xref: /freebsd/lib/libkvm/kvm_proc.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #if 0
39 #if defined(LIBC_SCCS) && !defined(lint)
40 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41 #endif /* LIBC_SCCS and not lint */
42 #endif
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 /*
48  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49  * users of this code, so we've factored it out into a separate module.
50  * Thus, we keep this grunge out of the other kvm applications (i.e.,
51  * most other applications are interested only in open/close/read/nlist).
52  */
53 
54 #include <sys/param.h>
55 #define	_WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56 #include <sys/ucred.h>
57 #include <sys/queue.h>
58 #include <sys/_lock.h>
59 #include <sys/_mutex.h>
60 #include <sys/_task.h>
61 #define	_WANT_PRISON	/* make jail.h give us 'struct prison' */
62 #include <sys/jail.h>
63 #include <sys/user.h>
64 #include <sys/proc.h>
65 #include <sys/exec.h>
66 #include <sys/stat.h>
67 #include <sys/sysent.h>
68 #include <sys/ioctl.h>
69 #include <sys/tty.h>
70 #include <sys/file.h>
71 #include <sys/conf.h>
72 #include <stdio.h>
73 #include <stdlib.h>
74 #include <unistd.h>
75 #include <nlist.h>
76 #include <kvm.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_param.h>
80 
81 #include <sys/sysctl.h>
82 
83 #include <limits.h>
84 #include <memory.h>
85 #include <paths.h>
86 
87 #include "kvm_private.h"
88 
89 #define KREAD(kd, addr, obj) \
90 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
91 
92 /*
93  * Read proc's from memory file into buffer bp, which has space to hold
94  * at most maxcnt procs.
95  */
96 static int
97 kvm_proclist(kd, what, arg, p, bp, maxcnt)
98 	kvm_t *kd;
99 	int what, arg;
100 	struct proc *p;
101 	struct kinfo_proc *bp;
102 	int maxcnt;
103 {
104 	int cnt = 0;
105 	struct kinfo_proc kinfo_proc, *kp;
106 	struct pgrp pgrp;
107 	struct session sess;
108 	struct cdev t_cdev;
109 	struct tty tty;
110 	struct vmspace vmspace;
111 	struct sigacts sigacts;
112 	struct pstats pstats;
113 	struct ucred ucred;
114 	struct prison pr;
115 	struct thread mtd;
116 	/*struct kse mke;*/
117 	struct ksegrp mkg;
118 	struct proc proc;
119 	struct proc pproc;
120 	struct timeval tv;
121 	struct sysentvec sysent;
122 	char svname[KI_EMULNAMELEN];
123 
124 	kp = &kinfo_proc;
125 	kp->ki_structsize = sizeof(kinfo_proc);
126 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
127 		memset(kp, 0, sizeof *kp);
128 		if (KREAD(kd, (u_long)p, &proc)) {
129 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
130 			return (-1);
131 		}
132 		if (proc.p_state != PRS_ZOMBIE) {
133 			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
134 			    &mtd)) {
135 				_kvm_err(kd, kd->program,
136 				    "can't read thread at %x",
137 				    TAILQ_FIRST(&proc.p_threads));
138 				return (-1);
139 			}
140 			if ((proc.p_flag & P_SA) == 0) {
141 				if (KREAD(kd,
142 				    (u_long)TAILQ_FIRST(&proc.p_ksegrps),
143 				    &mkg)) {
144 					_kvm_err(kd, kd->program,
