xref: /freebsd/lib/libkvm/kvm_proc.c (revision 22d6889b4d3eb8a5cb2aaaefe5bedb40e885b425)
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgement:
19  *	This product includes software developed by the University of
20  *	California, Berkeley and its contributors.
21  * 4. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  */
37 
38 #if 0
39 #if defined(LIBC_SCCS) && !defined(lint)
40 static char sccsid[] = "@(#)kvm_proc.c	8.3 (Berkeley) 9/23/93";
41 #endif /* LIBC_SCCS and not lint */
42 #endif
43 
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46 
47 /*
48  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
49  * users of this code, so we've factored it out into a separate module.
50  * Thus, we keep this grunge out of the other kvm applications (i.e.,
51  * most other applications are interested only in open/close/read/nlist).
52  */
53 
54 #include <sys/param.h>
55 #define _WANT_UCRED	/* make ucred.h give us 'struct ucred' */
56 #include <sys/ucred.h>
57 #include <sys/user.h>
58 #include <sys/proc.h>
59 #include <sys/exec.h>
60 #include <sys/stat.h>
61 #include <sys/sysent.h>
62 #include <sys/ioctl.h>
63 #include <sys/tty.h>
64 #include <sys/file.h>
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <unistd.h>
68 #include <nlist.h>
69 #include <kvm.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 
74 #include <sys/sysctl.h>
75 
76 #include <limits.h>
77 #include <memory.h>
78 #include <paths.h>
79 
80 #include "kvm_private.h"
81 
82 #define KREAD(kd, addr, obj) \
83 	(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
84 
85 /*
86  * Read proc's from memory file into buffer bp, which has space to hold
87  * at most maxcnt procs.
88  */
89 static int
90 kvm_proclist(kd, what, arg, p, bp, maxcnt)
91 	kvm_t *kd;
92 	int what, arg;
93 	struct proc *p;
94 	struct kinfo_proc *bp;
95 	int maxcnt;
96 {
97 	int cnt = 0;
98 	struct kinfo_proc kinfo_proc, *kp;
99 	struct pgrp pgrp;
100 	struct session sess;
101 	struct tty tty;
102 	struct vmspace vmspace;
103 	struct sigacts sigacts;
104 	struct pstats pstats;
105 	struct ucred ucred;
106 	struct thread mtd;
107 	/*struct kse mke;*/
108 	struct ksegrp mkg;
109 	struct proc proc;
110 	struct proc pproc;
111 	struct timeval tv;
112 	struct sysentvec sysent;
113 	char svname[KI_EMULNAMELEN];
114 
115 	kp = &kinfo_proc;
116 	kp->ki_structsize = sizeof(kinfo_proc);
117 	for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
118 		memset(kp, 0, sizeof *kp);
119 		if (KREAD(kd, (u_long)p, &proc)) {
120 			_kvm_err(kd, kd->program, "can't read proc at %x", p);
121 			return (-1);
122 		}
123 		if (proc.p_state != PRS_ZOMBIE) {
124 			if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
125 			    &mtd)) {
126 				_kvm_err(kd, kd->program,
127 				    "can't read thread at %x",
128 				    TAILQ_FIRST(&proc.p_threads));
129 				return (-1);
130 			}
131 			if ((proc.p_flag & P_SA) == 0) {
132 				if (KREAD(kd,
133 				    (u_long)TAILQ_FIRST(&proc.p_ksegrps),
134 				    &mkg)) {
135 					_kvm_err(kd, kd->program,
136 					    "can't read ksegrp at %x",
137 					    TAILQ_FIRST(&proc.p_ksegrps));
138 					return (-1);
139 				}
140 #if 0
141 				if (KREAD(kd,
142 				    (u_long)TAILQ_FIRST(&mkg.kg_kseq), &mke)) {
