1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 38 #if 0 39 #if defined(LIBC_SCCS) && !defined(lint) 40 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 41 #endif /* LIBC_SCCS and not lint */ 42 #endif 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 /* 48 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 49 * users of this code, so we've factored it out into a separate module. 50 * Thus, we keep this grunge out of the other kvm applications (i.e., 51 * most other applications are interested only in open/close/read/nlist). 52 */ 53 54 #include <sys/param.h> 55 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 56 #include <sys/ucred.h> 57 #include <sys/user.h> 58 #include <sys/proc.h> 59 #include <sys/exec.h> 60 #include <sys/stat.h> 61 #include <sys/sysent.h> 62 #include <sys/ioctl.h> 63 #include <sys/tty.h> 64 #include <sys/file.h> 65 #include <sys/conf.h> 66 #include <stdio.h> 67 #include <stdlib.h> 68 #include <unistd.h> 69 #include <nlist.h> 70 #include <kvm.h> 71 72 #include <vm/vm.h> 73 #include <vm/vm_param.h> 74 75 #include <sys/sysctl.h> 76 77 #include <limits.h> 78 #include <memory.h> 79 #include <paths.h> 80 81 #include "kvm_private.h" 82 83 #define KREAD(kd, addr, obj) \ 84 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 85 86 /* 87 * Read proc's from memory file into buffer bp, which has space to hold 88 * at most maxcnt procs. 89 */ 90 static int 91 kvm_proclist(kd, what, arg, p, bp, maxcnt) 92 kvm_t *kd; 93 int what, arg; 94 struct proc *p; 95 struct kinfo_proc *bp; 96 int maxcnt; 97 { 98 int cnt = 0; 99 struct kinfo_proc kinfo_proc, *kp; 100 struct pgrp pgrp; 101 struct session sess; 102 struct cdev t_cdev; 103 struct tty tty; 104 struct vmspace vmspace; 105 struct sigacts sigacts; 106 struct pstats pstats; 107 struct ucred ucred; 108 struct thread mtd; 109 /*struct kse mke;*/ 110 struct ksegrp mkg; 111 struct proc proc; 112 struct proc pproc; 113 struct timeval tv; 114 struct sysentvec sysent; 115 char svname[KI_EMULNAMELEN]; 116 117 kp = &kinfo_proc; 118 kp->ki_structsize = sizeof(kinfo_proc); 119 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 120 memset(kp, 0, sizeof *kp); 121 if (KREAD(kd, (u_long)p, &proc)) { 122 _kvm_err(kd, kd->program, "can't read proc at %x", p); 123 return (-1); 124 } 125 if (proc.p_state != PRS_ZOMBIE) { 126 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 127 &mtd)) { 128 _kvm_err(kd, kd->program, 129 "can't read thread at %x", 130 TAILQ_FIRST(&proc.p_threads)); 131 return (-1); 132 } 133 if ((proc.p_flag & P_SA) == 0) { 134 if (KREAD(kd, 135 (u_long)TAILQ_FIRST(&proc.p_ksegrps), 136 &mkg)) { 137 _kvm_err(kd, kd->program, 138 "can't read ksegrp at %x", 139 TAILQ_FIRST(&proc.p_ksegrps)); 140 return (-1); 141 } 142 #if 0 143 if (KREAD(kd, 144 (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) { 145 _kvm_err(kd, kd->program, 146 "can't read kse at %x", 147 TAILQ_FIRST(&mkg.kg_kseq)); 148 return (-1); 149 } 150 #endif 151 } 152 } 153 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 154 kp->ki_ruid = ucred.cr_ruid; 155 kp->ki_svuid = ucred.cr_svuid; 156 kp->ki_rgid = ucred.cr_rgid; 157 kp->ki_svgid = ucred.cr_svgid; 158 kp->ki_ngroups = ucred.cr_ngroups; 159 bcopy(ucred.cr_groups, kp->ki_groups, 160 NGROUPS * sizeof(gid_t)); 161 kp->ki_uid = ucred.cr_uid; 162 } 163 164 switch(what & ~KERN_PROC_INC_THREAD) { 165 166 case KERN_PROC_GID: 167 if (kp->ki_groups[0] != (gid_t)arg) 168 continue; 169 break; 170 171 case KERN_PROC_PID: 172 if (proc.p_pid != (pid_t)arg) 173 continue; 174 break; 175 176 case KERN_PROC_RGID: 177 if (kp->ki_rgid != (gid_t)arg) 178 continue; 179 break; 180 181 case KERN_PROC_UID: 182 if (kp->ki_uid != (uid_t)arg) 183 continue; 184 break; 185 186 case KERN_PROC_RUID: 187 if (kp->ki_ruid != (uid_t)arg) 188 continue; 189 break; 190 } 191 /* 192 * We're going to add another proc to the set. If this 193 * will overflow the buffer, assume the reason is because 194 * nprocs (or the proc list) is corrupt and declare an error. 