145 					    "can't read ksegrp at %x",
146 					    TAILQ_FIRST(&proc.p_ksegrps));
147 					return (-1);
148 				}
149 #if 0
150 				if (KREAD(kd,
151 				    (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
152 					_kvm_err(kd, kd->program,
153 					    "can't read kse at %x",
154 					    TAILQ_FIRST(&mkg.kg_kseq));
155 					return (-1);
156 				}
157 #endif
158 			}
159 		}
160 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
161 			kp->ki_ruid = ucred.cr_ruid;
162 			kp->ki_svuid = ucred.cr_svuid;
163 			kp->ki_rgid = ucred.cr_rgid;
164 			kp->ki_svgid = ucred.cr_svgid;
165 			kp->ki_ngroups = ucred.cr_ngroups;
166 			bcopy(ucred.cr_groups, kp->ki_groups,
167 			    NGROUPS * sizeof(gid_t));
168 			kp->ki_uid = ucred.cr_uid;
169 			if (ucred.cr_prison != NULL) {
170 				if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
171 					_kvm_err(kd, kd->program,
172 					    "can't read prison at %x",
173 					    ucred.cr_prison);
174 					return (-1);
175 				}
176 				kp->ki_jid = pr.pr_id;
177 			}
178 		}
179 
180 		switch(what & ~KERN_PROC_INC_THREAD) {
181 
182 		case KERN_PROC_GID:
183 			if (kp->ki_groups[0] != (gid_t)arg)
184 				continue;
185 			break;
186 
187 		case KERN_PROC_PID:
188 			if (proc.p_pid != (pid_t)arg)
189 				continue;
190 			break;
191 
192 		case KERN_PROC_RGID:
193 			if (kp->ki_rgid != (gid_t)arg)
194 				continue;
195 			break;
196 
197 		case KERN_PROC_UID:
198 			if (kp->ki_uid != (uid_t)arg)
199 				continue;
200 			break;
201 
202 		case KERN_PROC_RUID:
203 			if (kp->ki_ruid != (uid_t)arg)
204 				continue;
205 			break;
206 		}
207 		/*
208 		 * We're going to add another proc to the set.  If this
209 		 * will overflow the buffer, assume the reason is because
210 		 * nprocs (or the proc list) is corrupt and declare an error.
211 		 */
212 		if (cnt >= maxcnt) {
213 			_kvm_err(kd, kd->program, "nprocs corrupt");
214 			return (-1);
215 		}
216 		/*
217 		 * gather kinfo_proc
218 		 */
219 		kp->ki_paddr = p;
220 		kp->ki_addr = 0;	/* XXX uarea */
221 		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
222 		kp->ki_args = proc.p_args;
223 		kp->ki_tracep = proc.p_tracevp;
224 		kp->ki_textvp = proc.p_textvp;
225 		kp->ki_fd = proc.p_fd;
226 		kp->ki_vmspace = proc.p_vmspace;
227 		if (proc.p_sigacts != NULL) {
228 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
229 				_kvm_err(kd, kd->program,
230 				    "can't read sigacts at %x", proc.p_sigacts);
231 				return (-1);
232 			}
233 			kp->ki_sigignore = sigacts.ps_sigignore;
234 			kp->ki_sigcatch = sigacts.ps_sigcatch;
235 		}
236 		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
237 			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
238 				_kvm_err(kd, kd->program,
239 				    "can't read stats at %x", proc.p_stats);
240 				return (-1);
241 			}
242 			kp->ki_start = pstats.p_start;
243 
244 			/*
245 			 * XXX: The times here are probably zero and need
246 			 * to be calculated from the raw data in p_rux and
247 			 * p_crux.
