1 /*- 2 * Copyright (c) 1989, 1992, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software developed by the Computer Systems 6 * Engineering group at Lawrence Berkeley Laboratory under DARPA contract 7 * BG 91-66 and contributed to Berkeley. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 */ 33 34 #if 0 35 #if defined(LIBC_SCCS) && !defined(lint) 36 static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93"; 37 #endif /* LIBC_SCCS and not lint */ 38 #endif 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 /* 44 * Proc traversal interface for kvm. ps and w are (probably) the exclusive 45 * users of this code, so we've factored it out into a separate module. 46 * Thus, we keep this grunge out of the other kvm applications (i.e., 47 * most other applications are interested only in open/close/read/nlist). 48 */ 49 50 #include <sys/param.h> 51 #define _WANT_UCRED /* make ucred.h give us 'struct ucred' */ 52 #include <sys/ucred.h> 53 #include <sys/queue.h> 54 #include <sys/_lock.h> 55 #include <sys/_mutex.h> 56 #include <sys/_task.h> 57 #define _WANT_PRISON /* make jail.h give us 'struct prison' */ 58 #include <sys/jail.h> 59 #include <sys/user.h> 60 #include <sys/proc.h> 61 #include <sys/exec.h> 62 #include <sys/stat.h> 63 #include <sys/sysent.h> 64 #include <sys/ioctl.h> 65 #include <sys/tty.h> 66 #include <sys/file.h> 67 #include <sys/conf.h> 68 #include <stdio.h> 69 #include <stdlib.h> 70 #include <unistd.h> 71 #include <nlist.h> 72 #include <kvm.h> 73 74 #include <vm/vm.h> 75 #include <vm/vm_param.h> 76 77 #include <sys/sysctl.h> 78 79 #include <limits.h> 80 #include <memory.h> 81 #include <paths.h> 82 83 #include "kvm_private.h" 84 85 #define KREAD(kd, addr, obj) \ 86 (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj)) 87 88 static int ticks; 89 static int hz; 90 91 /* 92 * Read proc's from memory file into buffer bp, which has space to hold 93 * at most maxcnt procs. 94 */ 95 static int 96 kvm_proclist(kd, what, arg, p, bp, maxcnt) 97 kvm_t *kd; 98 int what, arg; 99 struct proc *p; 100 struct kinfo_proc *bp; 101 int maxcnt; 102 { 103 int cnt = 0; 104 struct kinfo_proc kinfo_proc, *kp; 105 struct pgrp pgrp; 106 struct session sess; 107 struct cdev t_cdev; 108 struct tty tty; 109 struct vmspace vmspace; 110 struct sigacts sigacts; 111 struct pstats pstats; 112 struct ucred ucred; 113 struct prison pr; 114 struct thread mtd; 115 struct proc proc; 116 struct proc pproc; 117 struct timeval tv; 118 struct sysentvec sysent; 119 char svname[KI_EMULNAMELEN]; 120 121 kp = &kinfo_proc; 122 kp->ki_structsize = sizeof(kinfo_proc); 123 for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) { 124 memset(kp, 0, sizeof *kp); 125 if (KREAD(kd, (u_long)p, &proc)) { 126 _kvm_err(kd, kd->program, "can't read proc at %x", p); 127 return (-1); 128 } 129 if (proc.p_state != PRS_ZOMBIE) { 130 if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads), 131 &mtd)) { 132 _kvm_err(kd, kd->program, 133 "can't read thread at %x", 134 TAILQ_FIRST(&proc.p_threads)); 135 return (-1); 136 } 137 } 138 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) { 139 kp->ki_ruid = ucred.cr_ruid; 140 kp->ki_svuid = ucred.cr_svuid; 141 kp->ki_rgid = ucred.cr_rgid; 142 kp->ki_svgid = ucred.cr_svgid; 