143 					_kvm_err(kd, kd->program,
144 					    "can't read kse at %x",
145 					    TAILQ_FIRST(&mkg.kg_kseq));
146 					return (-1);
147 				}
148 #endif
149 			}
150 		}
151 		if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
152 			kp->ki_ruid = ucred.cr_ruid;
153 			kp->ki_svuid = ucred.cr_svuid;
154 			kp->ki_rgid = ucred.cr_rgid;
155 			kp->ki_svgid = ucred.cr_svgid;
156 			kp->ki_ngroups = ucred.cr_ngroups;
157 			bcopy(ucred.cr_groups, kp->ki_groups,
158 			    NGROUPS * sizeof(gid_t));
159 			kp->ki_uid = ucred.cr_uid;
160 		}
161 
162 		switch(what & ~KERN_PROC_INC_THREAD) {
163 
164 		case KERN_PROC_GID:
165 			if (kp->ki_groups[0] != (gid_t)arg)
166 				continue;
167 			break;
168 
169 		case KERN_PROC_PID:
170 			if (proc.p_pid != (pid_t)arg)
171 				continue;
172 			break;
173 
174 		case KERN_PROC_RGID:
175 			if (kp->ki_rgid != (gid_t)arg)
176 				continue;
177 			break;
178 
179 		case KERN_PROC_UID:
180 			if (kp->ki_uid != (uid_t)arg)
181 				continue;
182 			break;
183 
184 		case KERN_PROC_RUID:
185 			if (kp->ki_ruid != (uid_t)arg)
186 				continue;
187 			break;
188 		}
189 		/*
190 		 * We're going to add another proc to the set.  If this
191 		 * will overflow the buffer, assume the reason is because
192 		 * nprocs (or the proc list) is corrupt and declare an error.
193 		 */
194 		if (cnt >= maxcnt) {
195 			_kvm_err(kd, kd->program, "nprocs corrupt");
196 			return (-1);
197 		}
198 		/*
199 		 * gather kinfo_proc
200 		 */
201 		kp->ki_paddr = p;
202 		kp->ki_addr = proc.p_uarea;
203 		/* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
204 		kp->ki_args = proc.p_args;
205 		kp->ki_tracep = proc.p_tracevp;
206 		kp->ki_textvp = proc.p_textvp;
207 		kp->ki_fd = proc.p_fd;
208 		kp->ki_vmspace = proc.p_vmspace;
209 		if (proc.p_sigacts != NULL) {
210 			if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
211 				_kvm_err(kd, kd->program,
212 				    "can't read sigacts at %x", proc.p_sigacts);
213 				return (-1);
214 			}
215 			kp->ki_sigignore = sigacts.ps_sigignore;
216 			kp->ki_sigcatch = sigacts.ps_sigcatch;
217 		}
218 		if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
219 			if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
220 				_kvm_err(kd, kd->program,
221 				    "can't read stats at %x", proc.p_stats);
222 				return (-1);
223 			}
224 			kp->ki_start = pstats.p_start;
225 			kp->ki_rusage = pstats.p_ru;
226 			kp->ki_childstime = pstats.p_cru.ru_stime;
227 			kp->ki_childutime = pstats.p_cru.ru_utime;
228 			/* Some callers want child-times in a single value */
229 			timeradd(&kp->ki_childstime, &kp->ki_childutime,
230 			    &kp->ki_childtime);
231 		}
232 		if (proc.p_oppid)
233 			kp->ki_ppid = proc.p_oppid;
234 		else if (proc.p_pptr) {
235 			if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
236 				_kvm_err(kd, kd->program,
237 				    "can't read pproc at %x", proc.p_pptr);
238 				return (-1);
239 			}
240 			kp->ki_ppid = pproc.p_pid;
241 		} else
242 			kp->ki_ppid = 0;
243 		if (proc.p_pgrp == NULL)
244 			goto nopgrp;
245 		if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
246 			_kvm_err(kd, kd->program, "can't read pgrp at %x",
247 				 proc.p_pgrp);