248 			 */
249 			kp->ki_rusage = pstats.p_ru;
250 			kp->ki_childstime = pstats.p_cru.ru_stime;
251 			kp->ki_childutime = pstats.p_cru.ru_utime;
252 			/* Some callers want child-times in a single value */
253 			timeradd(&kp->ki_childstime, &kp->ki_childutime,
254 			    &kp->ki_childtime);
255 		}
256 		if (proc.p_oppid)
257 			kp->ki_ppid = proc.p_oppid;
258 		else if (proc.p_pptr) {
259 			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
260 				_kvm_err(kd, kd->program,
261 				    "can't read pproc at %x", proc.p_pptr);
262 				return (-1);
263 			}
264 			kp->ki_ppid = pproc.p_pid;
265 		} else
266 			kp->ki_ppid = 0;
267 		if (proc.p_pgrp == NULL)
268 			goto nopgrp;
269 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
270 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
271 				 proc.p_pgrp);
272 			return (-1);
273 		}
274 		kp->ki_pgid = pgrp.pg_id;
275 		kp->ki_jobc = pgrp.pg_jobc;
276 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
277 			_kvm_err(kd, kd->program, "can't read session at %x",
278 				pgrp.pg_session);
279 			return (-1);
280 		}
281 		kp->ki_sid = sess.s_sid;
282 		(void)memcpy(kp->ki_login, sess.s_login,
283 						sizeof(kp->ki_login));
284 		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
285 		if (sess.s_leader == p)
286 			kp->ki_kiflag |= KI_SLEADER;
287 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
288 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
289 				_kvm_err(kd, kd->program,
290 					 "can't read tty at %x", sess.s_ttyp);
291 				return (-1);
292 			}
293 			if (tty.t_dev != NULL) {
294 				if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
295 					_kvm_err(kd, kd->program,
296 						 "can't read cdev at %x",
297 						tty.t_dev);
298 					return (-1);
299 				}
300 #if 0
301 				kp->ki_tdev = t_cdev.si_udev;
302 #else
303 				kp->ki_tdev = NODEV;
304 #endif
305 			}
306 			if (tty.t_pgrp != NULL) {
307 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
308 					_kvm_err(kd, kd->program,
309 						 "can't read tpgrp at %x",
310 						tty.t_pgrp);
311 					return (-1);
312 				}
313 				kp->ki_tpgid = pgrp.pg_id;
314 			} else
315 				kp->ki_tpgid = -1;
316 			if (tty.t_session != NULL) {
317 				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
318 					_kvm_err(kd, kd->program,
319 					    "can't read session at %x",
320 					    tty.t_session);
321 					return (-1);
322 				}
323 				kp->ki_tsid = sess.s_sid;
324 			}
325 		} else {
326 nopgrp:
327 			kp->ki_tdev = NODEV;
328 		}
329 		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
330 			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
331 			    kp->ki_wmesg, WMESGLEN);
332 
333 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
334 		    (char *)&vmspace, sizeof(vmspace));
335 		kp->ki_size = vmspace.vm_map.size;
336 		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
337 		kp->ki_swrss = vmspace.vm_swrss;
338 		kp->ki_tsize = vmspace.vm_tsize;
339 		kp->ki_dsize = vmspace.vm_dsize;
340 		kp->ki_ssize = vmspace.vm_ssize;
341 
342 		switch (what & ~KERN_PROC_INC_THREAD) {
343 
344 		case KERN_PROC_PGRP:
345 			if (kp->ki_pgid != (pid_t)arg)
346 				continue;
347 			break;
348 
349 		case KERN_PROC_SESSION:
350 			if (kp->ki_sid != (pid_t)arg)
351 				continue;
352 			break;
353 
354 		case KERN_PROC_TTY:
355 			if ((proc.p_flag & P_CONTROLT) == 0 ||
356 			     kp->ki_tdev != (dev_t)arg)
357 				continue;
358 			break;
359 		}
360 		if (proc.p_comm[0] != 0)
361 			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
362 		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
363 		    sizeof(sysent));
364 		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
365 		    sizeof(svname));
366 		if (svname[0] != 0)