143 kp->ki_ngroups = ucred.cr_ngroups; 144 bcopy(ucred.cr_groups, kp->ki_groups, 145 NGROUPS * sizeof(gid_t)); 146 kp->ki_uid = ucred.cr_uid; 147 if (ucred.cr_prison != NULL) { 148 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) { 149 _kvm_err(kd, kd->program, 150 "can't read prison at %x", 151 ucred.cr_prison); 152 return (-1); 153 } 154 kp->ki_jid = pr.pr_id; 155 } 156 } 157 158 switch(what & ~KERN_PROC_INC_THREAD) { 159 160 case KERN_PROC_GID: 161 if (kp->ki_groups[0] != (gid_t)arg) 162 continue; 163 break; 164 165 case KERN_PROC_PID: 166 if (proc.p_pid != (pid_t)arg) 167 continue; 168 break; 169 170 case KERN_PROC_RGID: 171 if (kp->ki_rgid != (gid_t)arg) 172 continue; 173 break; 174 175 case KERN_PROC_UID: 176 if (kp->ki_uid != (uid_t)arg) 177 continue; 178 break; 179 180 case KERN_PROC_RUID: 181 if (kp->ki_ruid != (uid_t)arg) 182 continue; 183 break; 184 } 185 /* 186 * We're going to add another proc to the set. If this 187 * will overflow the buffer, assume the reason is because 188 * nprocs (or the proc list) is corrupt and declare an error. 189 */ 190 if (cnt >= maxcnt) { 191 _kvm_err(kd, kd->program, "nprocs corrupt"); 192 return (-1); 193 } 194 /* 195 * gather kinfo_proc 196 */ 197 kp->ki_paddr = p; 198 kp->ki_addr = 0; /* XXX uarea */ 199 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */ 200 kp->ki_args = proc.p_args; 201 kp->ki_tracep = proc.p_tracevp; 202 kp->ki_textvp = proc.p_textvp; 203 kp->ki_fd = proc.p_fd; 204 kp->ki_vmspace = proc.p_vmspace; 205 if (proc.p_sigacts != NULL) { 206 if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) { 207 _kvm_err(kd, kd->program, 208 "can't read sigacts at %x", proc.p_sigacts); 209 return (-1); 210 } 211 kp->ki_sigignore = sigacts.ps_sigignore; 212 kp->ki_sigcatch = sigacts.ps_sigcatch; 213 } 214 #if 0 215 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) { 216 if (KREAD(kd, (u_long)proc.p_stats, &pstats)) { 217 _kvm_err(kd, kd->program, 218 "can't read stats at %x", proc.p_stats); 219 return (-1); 220 } 221 kp->ki_start = pstats.p_start; 222 223 /* 224 * XXX: The times here are probably zero and need 225 * to be calculated from the raw data in p_rux and 226 * p_crux. 227 */ 228 kp->ki_rusage = pstats.p_ru; 229 kp->ki_childstime = pstats.p_cru.ru_stime; 230 kp->ki_childutime = pstats.p_cru.ru_utime; 231 /* Some callers want child-times in a single value */ 232 timeradd(&kp->ki_childstime, &kp->ki_childutime, 233 &kp->ki_childtime); 234 } 235 #endif 236 if (proc.p_oppid) 237 kp->ki_ppid = proc.p_oppid; 238 else if (proc.p_pptr) { 239 if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) { 240 _kvm_err(kd, kd->program, 241 "can't read pproc at %x", proc.p_pptr); 242 return (-1); 243 } 244 kp->ki_ppid = pproc.p_pid; 245 } else 246 kp->ki_ppid = 0; 247 if (proc.p_pgrp == NULL) 248 goto nopgrp; 249 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) { 250 _kvm_err(kd, kd->program, "can't read pgrp at %x", 251 proc.p_pgrp); 252 return (-1); 253 } 254 kp->ki_pgid = pgrp.pg_id; 255 kp->ki_jobc = pgrp.pg_jobc; 256 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) { 257 _kvm_err(kd, kd->program, "can't read session at %x", 258 pgrp.pg_session); 259 return (-1); 260 } 261 kp->ki_sid = sess.s_sid; 262 (void)memcpy(kp->ki_login, sess.s_login, 263 sizeof(kp->ki_login)); 264 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0; 265 if (sess.s_leader == p) 266 kp->ki_kiflag |= KI_SLEADER; 267 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) { 268 if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) { 269 _kvm_err(kd, kd->program, 270 "can't read tty at %x", sess.s_ttyp); 271 return (-1); 272 } 273 if (tty.t_dev != NULL) { 274 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) { 275 _kvm_err(kd, kd->program, 276 "can't read cdev at %x", 277 tty.t_dev); 278 return (-1); 279 } 280 #if 0 281 kp->ki_tdev = t_cdev.si_udev; 282 #else 283 kp->ki_tdev = NODEV; 284 #endif 285 } 286 if (tty.t_pgrp != NULL) { 287 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) { 288 _kvm_err(kd, kd->program, 289 "can't read tpgrp at %x", 290 tty.t_pgrp); 291 return (-1); 292 } 293 kp->ki_tpgid = pgrp.pg_id; 294 } else 295 kp->ki_tpgid = -1; 296 if (tty.t_session != NULL) { 297 if (KREAD(kd, (u_long)tty.t_session, &sess)) { 298 _kvm_err(kd, kd->program, 299 "can't read session at %x", 300 tty.t_session); 301 return (-1); 302 } 303 kp->ki_tsid = sess.s_sid; 304 } 305 } else { 306 nopgrp: 307 kp->ki_tdev = NODEV; 308 } 309 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg) 310 (void)kvm_read(kd, (u_long)mtd.td_wmesg, 311 kp->ki_wmesg, WMESGLEN); 312 313 (void)kvm_read(kd, (u_long)proc.p_vmspace, 314 (char *)&vmspace, sizeof(vmspace)); 315 kp->ki_size = vmspace.vm_map.size; 316 kp->ki_rssize = vmspace.vm_swrss; /* XXX */ 317 kp->ki_swrss = vmspace.vm_swrss; 318 kp->ki_tsize = vmspace.vm_tsize; 319 kp->ki_dsize = vmspace.vm_dsize; 320 kp->ki_ssize = vmspace.vm_ssize; 321 322 switch (what & ~KERN_PROC_INC_THREAD) { 323 324 case KERN_PROC_PGRP: 325 if (kp->ki_pgid != (pid_t)arg) 326 continue; 327 break; 328 329 case KERN_PROC_SESSION: 330 if (kp->ki_sid != (pid_t)arg) 331 continue; 332 break; 333 334 case KERN_PROC_TTY: 335 if ((proc.p_flag & P_CONTROLT) == 0 || 336 kp->ki_tdev != (dev_t)arg) 337 continue; 338 break; 339 } 340 if (proc.p_comm[0] != 0) 341 strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN); 342 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent, 343 sizeof(sysent)); 344 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname, 345 sizeof(svname)); 346 if (svname[0] != 0) 347 strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN); 348 if ((proc.p_state != PRS_ZOMBIE) && 349 (mtd.td_blocked != 0)) { 350 kp->ki_kiflag |= KI_LOCKBLOCK; 351 if (mtd.td_lockname) 352 (void)kvm_read(kd, 353 (u_long)mtd.td_lockname, 354 kp->ki_lockname, LOCKNAMELEN); 355 kp->ki_lockname[LOCKNAMELEN] = 0; 356 } 357 /* 358 * XXX: This is plain wrong, rux_runtime has nothing 359 * to do with struct bintime, rux_runtime is just a 64-bit 360 * integer counter of cputicks. What we need here is a way 361 * to convert cputicks to usecs. The kernel does it in 362 * kern/kern_tc.c, but the function can't be just copied. 