248 			return (-1);
249 		}
250 		kp->ki_pgid = pgrp.pg_id;
251 		kp->ki_jobc = pgrp.pg_jobc;
252 		if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
253 			_kvm_err(kd, kd->program, "can't read session at %x",
254 				pgrp.pg_session);
255 			return (-1);
256 		}
257 		kp->ki_sid = sess.s_sid;
258 		(void)memcpy(kp->ki_login, sess.s_login,
259 						sizeof(kp->ki_login));
260 		kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
261 		if (sess.s_leader == p)
262 			kp->ki_kiflag |= KI_SLEADER;
263 		if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
264 			if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
265 				_kvm_err(kd, kd->program,
266 					 "can't read tty at %x", sess.s_ttyp);
267 				return (-1);
268 			}
269 			kp->ki_tdev = tty.t_dev;	/* XXX: wrong */
270 			if (tty.t_pgrp != NULL) {
271 				if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
272 					_kvm_err(kd, kd->program,
273 						 "can't read tpgrp at %x",
274 						tty.t_pgrp);
275 					return (-1);
276 				}
277 				kp->ki_tpgid = pgrp.pg_id;
278 			} else
279 				kp->ki_tpgid = -1;
280 			if (tty.t_session != NULL) {
281 				if (KREAD(kd, (u_long)tty.t_session, &sess)) {
282 					_kvm_err(kd, kd->program,
283 					    "can't read session at %x",
284 					    tty.t_session);
285 					return (-1);
286 				}
287 				kp->ki_tsid = sess.s_sid;
288 			}
289 		} else {
290 nopgrp:
291 			kp->ki_tdev = NODEV;
292 		}
293 		if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
294 			(void)kvm_read(kd, (u_long)mtd.td_wmesg,
295 			    kp->ki_wmesg, WMESGLEN);
296 
297 		(void)kvm_read(kd, (u_long)proc.p_vmspace,
298 		    (char *)&vmspace, sizeof(vmspace));
299 		kp->ki_size = vmspace.vm_map.size;
300 		kp->ki_rssize = vmspace.vm_swrss; /* XXX */
301 		kp->ki_swrss = vmspace.vm_swrss;
302 		kp->ki_tsize = vmspace.vm_tsize;
303 		kp->ki_dsize = vmspace.vm_dsize;
304 		kp->ki_ssize = vmspace.vm_ssize;
305 
306 		switch (what & ~KERN_PROC_INC_THREAD) {
307 
308 		case KERN_PROC_PGRP:
309 			if (kp->ki_pgid != (pid_t)arg)
310 				continue;
311 			break;
312 
313 		case KERN_PROC_SESSION:
314 			if (kp->ki_sid != (pid_t)arg)
315 				continue;
316 			break;
317 
318 		case KERN_PROC_TTY:
319 			if ((proc.p_flag & P_CONTROLT) == 0 ||
320 			     kp->ki_tdev != (dev_t)arg)
321 				continue;
322 			break;
323 		}
324 		if (proc.p_comm[0] != 0)
325 			strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
326 		(void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
327 		    sizeof(sysent));
328 		(void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
329 		    sizeof(svname));
330 		if (svname[0] != 0)
331 			strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
332 		if ((proc.p_state != PRS_ZOMBIE) &&
333 		    (mtd.td_blocked != 0)) {
334 			kp->ki_kiflag |= KI_LOCKBLOCK;
335 			if (mtd.td_lockname)
336 				(void)kvm_read(kd,
337 				    (u_long)mtd.td_lockname,
338 				    kp->ki_lockname, LOCKNAMELEN);
339 			kp->ki_lockname[LOCKNAMELEN] = 0;
340 		}
341 		bintime2timeval(&proc.p_runtime, &tv);
342 		kp->ki_runtime = (u_int64_t)tv.tv_sec * 1000000 + tv.tv_usec;
343 		kp->ki_pid = proc.p_pid;
344 		kp->ki_siglist = proc.p_siglist;
345 		SIGSETOR(kp->ki_siglist, mtd.td_siglist);