195 */ 196 if (cnt >= maxcnt) { 197 _kvm_err(kd, kd->program, "nprocs corrupt"); 198 return (-1); 199 } 200 /* 201 * gather kinfo_proc 202 */ 203 kp->ki_paddr = p; 204 kp->ki_addr = 0; /* XXX uarea */ 205 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 206 kp->ki_args = proc.p_args; 207 kp->ki_tracep = proc.p_tracevp; 208 kp->ki_textvp = proc.p_textvp; 209 kp->ki_fd = proc.p_fd; 210 kp->ki_vmspace = proc.p_vmspace; 211 if (proc.p_sigacts != NULL) { 212 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 213 _kvm_err(kd, kd->program, 214 "can't read sigacts at %x", proc.p_sigacts); 215 return (-1); 216 } 217 kp->ki_sigignore = sigacts.ps_sigignore; 218 kp->ki_sigcatch = sigacts.ps_sigcatch; 219 } 220 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 221 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 222 _kvm_err(kd, kd->program, 223 "can't read stats at %x", proc.p_stats); 224 return (-1); 225 } 226 kp->ki_start = pstats.p_start; 227 228 /* 229 * XXX: The times here are probably zero and need 230 * to be calculated from the raw data in p_rux and 231 * p_crux. 232 */ 233 kp->ki_rusage = pstats.p_ru; 234 kp->ki_childstime = pstats.p_cru.ru_stime; 235 kp->ki_childutime = pstats.p_cru.ru_utime; 236 /* Some callers want child-times in a single value */ 237 timeradd(&kp->ki_childstime, &kp->ki_childutime, 238 &kp->ki_childtime); 239 } 240 if (proc.p_oppid) 241 kp->ki_ppid = proc.p_oppid; 242 else if (proc.p_pptr) { 243 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 244 _kvm_err(kd, kd->program, 245 "can't read pproc at %x", proc.p_pptr); 246 return (-1); 247 } 248 kp->ki_ppid = pproc.p_pid; 249 } else 250 kp->ki_ppid = 0; 251 if (proc.p_pgrp == NULL) 252 goto nopgrp; 253 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 254 _kvm_err(kd, kd->program, "can't read pgrp at %x", 255 proc.p_pgrp); 256 return (-1); 257 } 258 kp->ki_pgid = pgrp.pg_id; 259 kp->ki_jobc = pgrp.pg_jobc; 260 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 261 _kvm_err(kd, kd->program, "can't read session at %x", 262 pgrp.pg_session); 263 return (-1); 264 } 265 kp->ki_sid = sess.s_sid; 266 (void)memcpy(kp->ki_login, sess.s_login, 267 sizeof(kp->ki_login)); 268 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 269 if (sess.s_leader == p) 270 kp->ki_kiflag |= KI_SLEADER; 271 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 272 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 273 _kvm_err(kd, kd->program, 274 "can't read tty at %x", sess.s_ttyp); 275 return (-1); 276 } 277 if (tty.t_dev != NULL) { 278 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 279 _kvm_err(kd, kd->program, 280 "can't read cdev at %x", 281 tty.t_dev); 282 return (-1); 283 } 284 kp->ki_tdev = t_cdev.si_udev; 285 } 286 if (tty.t_pgrp != NULL) { 287 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 288 _kvm_err(kd, kd->program, 289 "can't read tpgrp at %x", 290 tty.t_pgrp); 291 return (-1); 292 } 293 kp->ki_tpgid = pgrp.pg_id; 294 } else 295 kp->ki_tpgid = -1; 296 if (tty.t_session != NULL) { 297 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 298 _kvm_err(kd, kd->program, 299 "can't read session at %x", 300 tty.t_session); 301 return (-1); 302 } 303 