363 */ 364 bintime2timeval(&proc.p_rux.rux_runtime, &tv); 365 kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec; 366 kp->ki_pid = proc.p_pid; 367 kp->ki_siglist = proc.p_siglist; 368 SIGSETOR(kp->ki_siglist, mtd.td_siglist); 369 kp->ki_sigmask = mtd.td_sigmask; 370 kp->ki_xstat = proc.p_xstat; 371 kp->ki_acflag = proc.p_acflag; 372 kp->ki_lock = proc.p_lock; 373 if (proc.p_state != PRS_ZOMBIE) { 374 kp->ki_swtime = (ticks - proc.p_swtick) / hz; 375 kp->ki_flag = proc.p_flag; 376 kp->ki_sflag = 0; 377 kp->ki_nice = proc.p_nice; 378 kp->ki_traceflag = proc.p_traceflag; 379 if (proc.p_state == PRS_NORMAL) { 380 if (TD_ON_RUNQ(&mtd) || 381 TD_CAN_RUN(&mtd) || 382 TD_IS_RUNNING(&mtd)) { 383 kp->ki_stat = SRUN; 384 } else if (mtd.td_state == 385 TDS_INHIBITED) { 386 if (P_SHOULDSTOP(&proc)) { 387 kp->ki_stat = SSTOP; 388 } else if ( 389 TD_IS_SLEEPING(&mtd)) { 390 kp->ki_stat = SSLEEP; 391 } else if (TD_ON_LOCK(&mtd)) { 392 kp->ki_stat = SLOCK; 393 } else { 394 kp->ki_stat = SWAIT; 395 } 396 } 397 } else { 398 kp->ki_stat = SIDL; 399 } 400 /* Stuff from the thread */ 401 kp->ki_pri.pri_level = mtd.td_priority; 402 kp->ki_pri.pri_native = mtd.td_base_pri; 403 kp->ki_lastcpu = mtd.td_lastcpu; 404 kp->ki_wchan = mtd.td_wchan; 405 kp->ki_oncpu = mtd.td_oncpu; 406 407 if (!(proc.p_flag & P_SA)) { 408 kp->ki_pctcpu = 0; 409 kp->ki_rqindex = 0; 410 } else { 411 kp->ki_tdflags = -1; 412 /* All the rest are 0 for now */ 413 } 414 } else { 415 kp->ki_stat = SZOMB; 416 } 417 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc)); 418 ++bp; 419 ++cnt; 420 } 421 return (cnt); 422 } 423 424 /* 425 * Build proc info array by reading in proc list from a crash dump. 426 * Return number of procs read. maxcnt is the max we will read. 427 */ 428 static int 429 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt) 430 kvm_t *kd; 431 int what, arg; 432 u_long a_allproc; 433 u_long a_zombproc; 434 int maxcnt; 435 { 436 struct kinfo_proc *bp = kd->procbase; 437 int acnt, zcnt; 438 struct proc *p; 439 440 if (KREAD(kd, a_allproc, &p)) { 441 _kvm_err(kd, kd->program, "cannot read allproc"); 442 return (-1); 443 } 444 acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt); 445 if (acnt < 0) 446 return (acnt); 447 448 if (KREAD(kd, a_zombproc, &p)) { 449 _kvm_err(kd, kd->program, "cannot read zombproc"); 450 return (-1); 451 } 452 zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt); 453 if (zcnt < 0) 454 zcnt = 0; 455 456 return (acnt + zcnt); 457 } 458 459 struct kinfo_proc * 460 kvm_getprocs(kd, op, arg, cnt) 461 kvm_t *kd; 462 int op, arg; 463 int *cnt; 464 { 465 int mib[4], st, nprocs; 466 size_t size; 467 int temp_op; 468 469 if (kd->procbase != 0) { 470 free((void *)kd->procbase); 471 /* 472 * Clear this pointer in case this call fails. Otherwise, 473 * kvm_close() will free it again. 474 */ 475 kd->procbase = 0; 476 } 477 if (ISALIVE(kd)) { 478 size = 0; 479 mib[0] = CTL_KERN; 480 mib[1] = KERN_PROC; 481 mib[2] = op; 482 mib[3] = arg; 483 temp_op = op & ~KERN_PROC_INC_THREAD; 484 st = sysctl(mib, 485 temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ? 486 3 : 4, NULL, &size, NULL, 0); 487 if (st == -1) { 488 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 489 return (0); 490 } 491 /* 492 * We can't continue with a size of 0 because we pass 493 * it to realloc() (via _kvm_realloc()), and passing 0 494 * to realloc() results in undefined behavior. 