346 		kp->ki_sigmask = mtd.td_sigmask;
347 		kp->ki_xstat = proc.p_xstat;
348 		kp->ki_acflag = proc.p_acflag;
349 		kp->ki_lock = proc.p_lock;
350 		if (proc.p_state != PRS_ZOMBIE) {
351 			kp->ki_swtime = proc.p_swtime;
352 			kp->ki_flag = proc.p_flag;
353 			kp->ki_sflag = proc.p_sflag;
354 			kp->ki_nice = proc.p_nice;
355 			kp->ki_traceflag = proc.p_traceflag;
356 			if (proc.p_state == PRS_NORMAL) {
357 				if (TD_ON_RUNQ(&mtd) ||
358 				    TD_CAN_RUN(&mtd) ||
359 				    TD_IS_RUNNING(&mtd)) {
360 					kp->ki_stat = SRUN;
361 				} else if (mtd.td_state ==
362 				    TDS_INHIBITED) {
363 					if (P_SHOULDSTOP(&proc)) {
364 						kp->ki_stat = SSTOP;
365 					} else if (
366 					    TD_IS_SLEEPING(&mtd)) {
367 						kp->ki_stat = SSLEEP;
368 					} else if (TD_ON_LOCK(&mtd)) {
369 						kp->ki_stat = SLOCK;
370 					} else {
371 						kp->ki_stat = SWAIT;
372 					}
373 				}
374 			} else {
375 				kp->ki_stat = SIDL;
376 			}
377 			/* Stuff from the thread */
378 			kp->ki_pri.pri_level = mtd.td_priority;
379 			kp->ki_pri.pri_native = mtd.td_base_pri;
380 			kp->ki_lastcpu = mtd.td_lastcpu;
381 			kp->ki_wchan = mtd.td_wchan;
382 			kp->ki_oncpu = mtd.td_oncpu;
383 
384 			if (!(proc.p_flag & P_SA)) {
385 				/* stuff from the ksegrp */
386 				kp->ki_slptime = mkg.kg_slptime;
387 				kp->ki_pri.pri_class = mkg.kg_pri_class;
388 				kp->ki_pri.pri_user = mkg.kg_user_pri;
389 				kp->ki_estcpu = mkg.kg_estcpu;
390 
391 #if 0
392 				/* Stuff from the kse */
393 				kp->ki_pctcpu = mke.ke_pctcpu;
394 				kp->ki_rqindex = mke.ke_rqindex;
395 #else
396 				kp->ki_pctcpu = 0;
397 				kp->ki_rqindex = 0;
398 #endif
399 			} else {
400 				kp->ki_tdflags = -1;
401 				/* All the rest are 0 for now */
402 			}
403 		} else {
404 			kp->ki_stat = SZOMB;
405 		}
406 		bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
407 		++bp;
408 		++cnt;
409 	}
410 	return (cnt);
411 }
412 
413 /*
414  * Build proc info array by reading in proc list from a crash dump.
415  * Return number of procs read.  maxcnt is the max we will read.
416  */
417 static int
418 kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
419 	kvm_t *kd;
420 	int what, arg;
421 	u_long a_allproc;
422 	u_long a_zombproc;
423 	int maxcnt;
424 {
425 	struct kinfo_proc *bp = kd->procbase;
426 	int acnt, zcnt;
427 	struct proc *p;
428 
429 	if (KREAD(kd, a_allproc, &p)) {
430 		_kvm_err(kd, kd->program, "cannot read allproc");
431 		return (-1);
432 	}
433 	acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
434 	if (acnt < 0)
435 		return (acnt);
436 
437 	if (KREAD(kd, a_zombproc, &p)) {
438 		_kvm_err(kd, kd->program, "cannot read zombproc");
439 		return (-1);
440 	}
441 	zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
442 	if (zcnt < 0)
443 		zcnt = 0;
444 
445 	return (acnt + zcnt);
446 }
447 
448 struct kinfo_proc *
449 kvm_getprocs(kd, op, arg, cnt)
450 	kvm_t *kd;
451 	int op, arg;
452 	int *cnt;
453 {
454 	int mib[4], st, nprocs;
455 	size_t size;
456 	int temp_op;
457 
458 	if (kd->procbase != 0) {
459 		free((void *)kd->procbase);
460 		/*
461 		 * Clear this pointer in case this call fails.  Otherwise,
462 		 * kvm_close() will free it again.