kp->ki_tsid = sess.s_sid; 304 } 305 } else { 306 nopgrp: 307 kp->ki_tdev = NODEV; 308 } 309 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 310 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 311 kp->ki_wmesg, WMESGLEN); 312 313 (void)kvm_read(kd, (u_long)proc.p_vmspace, 314 (char *)&vmspace, sizeof(vmspace)); 315 kp->ki_size = vmspace.vm_map.size; 316 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 317 kp->ki_swrss = vmspace.vm_swrss; 318 kp->ki_tsize = vmspace.vm_tsize; 319 kp->ki_dsize = vmspace.vm_dsize; 320 kp->ki_ssize = vmspace.vm_ssize; 321 322 switch (what & ~KERN_PROC_INC_THREAD) { 323 324 case KERN_PROC_PGRP: 325 if (kp->ki_pgid != (pid_t)arg) 326 continue; 327 break; 328 329 case KERN_PROC_SESSION: 330 if (kp->ki_sid != (pid_t)arg) 331 continue; 332 break; 333 334 case KERN_PROC_TTY: 335 if ((proc.p_flag & P_CONTROLT) == 0 || 336 kp->ki_tdev != (dev_t)arg) 337 continue; 338 break; 339 } 340 if (proc.p_comm[0] != 0) 341 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 342 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 343 sizeof(sysent)); 344 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 345 sizeof(svname)); 346 if (svname[0] != 0) 347 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 348 if ((proc.p_state != PRS_ZOMBIE) && 349 (mtd.td_blocked != 0)) { 350 kp->ki_kiflag |= KI_LOCKBLOCK; 351 if (mtd.td_lockname) 352 (void)kvm_read(kd, 353 (u_long)mtd.td_lockname, 354 kp->ki_lockname, LOCKNAMELEN); 355 kp->ki_lockname[LOCKNAMELEN] = 0; 356 } 357 bintime2timeval(&proc.p_rux.rux_runtime, &tv); 358 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 359 kp->ki_pid = proc.p_pid; 360 kp->ki_siglist = proc.p_siglist; 361 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 362 kp->ki_sigmask = mtd.td_sigmask; 363 kp->ki_xstat = proc.p_xstat; 364 kp->ki_acflag = proc.p_acflag; 365 kp->ki_lock = proc.p_lock; 366 if (proc.p_state != PRS_ZOMBIE) { 367 kp->ki_swtime = proc.p_swtime; 368 kp->ki_flag = proc.p_flag; 369 kp->ki_sflag = proc.p_sflag; 370 kp->ki_nice = proc.p_nice; 371 kp->ki_traceflag = proc.p_traceflag; 372 if (proc.p_state == PRS_NORMAL) { 373 if (TD_ON_RUNQ(&mtd) || 374 TD_CAN_RUN(&mtd) || 375 TD_IS_RUNNING(&mtd)) { 376 kp->ki_stat = SRUN; 377 } else if (mtd.td_state == 378 TDS_INHIBITED) { 379 if (P_SHOULDSTOP(&proc)) { 380 kp->ki_stat = SSTOP; 381 } else if ( 382 TD_IS_SLEEPING(&mtd)) { 383 kp->ki_stat = SSLEEP; 384 } else if (TD_ON_LOCK(&mtd)) { 385 kp->ki_stat = SLOCK; 386 } else { 387 kp->ki_stat = SWAIT; 388 } 389 } 390 } else { 391 kp->ki_stat = SIDL; 392 } 393 /* Stuff from the thread */ 394 kp->ki_pri.pri_level = mtd.td_priority; 395 kp->ki_pri.pri_native = mtd.td_base_pri; 396 kp->ki_lastcpu = mtd.td_lastcpu; 397 kp->ki_wchan = mtd.td_wchan; 398 kp->ki_oncpu = mtd.td_oncpu; 399 400 if (!(proc.p_flag & P_SA)) { 401 /* stuff from the ksegrp */ 402 kp->ki_slptime = mkg.kg_slptime; 403 kp->ki_pri.pri_class = mkg.kg_pri_class; 404 kp->ki_pri.pri_user = mkg.kg_user_pri; 405 kp->ki_estcpu = mkg.kg_estcpu; 406 407 #if 0 408 /* Stuff from the kse */ 409 kp->ki_pctcpu = mke.ke_pctcpu; 410 kp->ki_rqindex = mke.ke_rqindex; 411 #else 412 kp->ki_pctcpu = 0; 413 kp->ki_rqindex = 0; 414 #endif 415 } else { 416 kp->ki_tdflags = -1; 417 /* All the rest are 0 for now */ 418 } 419 } else { 420 kp->ki_stat = SZOMB; 421 } 422 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 423 ++bp; 424 ++cnt; 425 } 426 return (cnt); 427 } 428 429 /* 430 * Build proc info array by reading in proc list from a crash dump. 431 * Return number of procs read. maxcnt is the max we will read. 432 */ 433 static int 