495 */ 496 if (size == 0) { 497 /* 498 * XXX: We should probably return an invalid, 499 * but non-NULL, pointer here so any client 500 * program trying to dereference it will 501 * crash. However, _kvm_freeprocs() calls 502 * free() on kd->procbase if it isn't NULL, 503 * and free()'ing a junk pointer isn't good. 504 * Then again, _kvm_freeprocs() isn't used 505 * anywhere . . . 506 */ 507 kd->procbase = _kvm_malloc(kd, 1); 508 goto liveout; 509 } 510 do { 511 size += size / 10; 512 kd->procbase = (struct kinfo_proc *) 513 _kvm_realloc(kd, kd->procbase, size); 514 if (kd->procbase == 0) 515 return (0); 516 st = sysctl(mib, temp_op == KERN_PROC_ALL || 517 temp_op == KERN_PROC_PROC ? 3 : 4, 518 kd->procbase, &size, NULL, 0); 519 } while (st == -1 && errno == ENOMEM); 520 if (st == -1) { 521 _kvm_syserr(kd, kd->program, "kvm_getprocs"); 522 return (0); 523 } 524 /* 525 * We have to check the size again because sysctl() 526 * may "round up" oldlenp if oldp is NULL; hence it 527 * might've told us that there was data to get when 528 * there really isn't any. 529 */ 530 if (size > 0 && 531 kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) { 532 _kvm_err(kd, kd->program, 533 "kinfo_proc size mismatch (expected %d, got %d)", 534 sizeof(struct kinfo_proc), 535 kd->procbase->ki_structsize); 536 return (0); 537 } 538 liveout: 539 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize; 540 } else { 541 struct nlist nl[6], *p; 542 543 nl[0].n_name = "_nprocs"; 544 nl[1].n_name = "_allproc"; 545 nl[2].n_name = "_zombproc"; 546 nl[3].n_name = "_ticks"; 547 nl[4].n_name = "_hz"; 548 nl[5].n_name = 0; 549 550 if (kvm_nlist(kd, nl) != 0) { 551 for (p = nl; p->n_type != 0; ++p) 552 ; 553 _kvm_err(kd, kd->program, 554 "%s: no such symbol", p->n_name); 555 return (0); 556 } 557 if (KREAD(kd, nl[0].n_value, &nprocs)) { 558 _kvm_err(kd, kd->program, "can't read nprocs"); 559 return (0); 560 } 561 if (KREAD(kd, nl[3].n_value, &ticks)) { 562 _kvm_err(kd, kd->program, "can't read ticks"); 563 return (0); 564 } 565 if (KREAD(kd, nl[4].n_value, &hz)) { 566 _kvm_err(kd, kd->program, "can't read hz"); 567 return (0); 568 } 569 size = nprocs * sizeof(struct kinfo_proc); 570 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size); 571 if (kd->procbase == 0) 572 return (0); 573 574 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value, 575 nl[2].n_value, nprocs); 576 #ifdef notdef 577 size = nprocs * sizeof(struct kinfo_proc); 578 (void)realloc(kd->procbase, size); 579 #endif 580 } 581 *cnt = nprocs; 582 return (kd->procbase); 583 } 584 585 void 586 _kvm_freeprocs(kd) 587 kvm_t *kd; 588 { 589 if (kd->procbase) { 590 free(kd->procbase); 591 kd->procbase = 0; 592 } 593 } 594 595 void * 596 _kvm_realloc(kd, p, n) 597 kvm_t *kd; 598 void *p; 599 size_t n; 600 { 601 void *np = (void *)realloc(p, n); 602 603 if (np == 0) { 604 free(p); 605 _kvm_err(kd, kd->program, "out of memory"); 606 } 607 return (np); 608 } 609 610 #ifndef MAX 611 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 612 #endif 613 614 /* 615 * Read in an argument vector from the user address space of process kp. 616 * addr if the user-space base address of narg null-terminated contiguous 617 * strings. This is used to read in both the command arguments and 618 * environment strings. Read at most maxcnt characters of strings. 