367 			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
368 		if ((proc.p_state != PRS_ZOMBIE) &&
369 		    (mtd.td_blocked != 0)) {
370 			kp->ki_kiflag |= KI_LOCKBLOCK;
371 			if (mtd.td_lockname)
372 				(void)kvm_read(kd,
373 				    (u_long)mtd.td_lockname,
374 				    kp->ki_lockname, LOCKNAMELEN);
375 			kp->ki_lockname[LOCKNAMELEN] = 0;
376 		}
377 		bintime2timeval(&proc.p_rux.rux_runtime, &tv);
378 		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
379 		kp->ki_pid = proc.p_pid;
380 		kp->ki_siglist = proc.p_siglist;
381 		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
382 		kp->ki_sigmask = mtd.td_sigmask;
383 		kp->ki_xstat = proc.p_xstat;
384 		kp->ki_acflag = proc.p_acflag;
385 		kp->ki_lock = proc.p_lock;
386 		if (proc.p_state != PRS_ZOMBIE) {
387 			kp->ki_swtime = proc.p_swtime;
388 			kp->ki_flag = proc.p_flag;
389 			kp->ki_sflag = proc.p_sflag;
390 			kp->ki_nice = proc.p_nice;
391 			kp->ki_traceflag = proc.p_traceflag;
392 			if (proc.p_state == PRS_NORMAL) {
393 				if (TD_ON_RUNQ(&mtd) ||
394 				    TD_CAN_RUN(&mtd) ||
395 				    TD_IS_RUNNING(&mtd)) {
396 					kp->ki_stat = SRUN;
397 				} else if (mtd.td_state ==
398 				    TDS_INHIBITED) {
399 					if (P_SHOULDSTOP(&proc)) {
400 						kp->ki_stat = SSTOP;
401 					} else if (
402 					    TD_IS_SLEEPING(&mtd)) {
403 						kp->ki_stat = SSLEEP;
404 					} else if (TD_ON_LOCK(&mtd)) {
405 						kp->ki_stat = SLOCK;
406 					} else {
407 						kp->ki_stat = SWAIT;
408 					}
409 				}
410 			} else {
411 				kp->ki_stat = SIDL;
412 			}
413 			/* Stuff from the thread */
414 			kp->ki_pri.pri_level = mtd.td_priority;
415 			kp->ki_pri.pri_native = mtd.td_base_pri;
416 			kp->ki_lastcpu = mtd.td_lastcpu;
417 			kp->ki_wchan = mtd.td_wchan;
418 			kp->ki_oncpu = mtd.td_oncpu;
419 
420 			if (!(proc.p_flag & P_SA)) {
421 				/* stuff from the ksegrp */
422 				kp->ki_slptime = mkg.kg_slptime;
423 				kp->ki_pri.pri_class = mkg.kg_pri_class;
424 				kp->ki_pri.pri_user = mkg.kg_user_pri;
425 				kp->ki_estcpu = mkg.kg_estcpu;
426 
427 #if 0
428 				/* Stuff from the kse */
429 				kp->ki_pctcpu = mke.ke_pctcpu;
430 				kp->ki_rqindex = mke.ke_rqindex;
431 #else
432 				kp->ki_pctcpu = 0;
433 				kp->ki_rqindex = 0;
434 #endif
435 			} else {
436 				kp->ki_tdflags = -1;
437 				/* All the rest are 0 for now */
438 			}
439 		} else {
440 			kp->ki_stat = SZOMB;
441 		}
442 		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
443 		++bp;
444 		++cnt;
445 	}
446 	return (cnt);
447 }
448 
449 /*
450  * Build proc info array by reading in proc list from a crash dump.
451  * Return number of procs read.  maxcnt is the max we will read.
452  */
453 static int
454 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
455 	kvm_t *kd;
456 	int what, arg;
457 	u_long a_allproc;
458 	u_long a_zombproc;
459 	int maxcnt;
460 {
461 	struct kinfo_proc *bp = kd->procbase;
462 	int acnt, zcnt;
463 	struct proc *p;
464 
465 	if (KREAD(kd, a_allproc, &p)) {
466 		_kvm_err(kd, kd->program, "cannot read allproc");
467 		return (-1);
468 	}
469 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
470 	if (acnt < 0)
471 		return (acnt);
472 
473 	if (KREAD(kd, a_zombproc, &p)) {
474 		_kvm_err(kd, kd->program, "cannot read zombproc");
475 		return (-1);
476 	}
477 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
478 	if (zcnt < 0)
479 		zcnt = 0;
480 
481 	return (acnt + zcnt);
482 }
483 
484 struct kinfo_proc *
485 kvm_getprocs(kd, op, arg, cnt)
486 	kvm_t *kd;
487 	int op, arg;
488 	int *cnt;
489 {
490 	int mib[4], st, nprocs;
491 	size_t size;
492 	int temp_op;
493 
494 	if (kd->procbase != 0) {
495 		free((void *)kd->procbase);
496 		/*
497 		 * Clear this pointer in case this call fails.  Otherwise,
498 		 * kvm_close() will free it again.
