1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 3. All advertising materials mentioning features or use of this software 18 * must display the following acknowledgement: 19 * This product includes software developed by the University of 20 * California, Berkeley and its contributors. 21 * 4. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * $FreeBSD$ 38 */ 39 40 #if defined(LIBC_SCCS) && !defined(lint) 41 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 42 #endif /* LIBC_SCCS and not lint */ 43 44 /* 45 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 46 * users of this code, so we've factored it out into a separate module. 47 * Thus, we keep this grunge out of the other kvm applications (i.e., 48 * most other applications are interested only in open/close/read/nlist). 49 */ 50 51 #include <sys/param.h> 52 #include <sys/lock.h> 53 #include <sys/mutex.h> 54 #include <sys/user.h> 55 #include <sys/proc.h> 56 #include <sys/exec.h> 57 #include <sys/stat.h> 58 #include <sys/ioctl.h> 59 #include <sys/tty.h> 60 #include <sys/file.h> 61 #include <stdio.h> 62 #include <stdlib.h> 63 #include <unistd.h> 64 #include <nlist.h> 65 #include <kvm.h> 66 67 #include <vm/vm.h> 68 #include <vm/vm_param.h> 69 #include <vm/swap_pager.h> 70 71 #include <sys/sysctl.h> 72 73 #include <limits.h> 74 #include <memory.h> 75 #include <paths.h> 76 77 #include "kvm_private.h" 78 79 #if used 80 static char * 81 kvm_readswap(kd, p, va, cnt) 82 kvm_t *kd; 83 const struct proc *p; 84 u_long va; 85 u_long *cnt; 86 { 87 #ifdef __FreeBSD__ 88 /* XXX Stubbed out, our vm system is differnet */ 89 _kvm_err(kd, kd->program, "kvm_readswap not implemented"); 90 return(0); 91 #endif /* __FreeBSD__ */ 92 } 93 #endif 94 95 #define KREAD(kd, addr, obj) \ 96 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 97 98 /* 99 * Read proc's from memory file into buffer bp, which has space to hold 100 * at most maxcnt procs. 101 */ 102 static int 103 kvm_proclist(kd, what, arg, p, bp, maxcnt) 104 kvm_t *kd; 105 int what, arg; 106 struct proc *p; 107 struct kinfo_proc *bp; 108 int maxcnt; 109 { 110 register int cnt = 0; 111 struct kinfo_proc kinfo_proc, *kp; 112 struct pgrp pgrp; 113 struct session sess; 114 struct tty tty; 115 struct vmspace vmspace; 116 struct procsig procsig; 117 struct pstats pstats; 118 struct ucred ucred; 119 struct proc proc; 120 struct proc pproc; 121 122 kp = &kinfo_proc; 123 kp->ki_structsize = sizeof(kinfo_proc); 124 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 125 if (KREAD(kd, (u_long)p, &proc)) { 126 _kvm_err(kd, kd->program, "can't read proc at %x", p); 127 return (-1); 128 } 129 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 130 kp->ki_ruid = ucred.cr_ruid; 131 kp->ki_svuid = ucred.cr_svuid; 132 kp->ki_rgid = ucred.cr_rgid; 133 kp->ki_svgid = ucred.cr_svgid; 134 kp->ki_ngroups = ucred.cr_ngroups; 135 bcopy(ucred.cr_groups, kp->ki_groups, 136 NGROUPS * sizeof(gid_t)); 137 kp->ki_uid = ucred.cr_uid; 138 } 139 140 switch(what) { 141 142 case KERN_PROC_PID: 143 if (proc.p_pid != (pid_t)arg) 144 continue; 145 break; 146 147 case KERN_PROC_UID: 148 if (kp->ki_uid != (uid_t)arg) 149 continue; 150 break; 151 152 case KERN_PROC_RUID: 153 if (kp->ki_ruid != (uid_t)arg) 154 continue; 155 break; 156 } 157 /* 158 * We're going to add another proc to the set. If this 159 * will overflow the buffer, assume the reason is because 160 * nprocs (or the proc list) is corrupt and declare an error. 