619 */ 620 static char ** 621 kvm_argv(kd, kp, addr, narg, maxcnt) 622 kvm_t *kd; 623 struct kinfo_proc *kp; 624 u_long addr; 625 int narg; 626 int maxcnt; 627 { 628 char *np, *cp, *ep, *ap; 629 u_long oaddr = -1; 630 int len, cc; 631 char **argv; 632 633 /* 634 * Check that there aren't an unreasonable number of agruments, 635 * and that the address is in user space. 636 */ 637 if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS) 638 return (0); 639 640 /* 641 * kd->argv : work space for fetching the strings from the target 642 * process's space, and is converted for returning to caller 643 */ 644 if (kd->argv == 0) { 645 /* 646 * Try to avoid reallocs. 647 */ 648 kd->argc = MAX(narg + 1, 32); 649 kd->argv = (char **)_kvm_malloc(kd, kd->argc * 650 sizeof(*kd->argv)); 651 if (kd->argv == 0) 652 return (0); 653 } else if (narg + 1 > kd->argc) { 654 kd->argc = MAX(2 * kd->argc, narg + 1); 655 kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc * 656 sizeof(*kd->argv)); 657 if (kd->argv == 0) 658 return (0); 659 } 660 /* 661 * kd->argspc : returned to user, this is where the kd->argv 662 * arrays are left pointing to the collected strings. 663 */ 664 if (kd->argspc == 0) { 665 kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE); 666 if (kd->argspc == 0) 667 return (0); 668 kd->arglen = PAGE_SIZE; 669 } 670 /* 671 * kd->argbuf : used to pull in pages from the target process. 672 * the strings are copied out of here. 673 */ 674 if (kd->argbuf == 0) { 675 kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE); 676 if (kd->argbuf == 0) 677 return (0); 678 } 679 680 /* Pull in the target process'es argv vector */ 681 cc = sizeof(char *) * narg; 682 if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc) 683 return (0); 684 /* 685 * ap : saved start address of string we're working on in kd->argspc 686 * np : pointer to next place to write in kd->argspc 687 * len: length of data in kd->argspc 688 * argv: pointer to the argv vector that we are hunting around the 689 * target process space for, and converting to addresses in 690 * our address space (kd->argspc). 691 */ 692 ap = np = kd->argspc; 693 argv = kd->argv; 694 len = 0; 695 /* 696 * Loop over pages, filling in the argument vector. 697 * Note that the argv strings could be pointing *anywhere* in 698 * the user address space and are no longer contiguous. 699 * Note that *argv is modified when we are going to fetch a string 700 * that crosses a page boundary. We copy the next part of the string 701 * into to "np" and eventually convert the pointer. 702 */ 703 while (argv < kd->argv + narg && *argv != 0) { 704 705 /* get the address that the current argv string is on */ 706 addr = (u_long)*argv & ~(PAGE_SIZE - 1); 707 708 /* is it the same page as the last one? */ 709 if (addr != oaddr) { 710 if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) != 711 PAGE_SIZE) 712 return (0); 713 oaddr = addr; 714 } 715 716 /* offset within the page... kd->argbuf */ 717 addr = (u_long)*argv & (PAGE_SIZE - 1); 718 719 /* cp = start of string, cc = count of chars in this chunk */ 720 cp = kd->argbuf + addr; 721 cc = PAGE_SIZE - addr; 722 723 /* dont get more than asked for by user process */ 724 if (maxcnt > 0 && cc > maxcnt - len) 725 