499 		 */
500 		kd->procbase = 0;
501 	}
502 	if (ISALIVE(kd)) {
503 		size = 0;
504 		mib[0] = CTL_KERN;
505 		mib[1] = KERN_PROC;
506 		mib[2] = op;
507 		mib[3] = arg;
508 		temp_op = op & ~KERN_PROC_INC_THREAD;
509 		st = sysctl(mib,
510 		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
511 		    3 : 4, NULL, &size, NULL, 0);
512 		if (st == -1) {
513 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
514 			return (0);
515 		}
516 		/*
517 		 * We can't continue with a size of 0 because we pass
518 		 * it to realloc() (via _kvm_realloc()), and passing 0
519 		 * to realloc() results in undefined behavior.
520 		 */
521 		if (size == 0) {
522 			/*
523 			 * XXX: We should probably return an invalid,
524 			 * but non-NULL, pointer here so any client
525 			 * program trying to dereference it will
526 			 * crash.  However, _kvm_freeprocs() calls
527 			 * free() on kd->procbase if it isn't NULL,
528 			 * and free()'ing a junk pointer isn't good.
529 			 * Then again, _kvm_freeprocs() isn't used
530 			 * anywhere . . .
531 			 */
532 			kd->procbase = _kvm_malloc(kd, 1);
533 			goto liveout;
534 		}
535 		do {
536 			size += size / 10;
537 			kd->procbase = (struct kinfo_proc *)
538 			    _kvm_realloc(kd, kd->procbase, size);
539 			if (kd->procbase == 0)
540 				return (0);
541 			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
542 			    temp_op == KERN_PROC_PROC ? 3 : 4,
543 			    kd->procbase, &size, NULL, 0);
544 		} while (st == -1 && errno == ENOMEM);
545 		if (st == -1) {
546 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
547 			return (0);
548 		}
549 		/*
550 		 * We have to check the size again because sysctl()
551 		 * may "round up" oldlenp if oldp is NULL; hence it
552 		 * might've told us that there was data to get when
553 		 * there really isn't any.
554 		 */
555 		if (size > 0 &&
556 		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
557 			_kvm_err(kd, kd->program,
558 			    "kinfo_proc size mismatch (expected %d, got %d)",
559 			    sizeof(struct kinfo_proc),
560 			    kd->procbase->ki_structsize);
561 			return (0);
562 		}
563 liveout:
564 		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
565 	} else {
566 		struct nlist nl[4], *p;
567 
568 		nl[0].n_name = "_nprocs";
569 		nl[1].n_name = "_allproc";
570 		nl[2].n_name = "_zombproc";
571 		nl[3].n_name = 0;
572 
573 		if (kvm_nlist(kd, nl) != 0) {
574 			for (p = nl; p->n_type != 0; ++p)
575 				;
576 			_kvm_err(kd, kd->program,
577 				 "%s: no such symbol", p->n_name);
578 			return (0);
579 		}
580 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
581 			_kvm_err(kd, kd->program, "can't read nprocs");
582 			return (0);
583 		}
584 		size = nprocs * sizeof(struct kinfo_proc);
585 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
586 		if (kd->procbase == 0)
587 			return (0);
588 
589 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
590 				      nl[2].n_value, nprocs);
591 #ifdef notdef
592 		size = nprocs * sizeof(struct kinfo_proc);
593 		(void)realloc(kd->procbase, size);
594 #endif
595 	}
596 	*cnt = nprocs;
597 	return (kd->procbase);
598 }
599 
600 void
601 _kvm_freeprocs(kd)
602 	kvm_t *kd;
603 {
604 	if (kd->procbase) {
605 		free(kd->procbase);
606 		kd->procbase = 0;
607 	}
608 }
609 
610 void *
611 _kvm_realloc(kd, p, n)
612 	kvm_t *kd;
613 	void *p;
614 	size_t n;
615 {
616 	void *np = (void *)realloc(p, n);
617 
618 	if (np == 0) {
619 		free(p);
620 		_kvm_err(kd, kd->program, "out of memory");
621 	}
622 	return (np);
623 }
624 
625 #ifndef MAX
626 #define MAX(a, b) ((a) > (b) ? (a) : (b))
627 #endif
628 
629 /*
630  * Read in an argument vector from the user address space of process kp.