161 */ 162 if (cnt >= maxcnt) { 163 _kvm_err(kd, kd->program, "nprocs corrupt"); 164 return (-1); 165 } 166 /* 167 * gather kinfo_proc 168 */ 169 kp->ki_paddr = p; 170 kp->ki_addr = proc.p_addr; 171 kp->ki_args = proc.p_args; 172 kp->ki_tracep = proc.p_tracep; 173 kp->ki_textvp = proc.p_textvp; 174 kp->ki_fd = proc.p_fd; 175 kp->ki_vmspace = proc.p_vmspace; 176 if (proc.p_procsig != NULL) { 177 if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) { 178 _kvm_err(kd, kd->program, 179 "can't read procsig at %x", proc.p_procsig); 180 return (-1); 181 } 182 kp->ki_sigignore = procsig.ps_sigignore; 183 kp->ki_sigcatch = procsig.ps_sigcatch; 184 } 185 if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) { 186 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 187 _kvm_err(kd, kd->program, 188 "can't read stats at %x", proc.p_stats); 189 return (-1); 190 } 191 kp->ki_start = pstats.p_start; 192 kp->ki_rusage = pstats.p_ru; 193 kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec + 194 pstats.p_cru.ru_stime.tv_sec; 195 kp->ki_childtime.tv_usec = 196 pstats.p_cru.ru_utime.tv_usec + 197 pstats.p_cru.ru_stime.tv_usec; 198 } 199 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 200 _kvm_err(kd, kd->program, "can't read pgrp at %x", 201 proc.p_pgrp); 202 return (-1); 203 } 204 if (proc.p_oppid) 205 kp->ki_ppid = proc.p_oppid; 206 else if (proc.p_pptr) { 207 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 208 _kvm_err(kd, kd->program, 209 "can't read pproc at %x", proc.p_pptr); 210 return (-1); 211 } 212 kp->ki_ppid = pproc.p_pid; 213 } else 214 kp->ki_ppid = 0; 215 kp->ki_pgid = pgrp.pg_id; 216 kp->ki_jobc = pgrp.pg_jobc; 217 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 218 _kvm_err(kd, kd->program, "can't read session at %x", 219 pgrp.pg_session); 220 return (-1); 221 } 222 kp->ki_sid = sess.s_sid; 223 (void)memcpy(kp->ki_login, sess.s_login, 224 sizeof(kp->ki_login)); 225 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 226 if (sess.s_leader == p) 227 kp->ki_kiflag |= KI_SLEADER; 228 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 229 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 230 _kvm_err(kd, kd->program, 231 "can't read tty at %x", sess.s_ttyp); 232 return (-1); 233 } 234 kp->ki_tdev = tty.t_dev; 235 if (tty.t_pgrp != NULL) { 236 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 237 _kvm_err(kd, kd->program, 238 "can't read tpgrp at &x", 239 tty.t_pgrp); 240 return (-1); 241 } 242 kp->ki_tpgid = pgrp.pg_id; 243 } else 244 kp->ki_tpgid = -1; 245 if (tty.t_session != NULL) { 246 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 247 _kvm_err(kd, kd->program, 248 "can't read session at %x", 249 tty.t_session); 250 return (-1); 251 } 252 kp->ki_tsid = sess.s_sid; 253 } 254 } else 255 kp->ki_tdev = NODEV; 256 if (proc.p_wmesg) 257 (void)kvm_read(kd, (u_long)proc.p_wmesg, 258 kp->ki_wmesg, WMESGLEN); 259 260 #ifdef sparc 261 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize, 262 (char *)&kp->ki_rssize, 263 sizeof(kp->ki_rssize)); 264 (void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize, 265 (char *)&kp->ki_tsize, 266 3 * sizeof(kp->ki_rssize)); /* XXX */ 267 #else 268 (void)kvm_read(kd, (u_long)proc.p_vmspace, 269 (char *)&vmspace, sizeof(vmspace)); 270 kp->ki_size = vmspace.vm_map.size; 271 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 272 kp->ki_swrss = vmspace.vm_swrss; 273 kp->ki_tsize = vmspace.vm_tsize; 274 kp->ki_dsize = vmspace.vm_dsize; 275 kp->ki_ssize = vmspace.vm_ssize; 276 #endif 277 278 switch (what) { 279 280 case KERN_PROC_PGRP: 281 if (kp->ki_pgid != (pid_t)arg) 282 continue; 283 break; 284 285 case KERN_PROC_TTY: 286 if ((proc.p_flag & P_CONTROLT) == 0 || 287 kp->ki_tdev != (dev_t)arg) 288 continue; 289 break; 290 } 291 if (proc.p_comm[0] != 0) { 292 strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 293 kp->ki_comm[MAXCOMLEN] = 0; 294 } 295 if (proc.p_blocked != 0) { 296 kp->ki_kiflag |= KI_MTXBLOCK; 297 if (proc.p_mtxname) 298 (void)kvm_read(kd, (u_long)proc.p_mtxname, 299 kp->ki_mtxname, MTXNAMELEN); 300 kp->ki_mtxname[MTXNAMELEN] = 0; 301 } 302 kp->ki_runtime = proc.p_runtime; 303 kp->ki_pid = proc.p_pid; 304 kp->ki_siglist = proc.p_siglist; 305 kp->ki_sigmask = proc.p_sigmask; 306 kp->ki_xstat = proc.p_xstat; 307 kp->ki_acflag = proc.p_acflag; 308 kp->ki_pctcpu = proc.p_pctcpu; 309 kp->ki_estcpu = proc.p_estcpu; 310 kp->ki_slptime = proc.p_slptime; 311 kp->ki_swtime = proc.p_swtime; 312 kp->ki_flag = proc.p_flag; 313 kp->ki_sflag = proc.p_sflag; 314 kp->ki_wchan = proc.p_wchan; 315 kp->ki_traceflag = proc.p_traceflag; 316 kp->ki_stat = proc.p_stat; 317 kp->ki_pri = proc.p_pri; 318 kp->ki_nice = proc.p_nice; 319 kp->ki_lock = proc.p_lock; 320 kp->ki_rqindex = proc.p_rqindex; 321 kp->ki_oncpu = proc.p_oncpu; 322 kp->ki_lastcpu = proc.p_lastcpu; 323 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 324 ++bp; 325 ++cnt; 326 } 327 return (cnt); 328 } 329 330 /* 331 * Build proc info array by reading in proc list from a crash dump. 332 * Return number of procs read. maxcnt is the max we will read. 333 */ 334 static int 335 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 336 kvm_t *kd; 337 int what, arg; 338 u_long a_allproc; 339 u_long a_zombproc; 340 int maxcnt; 341 { 342 register struct kinfo_proc *bp = kd->procbase; 343 register int acnt, zcnt; 344 struct proc *p; 345 346 if (KREAD(kd, a_allproc, &p)) { 347 _kvm_err(kd, kd->program, "cannot read allproc"); 348 return (-1); 349 } 350 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 351 if (acnt < 0) 352 return (acnt); 353 354 if (KREAD(kd, a_zombproc, &p)) { 355 _kvm_err(kd, kd->program, "cannot read zombproc"); 356 return (-1); 357 } 358 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 359 if (zcnt < 0) 360 zcnt = 0; 361 362 return (acnt + zcnt); 363 } 364 365 struct kinfo_proc * 366 kvm_getprocs(kd, op, arg, cnt) 367 kvm_t *kd; 368 int op, arg; 369 int *cnt; 370 { 371 int mib[4], st, nprocs; 372 size_t size; 373 374 if (kd->procbase != 0) { 375 free((void *)kd->procbase); 376 /* 377 * Clear this pointer in case this call fails. Otherwise, 378 * kvm_close() will free it again. 379 */ 380 kd->procbase = 0; 381 } 382 if (ISALIVE(kd)) { 383 size = 0; 384 mib[0] = CTL_KERN; 385 mib[1] = KERN_PROC; 386 mib[2] = op; 387 mib[3] = arg; 388 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0); 389 if (st == -1) { 390 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 391 return (0); 392 } 393 do { 394 size += size / 10; 395 kd->procbase = (struct kinfo_proc *) 396 _kvm_realloc(kd, kd->procbase, size); 397 if (kd->procbase == 0) 398 return (0); 399 st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, 400 kd->procbase, &size, NULL, 0); 401 } while (st == -1 && errno == ENOMEM); 402 if (st == -1) { 403 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 404 return (0); 405 } 406 if (size > 0 && 407 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 408 _kvm_err(kd, kd->program, 409 "kinfo_proc size mismatch (expected %d, got %d)", 410 sizeof(struct kinfo_proc), 411 kd->procbase->ki_structsize); 412 return (0); 413 } 414 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 415 } else { 416 struct nlist nl[4], *p; 417 418 nl[0].n_name = "_nprocs"; 419 nl[1].n_name = "_allproc"; 420 nl[2].n_name = "_zombproc"; 421 nl[3].n_name = 0; 422 423 if (kvm_nlist(kd, nl) != 0) { 424 for (p = nl; p->n_type != 0; ++p) 425 ; 426 _kvm_err(kd, kd->program, 427 "%s: no such symbol", p->n_name); 428 return (0); 429 } 430 if (KREAD(kd, nl[0].n_value, &nprocs)) { 431 _kvm_err(kd, kd->program, "can't read nprocs"); 432 return (0); 433 } 434 size = nprocs * sizeof(struct kinfo_proc); 435 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 436 if (kd->procbase == 0) 437 return (0); 438 439 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 440 nl[2].n_value, nprocs); 441 #ifdef notdef 442 size = nprocs * sizeof(struct kinfo_proc); 443 (void)realloc(kd->procbase, size); 444 #endif 445 } 446 *cnt = nprocs; 447 return (kd->procbase); 448 } 449 450 void 451 _kvm_freeprocs(kd) 452 kvm_t *kd; 453 { 454 if (kd->procbase) { 455 free(kd->procbase); 456 kd->procbase = 0; 457 } 458 } 459 460 void * 461 _kvm_realloc(kd, p, n) 462 kvm_t *kd; 463 void *p; 464 size_t n; 465 { 466 void *np = (void *)realloc(p, n); 467 468 if (np == 0) { 469 free(p); 470 _kvm_err(kd, kd->program, "out of memory"); 471 } 472 return (np); 473 } 474 475 #ifndef MAX 476 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 477 #endif 478 479 /* 480 * Read in an argument vector from the user address space of process kp. 481 * addr if the user-space base address of narg null-terminated contiguous 482 * strings. This is used to read in both the command arguments and 483 * environment strings. Read at most maxcnt characters of strings. 484 */ 485 static char ** 486 kvm_argv(kd, kp, addr, narg, maxcnt) 487 kvm_t *kd; 488 struct kinfo_proc *kp; 489 register u_long addr; 490 register int narg; 491 register int maxcnt; 492 { 493 register char *np, *cp, *ep, *ap; 494 register u_long oaddr = -1; 495 register int len, cc; 496 register char **argv; 497 498 /* 499 * Check that there aren't an unreasonable number of agruments, 500 * and that the address is in user space. 501 */ 502 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 503 return (0); 504 505 /* 506 * kd->argv : work space for fetching the strings from the target 507 * process's space, and is converted for returning to caller 508 */ 509 if (kd->argv == 0) { 510 /* 511 * Try to avoid reallocs. 512 */ 513 kd->argc = MAX(narg + 1, 32); 514 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 515 sizeof(*kd->argv)); 516 if (kd->argv == 0) 517 return (0); 518 } else if (narg + 1 > kd->argc) { 519 kd->argc = MAX(2 * kd->argc, narg + 1); 520 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 521 sizeof(*kd->argv)); 522 if (kd->argv == 0) 523 return (0); 524 } 525 /* 526 * kd->argspc : returned to user, this is where the kd->argv 527 * arrays are left pointing to the collected strings. 528 */ 529 if (kd->argspc == 0) { 530 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 531 if (kd->argspc == 0) 532 return (0); 533 kd->arglen = PAGE_SIZE; 534 } 535 /* 536 * kd->argbuf : used to pull in pages from the target process. 537 * the strings are copied out of here. 538 */ 539 if (kd->argbuf == 0) { 540 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 541 if (kd->argbuf == 0) 542 return (0); 543 } 544 545 /* Pull in the target process'es argv vector */ 546 cc = sizeof(char *) * narg; 547 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 548 return (0); 549 /* 550 * ap : saved start address of string we're working on in kd->argspc 551 * np : pointer to next place to write in kd->argspc 552 * len: length of data in kd->argspc 553 * argv: pointer to the argv vector that we are hunting around the 554 * target process space for, and converting to addresses in 555 * our address space (kd->argspc). 556 */ 557 ap = np = kd->argspc; 558 argv = kd->argv; 559 len = 0; 560 /* 561 * Loop over pages, filling in the argument vector. 562 * Note that the argv strings could be pointing *anywhere* in 563 * the user address space and are no longer contiguous. 