cc = maxcnt - len; 726 727 /* pointer to end of string if we found it in this page */ 728 ep = memchr(cp, '\0', cc); 729 if (ep != 0) 730 cc = ep - cp + 1; 731 /* 732 * at this point, cc is the count of the chars that we are 733 * going to retrieve this time. we may or may not have found 734 * the end of it. (ep points to the null if the end is known) 735 */ 736 737 /* will we exceed the malloc/realloced buffer? */ 738 if (len + cc > kd->arglen) { 739 int off; 740 char **pp; 741 char *op = kd->argspc; 742 743 kd->arglen *= 2; 744 kd->argspc = (char *)_kvm_realloc(kd, kd->argspc, 745 kd->arglen); 746 if (kd->argspc == 0) 747 return (0); 748 /* 749 * Adjust argv pointers in case realloc moved 750 * the string space. 751 */ 752 off = kd->argspc - op; 753 for (pp = kd->argv; pp < argv; pp++) 754 *pp += off; 755 ap += off; 756 np += off; 757 } 758 /* np = where to put the next part of the string in kd->argspc*/ 759 /* np is kinda redundant.. could use "kd->argspc + len" */ 760 memcpy(np, cp, cc); 761 np += cc; /* inc counters */ 762 len += cc; 763 764 /* 765 * if end of string found, set the *argv pointer to the 766 * saved beginning of string, and advance. argv points to 767 * somewhere in kd->argv.. This is initially relative 768 * to the target process, but when we close it off, we set 769 * it to point in our address space. 770 */ 771 if (ep != 0) { 772 *argv++ = ap; 773 ap = np; 774 } else { 775 /* update the address relative to the target process */ 776 *argv += cc; 777 } 778 779 if (maxcnt > 0 && len >= maxcnt) { 780 /* 781 * We're stopping prematurely. Terminate the 782 * current string. 783 */ 784 if (ep == 0) { 785 *np = '\0'; 786 *argv++ = ap; 787 } 788 break; 789 } 790 } 791 /* Make sure argv is terminated. */ 792 *argv = 0; 793 return (kd->argv); 794 } 795 796 static void 797 ps_str_a(p, addr, n) 798 struct ps_strings *p; 799 u_long *addr; 800 int *n; 801 { 802 *addr = (u_long)p->ps_argvstr; 803 *n = p->ps_nargvstr; 804 } 805 806 static void 807 ps_str_e(p, addr, n) 808 struct ps_strings *p; 809 u_long *addr; 810 int *n; 811 { 812 *addr = (u_long)p->ps_envstr; 813 *n = p->ps_nenvstr; 814 } 815 816 /* 817 * Determine if the proc indicated by p is still active. 818 * This test is not 100% foolproof in theory, but chances of 819 * being wrong are very low. 820 */ 821 static int 822 proc_verify(curkp) 823 struct kinfo_proc *curkp; 824 { 825 struct kinfo_proc newkp; 826 int mib[4]; 827 size_t len; 828 829 mib[0] = CTL_KERN; 830 mib[1] = KERN_PROC; 831 mib[2] = KERN_PROC_PID; 832 mib[3] = curkp->ki_pid; 833 len = sizeof(newkp); 834 if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1) 835 return (0); 836 return (curkp->ki_pid == newkp.ki_pid && 837 (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB)); 838 } 839 840 static char ** 841 kvm_doargv(kd, kp, nchr, info) 842 kvm_t *kd; 843 struct kinfo_proc *kp; 844 int nchr; 845 void (*info)(struct ps_strings *, u_long *, int *); 846 { 847 char **ap; 848 u_long addr; 849 int cnt; 850 static struct ps_strings arginfo; 851 static u_long ps_strings; 852 size_t len; 853 854 if (ps_strings == 0) { 855 len = sizeof(ps_strings); 856 if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL, 857 0) == -1) 858 ps_strings = PS_STRINGS; 859 } 860 861 /* 862 * Pointers are stored at the top of the user stack. 