631  * addr if the user-space base address of narg null-terminated contiguous
632  * strings.  This is used to read in both the command arguments and
633  * environment strings.  Read at most maxcnt characters of strings.
634  */
635 static char **
636 kvm_argv(kd, kp, addr, narg, maxcnt)
637 	kvm_t *kd;
638 	struct kinfo_proc *kp;
639 	u_long addr;
640 	int narg;
641 	int maxcnt;
642 {
643 	char *np, *cp, *ep, *ap;
644 	u_long oaddr = -1;
645 	int len, cc;
646 	char **argv;
647 
648 	/*
649 	 * Check that there aren't an unreasonable number of agruments,
650 	 * and that the address is in user space.
651 	 */
652 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
653 		return (0);
654 
655 	/*
656 	 * kd->argv : work space for fetching the strings from the target
657 	 *            process's space, and is converted for returning to caller
658 	 */
659 	if (kd->argv == 0) {
660 		/*
661 		 * Try to avoid reallocs.
662 		 */
663 		kd->argc = MAX(narg + 1, 32);
664 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
665 						sizeof(*kd->argv));
666 		if (kd->argv == 0)
667 			return (0);
668 	} else if (narg + 1 > kd->argc) {
669 		kd->argc = MAX(2 * kd->argc, narg + 1);
670 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
671 						sizeof(*kd->argv));
672 		if (kd->argv == 0)
673 			return (0);
674 	}
675 	/*
676 	 * kd->argspc : returned to user, this is where the kd->argv
677 	 *              arrays are left pointing to the collected strings.
678 	 */
679 	if (kd->argspc == 0) {
680 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
681 		if (kd->argspc == 0)
682 			return (0);
683 		kd->arglen = PAGE_SIZE;
684 	}
685 	/*
686 	 * kd->argbuf : used to pull in pages from the target process.
687 	 *              the strings are copied out of here.
688 	 */
689 	if (kd->argbuf == 0) {
690 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
691 		if (kd->argbuf == 0)
692 			return (0);
693 	}
694 
695 	/* Pull in the target process'es argv vector */
696 	cc = sizeof(char *) * narg;
697 	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
698 		return (0);
699 	/*
700 	 * ap : saved start address of string we're working on in kd->argspc
701 	 * np : pointer to next place to write in kd->argspc
702 	 * len: length of data in kd->argspc
703 	 * argv: pointer to the argv vector that we are hunting around the
704 	 *       target process space for, and converting to addresses in
705 	 *       our address space (kd->argspc).
706 	 */
707 	ap = np = kd->argspc;
708 	argv = kd->argv;
709 	len = 0;
710 	/*
711 	 * Loop over pages, filling in the argument vector.
712 	 * Note that the argv strings could be pointing *anywhere* in
713 	 * the user address space and are no longer contiguous.
714 	 * Note that *argv is modified when we are going to fetch a string
715 	 * that crosses a page boundary.  We copy the next part of the string
716 	 * into to "np" and eventually convert the pointer.
717 	 */
718 	while (argv < kd->argv + narg && *argv != 0) {
719 
720 		/* get the address that the current argv string is on */
721 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
722 
723 		/* is it the same page as the last one? */
724 		if (addr != oaddr) {
725 			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
726 			    PAGE_SIZE)
727 				return (0);
728 			oaddr = addr;
729 		}
730 
731 		/* offset within the page... kd->argbuf */
732 		addr = (u_long)*argv & (PAGE_SIZE - 1);
733 
734 		/* cp = start of string, cc = count of chars in this chunk */
735 		cp = kd->argbuf + addr;
736 		cc = PAGE_SIZE - addr;
737 
738 		/* dont get more than asked for by user process */
739 		if (maxcnt > 0 && cc > maxcnt - len)
740 			cc = maxcnt - len;
741 
742 		/* pointer to end of string if we found it in this page */
743 		ep = memchr(cp, '\0', cc);
744 		if (ep != 0)
745 			cc = ep - cp + 1;
746 		/*
747 		 * at this point, cc is the count of the chars that we are
748 		 * going to retrieve this time. we may or may not have found
749 		 * the end of it.  (ep points to the null if the end is known)
750 		 */
751 
752 		/* will we exceed the malloc/realloced buffer? */
753 		if (len + cc > kd->arglen) {
754 			int off;
755 			char **pp;
756 			char *op = kd->argspc;
757 
758 			kd->arglen *= 2;
759 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
760 							  kd->arglen);
761 			if (kd->argspc == 0)
762 				return (0);
763 			/*
764 			 * Adjust argv pointers in case realloc moved
765 			 * the string space.