564 * Note that *argv is modified when we are going to fetch a string 565 * that crosses a page boundary. We copy the next part of the string 566 * into to "np" and eventually convert the pointer. 567 */ 568 while (argv < kd->argv + narg && *argv != 0) { 569 570 /* get the address that the current argv string is on */ 571 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 572 573 /* is it the same page as the last one? */ 574 if (addr != oaddr) { 575 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 576 PAGE_SIZE) 577 return (0); 578 oaddr = addr; 579 } 580 581 /* offset within the page... kd->argbuf */ 582 addr = (u_long)*argv & (PAGE_SIZE - 1); 583 584 /* cp = start of string, cc = count of chars in this chunk */ 585 cp = kd->argbuf + addr; 586 cc = PAGE_SIZE - addr; 587 588 /* dont get more than asked for by user process */ 589 if (maxcnt > 0 && cc > maxcnt - len) 590 cc = maxcnt - len; 591 592 /* pointer to end of string if we found it in this page */ 593 ep = memchr(cp, '\0', cc); 594 if (ep != 0) 595 cc = ep - cp + 1; 596 /* 597 * at this point, cc is the count of the chars that we are 598 * going to retrieve this time. we may or may not have found 599 * the end of it. (ep points to the null if the end is known) 600 */ 601 602 /* will we exceed the malloc/realloced buffer? */ 603 if (len + cc > kd->arglen) { 604 register int off; 605 register char **pp; 606 register char *op = kd->argspc; 607 608 kd->arglen *= 2; 609 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 610 kd->arglen); 611 if (kd->argspc == 0) 612 return (0); 613 /* 614 * Adjust argv pointers in case realloc moved 615 * the string space. 616 */ 617 off = kd->argspc - op; 618 for (pp = kd->argv; pp < argv; pp++) 619 *pp += off; 620 ap += off; 621 np += off; 622 } 623 /* np = where to put the next part of the string in kd->argspc*/ 624 /* np is kinda redundant.. could use "kd->argspc + len" */ 625 memcpy(np, cp, cc); 626 np += cc; /* inc counters */ 627 len += cc; 628 629 /* 630 * if end of string found, set the *argv pointer to the 631 * saved beginning of string, and advance. argv points to 632 * somewhere in kd->argv.. This is initially relative 633 * to the target process, but when we close it off, we set 634 * it to point in our address space. 635 */ 636 if (ep != 0) { 637 *argv++ = ap; 638 ap = np; 639 } else { 640 /* update the address relative to the target process */ 641 *argv += cc; 642 } 643 644 if (maxcnt > 0 && len >= maxcnt) { 645 /* 646 * We're stopping prematurely. Terminate the 647 * current string. 648 */ 649 if (ep == 0) { 650 *np = '\0'; 651 *argv++ = ap; 652 } 653 break; 654 } 655 } 656 /* Make sure argv is terminated. */ 657 *argv = 0; 658 return (kd->argv); 659 } 660 661 static void 662 ps_str_a(p, addr, n) 663 struct ps_strings *p; 664 u_long *addr; 665 int *n; 666 { 667 *addr = (u_long)p->ps_argvstr; 668 *n = p->ps_nargvstr; 669 } 670 671 static void 672 ps_str_e(p, addr, n) 673 struct ps_strings *p; 674 u_long *addr; 675 int *n; 676 { 677 *addr = (u_long)p->ps_envstr; 678 *n = p->ps_nenvstr; 679 } 680 681 /* 682 * Determine if the proc indicated by p is still active. 683 * This test is not 100% foolproof in theory, but chances of 684 * being wrong are very low. 685 */ 686 static int 687 proc_verify(curkp) 688 struct kinfo_proc *curkp; 689 { 690 struct kinfo_proc newkp; 691 int mib[4]; 692 size_t len; 693 694 mib[0] = CTL_KERN; 695 mib[1] = KERN_PROC; 696 mib[2] = KERN_PROC_PID; 697 mib[3] = curkp->ki_pid; 698 len = sizeof(newkp); 699 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 700 return (0); 701 return (curkp->ki_pid == newkp.ki_pid && 702 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 703 } 704 705 static char ** 706 kvm_doargv(kd, kp, nchr, info) 707 kvm_t *kd; 708 struct kinfo_proc *kp; 709 int nchr; 710 void (*info)(struct ps_strings *, u_long *, int *); 711 { 712 char **ap; 713 u_long addr; 714 int cnt; 715 static struct ps_strings arginfo; 716 static u_long ps_strings; 717 size_t len; 718 719 if (ps_strings == NULL) { 720 len = sizeof(ps_strings); 721 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 722 0) == -1) 723 ps_strings = PS_STRINGS; 724 } 725 726 /* 727 * Pointers are stored at the top of the user stack. 