463 		 */
464 		kd->procbase = 0;
465 	}
466 	if (ISALIVE(kd)) {
467 		size = 0;
468 		mib[0] = CTL_KERN;
469 		mib[1] = KERN_PROC;
470 		mib[2] = op;
471 		mib[3] = arg;
472 		temp_op = op & ~KERN_PROC_INC_THREAD;
473 		st = sysctl(mib,
474 		    temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
475 		    3 : 4, NULL, &size, NULL, 0);
476 		if (st == -1) {
477 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
478 			return (0);
479 		}
480 		/*
481 		 * We can't continue with a size of 0 because we pass
482 		 * it to realloc() (via _kvm_realloc()), and passing 0
483 		 * to realloc() results in undefined behavior.
484 		 */
485 		if (size == 0) {
486 			/*
487 			 * XXX: We should probably return an invalid,
488 			 * but non-NULL, pointer here so any client
489 			 * program trying to dereference it will
490 			 * crash.  However, _kvm_freeprocs() calls
491 			 * free() on kd->procbase if it isn't NULL,
492 			 * and free()'ing a junk pointer isn't good.
493 			 * Then again, _kvm_freeprocs() isn't used
494 			 * anywhere . . .
495 			 */
496 			kd->procbase = _kvm_malloc(kd, 1);
497 			goto liveout;
498 		}
499 		do {
500 			size += size / 10;
501 			kd->procbase = (struct kinfo_proc *)
502 			    _kvm_realloc(kd, kd->procbase, size);
503 			if (kd->procbase == 0)
504 				return (0);
505 			st = sysctl(mib, temp_op == KERN_PROC_ALL ||
506 			    temp_op == KERN_PROC_PROC ? 3 : 4,
507 			    kd->procbase, &size, NULL, 0);
508 		} while (st == -1 && errno == ENOMEM);
509 		if (st == -1) {
510 			_kvm_syserr(kd, kd->program, "kvm_getprocs");
511 			return (0);
512 		}
513 		/*
514 		 * We have to check the size again because sysctl()
515 		 * may "round up" oldlenp if oldp is NULL; hence it
516 		 * might've told us that there was data to get when
517 		 * there really isn't any.
518 		 */
519 		if (size > 0 &&
520 		    kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
521 			_kvm_err(kd, kd->program,
522 			    "kinfo_proc size mismatch (expected %d, got %d)",
523 			    sizeof(struct kinfo_proc),
524 			    kd->procbase->ki_structsize);
525 			return (0);
526 		}
527 liveout:
528 		nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
529 	} else {
530 		struct nlist nl[4], *p;
531 
532 		nl[0].n_name = "_nprocs";
533 		nl[1].n_name = "_allproc";
534 		nl[2].n_name = "_zombproc";
535 		nl[3].n_name = 0;
536 
537 		if (kvm_nlist(kd, nl) != 0) {
538 			for (p = nl; p->n_type != 0; ++p)
539 				;
540 			_kvm_err(kd, kd->program,
541 				 "%s: no such symbol", p->n_name);
542 			return (0);
543 		}
544 		if (KREAD(kd, nl[0].n_value, &nprocs)) {
545 			_kvm_err(kd, kd->program, "can't read nprocs");
546 			return (0);
547 		}
548 		size = nprocs * sizeof(struct kinfo_proc);
549 		kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
550 		if (kd->procbase == 0)
551 			return (0);
552 
553 		nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
554 				      nl[2].n_value, nprocs);
555 #ifdef notdef
556 		size = nprocs * sizeof(struct kinfo_proc);
557 		(void)realloc(kd->procbase, size);
558 #endif
559 	}
560 	*cnt = nprocs;
561 	return (kd->procbase);
562 }
563 
564 void
565 _kvm_freeprocs(kd)
566 	kvm_t *kd;
567 {
568 	if (kd->procbase) {
569 		free(kd->procbase);
570 		kd->procbase = 0;
571 	}
572 }
573 
574 void *
575 _kvm_realloc(kd, p, n)
576 	kvm_t *kd;
577 	void *p;
578 	size_t n;
579 {
580 	void *np = (void *)realloc(p, n);
581 
582 	if (np == 0) {
583 		free(p);
584 		_kvm_err(kd, kd->program, "out of memory");
585 	}
586 	return (np);
587 }
588 
589 #ifndef MAX
590 #define MAX(a, b) ((a) > (b) ? (a) : (b))
591 #endif
592 
593 /*
594  * Read in an argument vector from the user address space of process kp.