766 			 */
767 			off = kd->argspc - op;
768 			for (pp = kd->argv; pp < argv; pp++)
769 				*pp += off;
770 			ap += off;
771 			np += off;
772 		}
773 		/* np = where to put the next part of the string in kd->argspc*/
774 		/* np is kinda redundant.. could use "kd->argspc + len" */
775 		memcpy(np, cp, cc);
776 		np += cc;	/* inc counters */
777 		len += cc;
778 
779 		/*
780 		 * if end of string found, set the *argv pointer to the
781 		 * saved beginning of string, and advance. argv points to
782 		 * somewhere in kd->argv..  This is initially relative
783 		 * to the target process, but when we close it off, we set
784 		 * it to point in our address space.
785 		 */
786 		if (ep != 0) {
787 			*argv++ = ap;
788 			ap = np;
789 		} else {
790 			/* update the address relative to the target process */
791 			*argv += cc;
792 		}
793 
794 		if (maxcnt > 0 && len >= maxcnt) {
795 			/*
796 			 * We're stopping prematurely.  Terminate the
797 			 * current string.
798 			 */
799 			if (ep == 0) {
800 				*np = '\0';
801 				*argv++ = ap;
802 			}
803 			break;
804 		}
805 	}
806 	/* Make sure argv is terminated. */
807 	*argv = 0;
808 	return (kd->argv);
809 }
810 
811 static void
812 ps_str_a(p, addr, n)
813 	struct ps_strings *p;
814 	u_long *addr;
815 	int *n;
816 {
817 	*addr = (u_long)p->ps_argvstr;
818 	*n = p->ps_nargvstr;
819 }
820 
821 static void
822 ps_str_e(p, addr, n)
823 	struct ps_strings *p;
824 	u_long *addr;
825 	int *n;
826 {
827 	*addr = (u_long)p->ps_envstr;
828 	*n = p->ps_nenvstr;
829 }
830 
831 /*
832  * Determine if the proc indicated by p is still active.
833  * This test is not 100% foolproof in theory, but chances of
834  * being wrong are very low.
835  */
836 static int
837 proc_verify(curkp)
838 	struct kinfo_proc *curkp;
839 {
840 	struct kinfo_proc newkp;
841 	int mib[4];
842 	size_t len;
843 
844 	mib[0] = CTL_KERN;
845 	mib[1] = KERN_PROC;
846 	mib[2] = KERN_PROC_PID;
847 	mib[3] = curkp->ki_pid;
848 	len = sizeof(newkp);
849 	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
850 		return (0);
851 	return (curkp->ki_pid == newkp.ki_pid &&
852 	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
853 }
854 
855 static char **
856 kvm_doargv(kd, kp, nchr, info)
857 	kvm_t *kd;
858 	struct kinfo_proc *kp;
859 	int nchr;
860 	void (*info)(struct ps_strings *, u_long *, int *);
861 {
862 	char **ap;
863 	u_long addr;
864 	int cnt;
865 	static struct ps_strings arginfo;
866 	static u_long ps_strings;
867 	size_t len;
868 
869 	if (ps_strings == 0) {
870 		len = sizeof(ps_strings);
871 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
872 		    0) == -1)
873 			ps_strings = PS_STRINGS;
874 	}
875 
876 	/*
877 	 * Pointers are stored at the top of the user stack.