434 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 435 kvm_t *kd; 436 int what, arg; 437 u_long a_allproc; 438 u_long a_zombproc; 439 int maxcnt; 440 { 441 struct kinfo_proc *bp = kd->procbase; 442 int acnt, zcnt; 443 struct proc *p; 444 445 if (KREAD(kd, a_allproc, &p)) { 446 _kvm_err(kd, kd->program, "cannot read allproc"); 447 return (-1); 448 } 449 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 450 if (acnt < 0) 451 return (acnt); 452 453 if (KREAD(kd, a_zombproc, &p)) { 454 _kvm_err(kd, kd->program, "cannot read zombproc"); 455 return (-1); 456 } 457 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 458 if (zcnt < 0) 459 zcnt = 0; 460 461 return (acnt + zcnt); 462 } 463 464 struct kinfo_proc * 465 kvm_getprocs(kd, op, arg, cnt) 466 kvm_t *kd; 467 int op, arg; 468 int *cnt; 469 { 470 int mib[4], st, nprocs; 471 size_t size; 472 int temp_op; 473 474 if (kd->procbase != 0) { 475 free((void *)kd->procbase); 476 /* 477 * Clear this pointer in case this call fails. Otherwise, 478 * kvm_close() will free it again. 479 */ 480 kd->procbase = 0; 481 } 482 if (ISALIVE(kd)) { 483 size = 0; 484 mib[0] = CTL_KERN; 485 mib[1] = KERN_PROC; 486 mib[2] = op; 487 mib[3] = arg; 488 temp_op = op & ~KERN_PROC_INC_THREAD; 489 st = sysctl(mib, 490 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 491 3 : 4, NULL, &size, NULL, 0); 492 if (st == -1) { 493 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 494 return (0); 495 } 496 /* 497 * We can't continue with a size of 0 because we pass 498 * it to realloc() (via _kvm_realloc()), and passing 0 499 * to realloc() results in undefined behavior. 500 */ 501 if (size == 0) { 502 /* 503 * XXX: We should probably return an invalid, 504 * but non-NULL, pointer here so any client 505 * program trying to dereference it will 506 * crash. However, _kvm_freeprocs() calls 507 * free() on kd->procbase if it isn't NULL, 508 * and free()'ing a junk pointer isn't good. 509 * Then again, _kvm_freeprocs() isn't used 510 * anywhere . . . 511 */ 512 kd->procbase = _kvm_malloc(kd, 1); 513 goto liveout; 514 } 515 do { 516 size += size / 10; 517 kd->procbase = (struct kinfo_proc *) 518 _kvm_realloc(kd, kd->procbase, size); 519 if (kd->procbase == 0) 520 return (0); 521 st = sysctl(mib, temp_op == KERN_PROC_ALL || 522 temp_op == KERN_PROC_PROC ? 3 : 4, 523 kd->procbase, &size, NULL, 0); 524 } while (st == -1 && errno == ENOMEM); 525 if (st == -1) { 526 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 527 return (0); 528 } 529 /* 530 * We have to check the size again because sysctl() 531 * may "round up" oldlenp if oldp is NULL; hence it 532 * might've told us that there was data to get when 533 * there really isn't any. 534 */ 535 if (size > 0 && 536 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 537 _kvm_err(kd, kd->program, 538 "kinfo_proc size mismatch (expected %d, got %d)", 539 sizeof(struct kinfo_proc), 540 kd->procbase->ki_structsize); 541 return (0); 542 } 543 liveout: 544 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 545 } else { 546 struct nlist nl[4], *p; 547 548 nl[0].n_name = "_nprocs"; 549 nl[1].n_name = "_allproc"; 550 nl[2].n_name = "_zombproc"; 551 nl[3].n_name = 0; 552 553 if (kvm_nlist(kd, nl) != 0) { 554 for (p = nl; p->n_type != 0; ++p) 555 ; 556 _kvm_err(kd, kd->program, 557 "%s: no such symbol", p->n_name); 558 return (0); 559 } 560 if (KREAD(kd, nl[0].n_value, &nprocs)) { 561 _kvm_err(kd, kd->program, "can't read nprocs"); 562 return (0); 563 } 564 size = nprocs * sizeof(struct kinfo_proc); 565 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 566 if (kd->procbase == 0) 567 return (0); 568 569 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 570 nl[2].n_value, nprocs); 571 #ifdef notdef 572 size = nprocs * sizeof(struct kinfo_proc); 573 (void)realloc(kd->procbase, size); 574 #endif 575 } 576 *cnt = nprocs; 577 return (kd->procbase); 578 } 579 580 void 581 _kvm_freeprocs(kd) 582 kvm_t *kd; 583 { 584 if (kd->procbase) { 585 free(kd->procbase); 586 kd->procbase = 0; 587 } 588 } 589 590 void * 591 _kvm_realloc(kd, p, n) 592 kvm_t *kd; 593 void *p; 594 size_t n; 595 { 596 void *np = (void *)realloc(p, n); 597 598 if (np == 0) { 599 free(p); 600 _kvm_err(kd, kd->program, "out of memory"); 601 } 602 return (np); 603 } 604 605 #ifndef MAX 606 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 607 #endif 608 609 /* 610 * Read in an argument vector from the user address space of process kp. 611 * addr if the user-space base address of narg null-terminated contiguous 612 * strings. This is used to read in both the command arguments and 613 * environment strings. Read at most maxcnt characters of strings. 614 */ 615 static char ** 616 kvm_argv(kd, kp, addr, narg, maxcnt) 617 kvm_t *kd; 618 struct kinfo_proc *kp; 619 u_long addr; 620 int narg; 621 int maxcnt; 622 { 623 char *np, *cp, *ep, *ap; 624 u_long oaddr = -1; 625 int len, cc; 626 char **argv; 627 628 /* 629 * Check that there aren't an unreasonable number of agruments, 630 * and that the address is in user space. 631 */ 632 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 633 return (0); 634 635 /* 636 * kd->argv : work space for fetching the strings from the target 637 * process's space, and is converted for returning to caller 638 */ 639 if (kd->argv == 0) { 640 /* 641 * Try to avoid reallocs. 642 */ 643 kd->argc = MAX(narg + 1, 32); 644 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 645 sizeof(*kd->argv)); 646 if (kd->argv == 0) 647 return (0); 648 } else if (narg + 1 > kd->argc) { 649 kd->argc = MAX(2 * kd->argc, narg + 1); 650 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 651 sizeof(*kd->argv)); 652 if (kd->argv == 0) 653 return (0); 654 } 655 /* 656 * kd->argspc : returned to user, this is where the kd->argv 657 * arrays are left pointing to the collected strings. 658 */ 659 if (kd->argspc == 0) { 660 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 661 if (kd->argspc == 0) 662 return (0); 663 kd->arglen = PAGE_SIZE; 664 } 665 /* 666 * kd->argbuf : used to pull in pages from the target process. 667 * the strings are copied out of here. 668 */ 669 if (kd->argbuf == 0) { 670 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 671 if (kd->argbuf == 0) 672 return (0); 673 } 674 675 /* Pull in the target process'es argv vector */ 676 cc = sizeof(char *) * narg; 677 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 678 return (0); 679 /* 680 * ap : saved start address of string we're working on in kd->argspc 681 * np : pointer to next place to write in kd->argspc 682 * len: length of data in kd->argspc 683 * argv: pointer to the argv vector that we are hunting around the 684 * target process space for, and converting to addresses in 685 * our address space (kd->argspc). 686 */ 687 ap = np = kd->argspc; 688 argv = kd->argv; 689 len = 0; 690 /* 691 * Loop over pages, filling in the argument vector. 692 * Note that the argv strings could be pointing *anywhere* in 693 * the user address space and are no longer contiguous. 694 * Note that *argv is modified when we are going to fetch a string 695 * that crosses a page boundary. We copy the next part of the string 696 * into to "np" and eventually convert the pointer. 