull in the target process'es argv vector */ 653 cc = sizeof(char *) * narg; 654 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 655 return (0); 656 /* 657 * ap : saved start address of string we're working on in kd->argspc 658 * np : pointer to next place to write in kd->argspc 659 * len: length of data in kd->argspc 660 * argv: pointer to the argv vector that we are hunting around the 661 * target process space for, and converting to addresses in 662 * our address space (kd->argspc). 663 */ 664 ap = np = kd->argspc; 665 argv = kd->argv; 666 len = 0; 667 /* 668 * Loop over pages, filling in the argument vector. 669 * Note that the argv strings could be pointing *anywhere* in 670 * the user address space and are no longer contiguous. 671 * Note that *argv is modified when we are going to fetch a string 672 * that crosses a page boundary. We copy the next part of the string 673 * into to "np" and eventually convert the pointer. 674 */ 675 while (argv < kd->argv + narg && *argv != 0) { 676 677 /* get the address that the current argv string is on */ 678 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 679 680 /* is it the same page as the last one? */ 681 if (addr != oaddr) { 682 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 683 PAGE_SIZE) 684 return (0); 685 oaddr = addr; 686 } 687 688 /* offset within the page... kd->argbuf */ 689 addr = (u_long)*argv & (PAGE_SIZE - 1); 690 691 /* cp = start of string, cc = count of chars in this chunk */ 692 cp = kd->argbuf + addr; 693 cc = PAGE_SIZE - addr; 694 695 /* dont get more than asked for by user process */ 696 if (maxcnt > 0 && cc > maxcnt - len) 697 cc = maxcnt - len; 698 699 /* pointer to end of string if we found it in this page */ 700 ep = memchr(cp, '\0', cc); 701 if (ep != 0) 702 cc = ep - cp + 1; 703 /* 704 * at this point, cc is the count of the chars that we are 705 * going to retrieve this time. we may or may not have found 706 * the end of it. (ep points to the null if the end is known) 707 */ 708 709 /* will we exceed the malloc/realloced buffer? */ 710 if (len + cc > kd->arglen) { 711 int off; 712 char **pp; 713 char *op = kd->argspc; 714 715 kd->arglen *= 2; 716 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 717 kd->arglen); 718 if (kd->argspc == 0) 719 return (0); 720 /* 721 * Adjust argv pointers in case realloc moved 722 * the string space. 723 */ 724 off = kd->argspc - op; 725 for (pp = kd->argv; pp < argv; pp++) 726 *pp += off; 727 ap += off; 728 np += off; 729 } 730 /* np = where to put the next part of the string in kd->argspc*/ 731 /* np is kinda redundant.. could use "kd->argspc + len" */ 732 memcpy(np, cp, cc); 733 np += cc; /* inc counters */ 734 len += cc; 735 736 /* 737 * if end of string found, set the *argv pointer to the 738 * saved beginning of string, and advance. argv points to 739 * somewhere in kd->argv.. This is initially relative 740 * to the target process, but when we close it off, we set 741 * it to point in our address space. 742 */ 743 if (ep != 0) { 744 *argv++ = ap; 745 ap = np; 746 } else { 747 /* update the address relative to the target process */ 748 *argv += cc; 749 } 750 751 if (maxcnt > 0 && len >= maxcnt) { 752 /* 753 * We're stopping prematurely. Terminate the 754 * current string. 755 */ 756 if (ep == 0) { 757 *np = '\0'; 758 *argv++ = ap; 759 } 760 break; 761 } 762 } 763 /* Make sure argv is terminated. */ 764 *argv = 0; 765 return (kd->argv); 766 } 767 768 static void 769 ps_str_a(p, addr, n) 770 struct ps_strings *p; 771 u_long *addr; 772 int *n; 773 { 774 *addr = (u_long)p->ps_argvstr; 775 *n = p->ps_nargvstr; 776 } 777 778 static void 779 ps_str_e(p, addr, n) 780 struct ps_strings *p; 781 u_long *addr; 782 int *n; 783 { 784 *addr = (u_long)p->ps_envstr; 785 *n = p->ps_nenvstr; 786 } 787 788 /* 789 * Determine if the proc indicated by p is still active. 