878 	 */
879 	if (kp->ki_stat == SZOMB ||
880 	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
881 		      sizeof(arginfo)) != sizeof(arginfo))
882 		return (0);
883 
884 	(*info)(&arginfo, &addr, &cnt);
885 	if (cnt == 0)
886 		return (0);
887 	ap = kvm_argv(kd, kp, addr, cnt, nchr);
888 	/*
889 	 * For live kernels, make sure this process didn't go away.
890 	 */
891 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
892 		ap = 0;
893 	return (ap);
894 }
895 
896 /*
897  * Get the command args.  This code is now machine independent.
898  */
899 char **
900 kvm_getargv(kd, kp, nchr)
901 	kvm_t *kd;
902 	const struct kinfo_proc *kp;
903 	int nchr;
904 {
905 	int oid[4];
906 	int i;
907 	size_t bufsz;
908 	static unsigned long buflen;
909 	static char *buf, *p;
910 	static char **bufp;
911 	static int argc;
912 
913 	if (!ISALIVE(kd)) {
914 		_kvm_err(kd, kd->program,
915 		    "cannot read user space from dead kernel");
916 		return (0);
917 	}
918 
919 	if (!buflen) {
920 		bufsz = sizeof(buflen);
921 		i = sysctlbyname("kern.ps_arg_cache_limit",
922 		    &buflen, &bufsz, NULL, 0);
923 		if (i == -1) {
924 			buflen = 0;
925 		} else {
926 			buf = malloc(buflen);
927 			if (buf == NULL)
928 				buflen = 0;
929 			argc = 32;
930 			bufp = malloc(sizeof(char *) * argc);
931 		}
932 	}
933 	if (buf != NULL) {
934 		oid[0] = CTL_KERN;
935 		oid[1] = KERN_PROC;
936 		oid[2] = KERN_PROC_ARGS;
937 		oid[3] = kp->ki_pid;
938 		bufsz = buflen;
939 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
940 		if (i == 0 && bufsz > 0) {
941 			i = 0;
942 			p = buf;
943 			do {
944 				bufp[i++] = p;
945 				p += strlen(p) + 1;
946 				if (i >= argc) {
947 					argc += argc;
948 					bufp = realloc(bufp,
949 					    sizeof(char *) * argc);
950 				}
951 			} while (p < buf + bufsz);
952 			bufp[i++] = 0;
953 			return (bufp);
954 		}
955 	}
956 	if (kp->ki_flag & P_SYSTEM)
957 		return (NULL);
958 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
959 }
960 
961 char **
962 kvm_getenvv(kd, kp, nchr)
963 	kvm_t *kd;
964 	const struct kinfo_proc *kp;
965 	int nchr;
966 {
967 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
968 }
969 
970 /*
971  * Read from user space.  The user context is given by p.
972  */
973 ssize_t
974 kvm_uread(kd, kp, uva, buf, len)
975 	kvm_t *kd;
976 	struct kinfo_proc *kp;
977 	u_long uva;
978 	char *buf;
979 	size_t len;
980 {
981 	char *cp;
982 	char procfile[MAXPATHLEN];
983 	ssize_t amount;
984 	int fd;
985 
986 	if (!ISALIVE(kd)) {
987 		_kvm_err(kd, kd->program,
988 		    "cannot read user space from dead kernel");
989 		return (0);
990 	}
991 
992 	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
993 	fd = open(procfile, O_RDONLY, 0);
994 	if (fd < 0) {
995 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
996 		return (0);
997 	}
998 
999 	cp = buf;
1000 	while (len > 0) {
1001 		errno = 0;
1002 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
1003 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
1004 			    uva, procfile);
1005 			break;
1006 		}
1007 		amount = read(fd, cp, len);
1008 		if (amount < 0) {
1009 			_kvm_syserr(kd, kd->program, "error reading %s",
1010 			    procfile);
1011 			break;
1012 		}
1013 		if (amount == 0) {
1014 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
1015 			break;
1016 		}
1017 		cp += amount;
1018 		uva += amount;
1019 		len -= amount;
1020 	}
1021 
1022 	close(fd);
1023 	return ((ssize_t)(cp - buf));
1024 }
1025