697 */ 698 while (argv < kd->argv + narg && *argv != 0) { 699 700 /* get the address that the current argv string is on */ 701 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 702 703 /* is it the same page as the last one? */ 704 if (addr != oaddr) { 705 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 706 PAGE_SIZE) 707 return (0); 708 oaddr = addr; 709 } 710 711 /* offset within the page... kd->argbuf */ 712 addr = (u_long)*argv & (PAGE_SIZE - 1); 713 714 /* cp = start of string, cc = count of chars in this chunk */ 715 cp = kd->argbuf + addr; 716 cc = PAGE_SIZE - addr; 717 718 /* dont get more than asked for by user process */ 719 if (maxcnt > 0 && cc > maxcnt - len) 720 cc = maxcnt - len; 721 722 /* pointer to end of string if we found it in this page */ 723 ep = memchr(cp, '\0', cc); 724 if (ep != 0) 725 cc = ep - cp + 1; 726 /* 727 * at this point, cc is the count of the chars that we are 728 * going to retrieve this time. we may or may not have found 729 * the end of it. (ep points to the null if the end is known) 730 */ 731 732 /* will we exceed the malloc/realloced buffer? */ 733 if (len + cc > kd->arglen) { 734 int off; 735 char **pp; 736 char *op = kd->argspc; 737 738 kd->arglen *= 2; 739 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 740 kd->arglen); 741 if (kd->argspc == 0) 742 return (0); 743 /* 744 * Adjust argv pointers in case realloc moved 745 * the string space. 746 */ 747 off = kd->argspc - op; 748 for (pp = kd->argv; pp < argv; pp++) 749 *pp += off; 750 ap += off; 751 np += off; 752 } 753 /* np = where to put the next part of the string in kd->argspc*/ 754 /* np is kinda redundant.. could use "kd->argspc + len" */ 755 memcpy(np, cp, cc); 756 np += cc; /* inc counters */ 757 len += cc; 758 759 /* 760 * if end of string found, set the *argv pointer to the 761 * saved beginning of string, and advance. argv points to 762 * somewhere in kd->argv.. This is initially relative 763 * to the target process, but when we close it off, we set 764 * it to point in our address space. 765 */ 766 if (ep != 0) { 767 *argv++ = ap; 768 ap = np; 769 } else { 770 /* update the address relative to the target process */ 771 *argv += cc; 772 } 773 774 if (maxcnt > 0 && len >= maxcnt) { 775 /* 776 * We're stopping prematurely. Terminate the 777 * current string. 778 */ 779 if (ep == 0) { 780 *np = '\0'; 781 *argv++ = ap; 782 } 783 break; 784 } 785 } 786 /* Make sure argv is terminated. */ 787 *argv = 0; 788 return (kd->argv); 789 } 790 791 static void 792 ps_str_a(p, addr, n) 793 struct ps_strings *p; 794 u_long *addr; 795 int *n; 796 { 797 *addr = (u_long)p->ps_argvstr; 798 *n = p->ps_nargvstr; 799 } 800 801 static void 802 ps_str_e(p, addr, n) 803 struct ps_strings *p; 804 u_long *addr; 805 int *n; 806 { 807 *addr = (u_long)p->ps_envstr; 808 *n = p->ps_nenvstr; 809 } 810 811 /* 812 * Determine if the proc indicated by p is still active. 813 * This test is not 100% foolproof in theory, but chances of 814 * being wrong are very low. 815 */ 816 static int 817 proc_verify(curkp) 818 struct kinfo_proc *curkp; 819 { 820 struct kinfo_proc newkp; 821 int mib[4]; 822 size_t len; 823 824 mib[0] = CTL_KERN; 825 mib[1] = KERN_PROC; 826 mib[2] = KERN_PROC_PID; 827 mib[3] = curkp->ki_pid; 828 len = sizeof(newkp); 829 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 830 return (0); 831 return (curkp->ki_pid == newkp.ki_pid && 832 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 833 } 834 835 static char ** 836 kvm_doargv(kd, kp, nchr, info) 837 kvm_t *kd; 838 struct kinfo_proc *kp; 839 int nchr; 840 void (*info)(struct ps_strings *, u_long *, int *); 841 { 842 char **ap; 843 u_long addr; 844 int cnt; 845 static struct ps_strings arginfo; 846 static u_long ps_strings; 847 size_t len; 848 849 if (ps_strings == 0) { 850 len = sizeof(ps_strings); 851 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 852 0) == -1) 853 ps_strings = PS_STRINGS; 854 } 855 856 /* 857 * Pointers are stored at the top of the user stack. 