790 * This test is not 100% foolproof in theory, but chances of 791 * being wrong are very low. 792 */ 793 static int 794 proc_verify(curkp) 795 struct kinfo_proc *curkp; 796 { 797 struct kinfo_proc newkp; 798 int mib[4]; 799 size_t len; 800 801 mib[0] = CTL_KERN; 802 mib[1] = KERN_PROC; 803 mib[2] = KERN_PROC_PID; 804 mib[3] = curkp->ki_pid; 805 len = sizeof(newkp); 806 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 807 return (0); 808 return (curkp->ki_pid == newkp.ki_pid && 809 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 810 } 811 812 static char ** 813 kvm_doargv(kd, kp, nchr, info) 814 kvm_t *kd; 815 struct kinfo_proc *kp; 816 int nchr; 817 void (*info)(struct ps_strings *, u_long *, int *); 818 { 819 char **ap; 820 u_long addr; 821 int cnt; 822 static struct ps_strings arginfo; 823 static u_long ps_strings; 824 size_t len; 825 826 if (ps_strings == 0) { 827 len = sizeof(ps_strings); 828 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 829 0) == -1) 830 ps_strings = PS_STRINGS; 831 } 832 833 /* 834 * Pointers are stored at the top of the user stack. 835 */ 836 if (kp->ki_stat == SZOMB || 837 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 838 sizeof(arginfo)) != sizeof(arginfo)) 839 return (0); 840 841 (*info)(&arginfo, &addr, &cnt); 842 if (cnt == 0) 843 return (0); 844 ap = kvm_argv(kd, kp, addr, cnt, nchr); 845 /* 846 * For live kernels, make sure this process didn't go away. 847 */ 848 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 849 ap = 0; 850 return (ap); 851 } 852 853 /* 854 * Get the command args. This code is now machine independent. 855 */ 856 char ** 857 kvm_getargv(kd, kp, nchr) 858 kvm_t *kd; 859 const struct kinfo_proc *kp; 860 int nchr; 861 { 862 int oid[4]; 863 int i; 864 size_t bufsz; 865 static unsigned long buflen; 866 static char *buf, *p; 867 static char **bufp; 868 static int argc; 869 870 if (!ISALIVE(kd)) { 871 _kvm_err(kd, kd->program, 872 "cannot read user space from dead kernel"); 873 return (0); 874 } 875 876 if (!buflen) { 877 bufsz = sizeof(buflen); 878 i = sysctlbyname("kern.ps_arg_cache_limit", 879 &buflen, &bufsz, NULL, 0); 880 if (i == -1) { 881 buflen = 0; 882 } else { 883 buf = malloc(buflen); 884 if (buf == NULL) 885 buflen = 0; 886 argc = 32; 887 bufp = malloc(sizeof(char *) * argc); 888 } 889 } 890 if (buf != NULL) { 891 oid[0] = CTL_KERN; 892 oid[1] = KERN_PROC; 893 oid[2] = KERN_PROC_ARGS; 894 oid[3] = kp->ki_pid; 895 bufsz = buflen; 896 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 897 if (i == 0 && bufsz > 0) { 898 i = 0; 899 p = buf; 900 do { 901 bufp[i++] = p; 902 p += strlen(p) + 1; 903 if (i >= argc) { 904 argc += argc; 905 bufp = realloc(bufp, 906 sizeof(char *) * argc); 907 } 908 } while (p < buf + bufsz); 909 bufp[i++] = 0; 910 return (bufp); 911 } 912 } 913 if (kp->ki_flag & P_SYSTEM) 914 return (NULL); 915 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 916 } 917 918 char ** 919 kvm_getenvv(kd, kp, nchr) 920 kvm_t *kd; 921 const struct kinfo_proc *kp; 922 int nchr; 923 { 924 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 925 } 926 927 /* 928 * Read from user space. The user context is given by p. 929 */ 930 ssize_t 931 kvm_uread(kd, kp, uva, buf, len) 932 kvm_t *kd; 933 struct kinfo_proc *kp; 934 u_long uva; 935 char *buf; 936 size_t len; 937 { 938 char *cp; 939 char procfile[MAXPATHLEN]; 940 ssize_t amount; 941 int fd; 942 943 if (!ISALIVE(kd)) { 944 _kvm_err(kd, kd->program, 945 "cannot read user space from dead kernel"); 946 return (0); 947 } 948 949 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 950 fd = open(procfile, O_RDONLY, 0); 951 if (fd < 0) { 952 _kvm_err(kd, kd->program, "cannot open %s", procfile); 953 close(fd); 954 return (0); 955 } 956 957 cp = buf; 958 while (len > 0) { 959 errno = 0; 960 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 961 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 962 uva, procfile); 963 break; 964 } 965 amount = read(fd, cp, len); 966 if (amount < 0) { 967 _kvm_syserr(kd, kd->program, "error reading %s", 968 procfile); 969 break; 970 } 971 if (amount == 0) { 972 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 973 break; 974 } 975 cp += amount; 976 uva += amount; 977 len -= amount; 978 } 979 980 close(fd); 981 return ((ssize_t)(cp - buf)); 982 } 983