728 */ 729 if (kp->ki_stat == SZOMB || 730 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 731 sizeof(arginfo)) != sizeof(arginfo)) 732 return (0); 733 734 (*info)(&arginfo, &addr, &cnt); 735 if (cnt == 0) 736 return (0); 737 ap = kvm_argv(kd, kp, addr, cnt, nchr); 738 /* 739 * For live kernels, make sure this process didn't go away. 740 */ 741 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 742 ap = 0; 743 return (ap); 744 } 745 746 /* 747 * Get the command args. This code is now machine independent. 748 */ 749 char ** 750 kvm_getargv(kd, kp, nchr) 751 kvm_t *kd; 752 const struct kinfo_proc *kp; 753 int nchr; 754 { 755 int oid[4]; 756 int i; 757 size_t bufsz; 758 static int buflen; 759 static char *buf, *p; 760 static char **bufp; 761 static int argc; 762 763 if (!ISALIVE(kd)) { 764 _kvm_err(kd, kd->program, 765 "cannot read user space from dead kernel"); 766 return (0); 767 } 768 769 if (!buflen) { 770 bufsz = sizeof(buflen); 771 i = sysctlbyname("kern.ps_arg_cache_limit", 772 &buflen, &bufsz, NULL, 0); 773 if (i == -1) { 774 buflen = 0; 775 } else { 776 buf = malloc(buflen); 777 if (buf == NULL) 778 buflen = 0; 779 argc = 32; 780 bufp = malloc(sizeof(char *) * argc); 781 } 782 } 783 if (buf != NULL) { 784 oid[0] = CTL_KERN; 785 oid[1] = KERN_PROC; 786 oid[2] = KERN_PROC_ARGS; 787 oid[3] = kp->ki_pid; 788 bufsz = buflen; 789 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 790 if (i == 0 && bufsz > 0) { 791 i = 0; 792 p = buf; 793 do { 794 bufp[i++] = p; 795 p += strlen(p) + 1; 796 if (i >= argc) { 797 argc += argc; 798 bufp = realloc(bufp, 799 sizeof(char *) * argc); 800 } 801 } while (p < buf + bufsz); 802 bufp[i++] = 0; 803 return (bufp); 804 } 805 } 806 if (kp->ki_flag & P_SYSTEM) 807 return (NULL); 808 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 809 } 810 811 char ** 812 kvm_getenvv(kd, kp, nchr) 813 kvm_t *kd; 814 const struct kinfo_proc *kp; 815 int nchr; 816 { 817 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 818 } 819 820 /* 821 * Read from user space. The user context is given by p. 822 */ 823 ssize_t 824 kvm_uread(kd, kp, uva, buf, len) 825 kvm_t *kd; 826 struct kinfo_proc *kp; 827 register u_long uva; 828 register char *buf; 829 register size_t len; 830 { 831 register char *cp; 832 char procfile[MAXPATHLEN]; 833 ssize_t amount; 834 int fd; 835 836 if (!ISALIVE(kd)) { 837 _kvm_err(kd, kd->program, 838 "cannot read user space from dead kernel"); 839 return (0); 840 } 841 842 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 843 fd = open(procfile, O_RDONLY, 0); 844 if (fd < 0) { 845 _kvm_err(kd, kd->program, "cannot open %s", procfile); 846 close(fd); 847 return (0); 848 } 849 850 cp = buf; 851 while (len > 0) { 852 errno = 0; 853 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 854 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 855 uva, procfile); 856 break; 857 } 858 amount = read(fd, cp, len); 859 if (amount < 0) { 860 _kvm_syserr(kd, kd->program, "error reading %s", 861 procfile); 862 break; 863 } 864 if (amount == 0) { 865 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 866 break; 867 } 868 cp += amount; 869 uva += amount; 870 len -= amount; 871 } 872 873 close(fd); 874 return ((ssize_t)(cp - buf)); 875 } 876