858 */ 859 if (kp->ki_stat == SZOMB || 860 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 861 sizeof(arginfo)) != sizeof(arginfo)) 862 return (0); 863 864 (*info)(&arginfo, &addr, &cnt); 865 if (cnt == 0) 866 return (0); 867 ap = kvm_argv(kd, kp, addr, cnt, nchr); 868 /* 869 * For live kernels, make sure this process didn't go away. 870 */ 871 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 872 ap = 0; 873 return (ap); 874 } 875 876 /* 877 * Get the command args. This code is now machine independent. 878 */ 879 char ** 880 kvm_getargv(kd, kp, nchr) 881 kvm_t *kd; 882 const struct kinfo_proc *kp; 883 int nchr; 884 { 885 int oid[4]; 886 int i; 887 size_t bufsz; 888 static unsigned long buflen; 889 static char *buf, *p; 890 static char **bufp; 891 static int argc; 892 893 if (!ISALIVE(kd)) { 894 _kvm_err(kd, kd->program, 895 "cannot read user space from dead kernel"); 896 return (0); 897 } 898 899 if (!buflen) { 900 bufsz = sizeof(buflen); 901 i = sysctlbyname("kern.ps_arg_cache_limit", 902 &buflen, &bufsz, NULL, 0); 903 if (i == -1) { 904 buflen = 0; 905 } else { 906 buf = malloc(buflen); 907 if (buf == NULL) 908 buflen = 0; 909 argc = 32; 910 bufp = malloc(sizeof(char *) * argc); 911 } 912 } 913 if (buf != NULL) { 914 oid[0] = CTL_KERN; 915 oid[1] = KERN_PROC; 916 oid[2] = KERN_PROC_ARGS; 917 oid[3] = kp->ki_pid; 918 bufsz = buflen; 919 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 920 if (i == 0 && bufsz > 0) { 921 i = 0; 922 p = buf; 923 do { 924 bufp[i++] = p; 925 p += strlen(p) + 1; 926 if (i >= argc) { 927 argc += argc; 928 bufp = realloc(bufp, 929 sizeof(char *) * argc); 930 } 931 } while (p < buf + bufsz); 932 bufp[i++] = 0; 933 return (bufp); 934 } 935 } 936 if (kp->ki_flag & P_SYSTEM) 937 return (NULL); 938 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 939 } 940 941 char ** 942 kvm_getenvv(kd, kp, nchr) 943 kvm_t *kd; 944 const struct kinfo_proc *kp; 945 int nchr; 946 { 947 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 948 } 949 950 /* 951 * Read from user space. The user context is given by p. 952 */ 953 ssize_t 954 kvm_uread(kd, kp, uva, buf, len) 955 kvm_t *kd; 956 struct kinfo_proc *kp; 957 u_long uva; 958 char *buf; 959 size_t len; 960 { 961 char *cp; 962 char procfile[MAXPATHLEN]; 963 ssize_t amount; 964 int fd; 965 966 if (!ISALIVE(kd)) { 967 _kvm_err(kd, kd->program, 968 "cannot read user space from dead kernel"); 969 return (0); 970 } 971 972 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 973 fd = open(procfile, O_RDONLY, 0); 974 if (fd < 0) { 975 _kvm_err(kd, kd->program, "cannot open %s", procfile); 976 return (0); 977 } 978 979 cp = buf; 980 while (len > 0) { 981 errno = 0; 982 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 983 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 984 uva, procfile); 985 break; 986 } 987 amount = read(fd, cp, len); 988 if (amount < 0) { 989 _kvm_syserr(kd, kd->program, "error reading %s", 990 procfile); 991 break; 992 } 993 if (amount == 0) { 994 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 995 break; 996 } 997 cp += amount; 998 uva += amount; 999 len -= amount; 1000 } 1001 1002 close(fd); 1003 return ((ssize_t)(cp - buf)); 1004 } 1005