863 */ 864 if (kp->ki_stat == SZOMB || 865 kvm_uread(kd, kp, ps_strings, (char *)&arginfo, 866 sizeof(arginfo)) != sizeof(arginfo)) 867 return (0); 868 869 (*info)(&arginfo, &addr, &cnt); 870 if (cnt == 0) 871 return (0); 872 ap = kvm_argv(kd, kp, addr, cnt, nchr); 873 /* 874 * For live kernels, make sure this process didn't go away. 875 */ 876 if (ap != 0 && ISALIVE(kd) && !proc_verify(kp)) 877 ap = 0; 878 return (ap); 879 } 880 881 /* 882 * Get the command args. This code is now machine independent. 883 */ 884 char ** 885 kvm_getargv(kd, kp, nchr) 886 kvm_t *kd; 887 const struct kinfo_proc *kp; 888 int nchr; 889 { 890 int oid[4]; 891 int i; 892 size_t bufsz; 893 static unsigned long buflen; 894 static char *buf, *p; 895 static char **bufp; 896 static int argc; 897 898 if (!ISALIVE(kd)) { 899 _kvm_err(kd, kd->program, 900 "cannot read user space from dead kernel"); 901 return (0); 902 } 903 904 if (!buflen) { 905 bufsz = sizeof(buflen); 906 i = sysctlbyname("kern.ps_arg_cache_limit", 907 &buflen, &bufsz, NULL, 0); 908 if (i == -1) { 909 buflen = 0; 910 } else { 911 buf = malloc(buflen); 912 if (buf == NULL) 913 buflen = 0; 914 argc = 32; 915 bufp = malloc(sizeof(char *) * argc); 916 } 917 } 918 if (buf != NULL) { 919 oid[0] = CTL_KERN; 920 oid[1] = KERN_PROC; 921 oid[2] = KERN_PROC_ARGS; 922 oid[3] = kp->ki_pid; 923 bufsz = buflen; 924 i = sysctl(oid, 4, buf, &bufsz, 0, 0); 925 if (i == 0 && bufsz > 0) { 926 i = 0; 927 p = buf; 928 do { 929 bufp[i++] = p; 930 p += strlen(p) + 1; 931 if (i >= argc) { 932 argc += argc; 933 bufp = realloc(bufp, 934 sizeof(char *) * argc); 935 } 936 } while (p < buf + bufsz); 937 bufp[i++] = 0; 938 return (bufp); 939 } 940 } 941 if (kp->ki_flag & P_SYSTEM) 942 return (NULL); 943 return (kvm_doargv(kd, kp, nchr, ps_str_a)); 944 } 945 946 char ** 947 kvm_getenvv(kd, kp, nchr) 948 kvm_t *kd; 949 const struct kinfo_proc *kp; 950 int nchr; 951 { 952 return (kvm_doargv(kd, kp, nchr, ps_str_e)); 953 } 954 955 /* 956 * Read from user space. The user context is given by p. 957 */ 958 ssize_t 959 kvm_uread(kd, kp, uva, buf, len) 960 kvm_t *kd; 961 struct kinfo_proc *kp; 962 u_long uva; 963 char *buf; 964 size_t len; 965 { 966 char *cp; 967 char procfile[MAXPATHLEN]; 968 ssize_t amount; 969 int fd; 970 971 if (!ISALIVE(kd)) { 972 _kvm_err(kd, kd->program, 973 "cannot read user space from dead kernel"); 974 return (0); 975 } 976 977 sprintf(procfile, "/proc/%d/mem", kp->ki_pid); 978 fd = open(procfile, O_RDONLY, 0); 979 if (fd < 0) { 980 _kvm_err(kd, kd->program, "cannot open %s", procfile); 981 return (0); 982 } 983 984 cp = buf; 985 while (len > 0) { 986 errno = 0; 987 if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) { 988 _kvm_err(kd, kd->program, "invalid address (%x) in %s", 989 uva, procfile); 990 break; 991 } 992 amount = read(fd, cp, len); 993 if (amount < 0) { 994 _kvm_syserr(kd, kd->program, "error reading %s", 995 procfile); 996 break; 997 } 998 if (amount == 0) { 999 _kvm_err(kd, kd->program, "EOF reading %s", procfile); 1000 break; 1001 } 1002 cp += amount; 1003 uva += amount; 1004 len -= amount; 1005 } 1006 1007 close(fd); 1008 return ((ssize_t)(cp - buf)); 1009 } 1010