595  * addr if the user-space base address of narg null-terminated contiguous
596  * strings.  This is used to read in both the command arguments and
597  * environment strings.  Read at most maxcnt characters of strings.
598  */
599 static char **
600 kvm_argv(kd, kp, addr, narg, maxcnt)
601 	kvm_t *kd;
602 	struct kinfo_proc *kp;
603 	u_long addr;
604 	int narg;
605 	int maxcnt;
606 {
607 	char *np, *cp, *ep, *ap;
608 	u_long oaddr = -1;
609 	int len, cc;
610 	char **argv;
611 
612 	/*
613 	 * Check that there aren't an unreasonable number of agruments,
614 	 * and that the address is in user space.
615 	 */
616 	if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
617 		return (0);
618 
619 	/*
620 	 * kd->argv : work space for fetching the strings from the target
621 	 *            process's space, and is converted for returning to caller
622 	 */
623 	if (kd->argv == 0) {
624 		/*
625 		 * Try to avoid reallocs.
626 		 */
627 		kd->argc = MAX(narg + 1, 32);
628 		kd->argv = (char **)_kvm_malloc(kd, kd->argc *
629 						sizeof(*kd->argv));
630 		if (kd->argv == 0)
631 			return (0);
632 	} else if (narg + 1 > kd->argc) {
633 		kd->argc = MAX(2 * kd->argc, narg + 1);
634 		kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
635 						sizeof(*kd->argv));
636 		if (kd->argv == 0)
637 			return (0);
638 	}
639 	/*
640 	 * kd->argspc : returned to user, this is where the kd->argv
641 	 *              arrays are left pointing to the collected strings.
642 	 */
643 	if (kd->argspc == 0) {
644 		kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
645 		if (kd->argspc == 0)
646 			return (0);
647 		kd->arglen = PAGE_SIZE;
648 	}
649 	/*
650 	 * kd->argbuf : used to pull in pages from the target process.
651 	 *              the strings are copied out of here.
652 	 */
653 	if (kd->argbuf == 0) {
654 		kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
655 		if (kd->argbuf == 0)
656 			return (0);
657 	}
658 
659 	/* Pull in the target process'es argv vector */
660 	cc = sizeof(char *) * narg;
661 	if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
662 		return (0);
663 	/*
664 	 * ap : saved start address of string we're working on in kd->argspc
665 	 * np : pointer to next place to write in kd->argspc
666 	 * len: length of data in kd->argspc
667 	 * argv: pointer to the argv vector that we are hunting around the
668 	 *       target process space for, and converting to addresses in
669 	 *       our address space (kd->argspc).
670 	 */
671 	ap = np = kd->argspc;
672 	argv = kd->argv;
673 	len = 0;
674 	/*
675 	 * Loop over pages, filling in the argument vector.
676 	 * Note that the argv strings could be pointing *anywhere* in
677 	 * the user address space and are no longer contiguous.
678 	 * Note that *argv is modified when we are going to fetch a string
679 	 * that crosses a page boundary.  We copy the next part of the string
680 	 * into to "np" and eventually convert the pointer.
681 	 */
682 	while (argv < kd->argv + narg && *argv != 0) {
683 
684 		/* get the address that the current argv string is on */
685 		addr = (u_long)*argv & ~(PAGE_SIZE - 1);
686 
687 		/* is it the same page as the last one? */
688 		if (addr != oaddr) {
689 			if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
690 			    PAGE_SIZE)
691 				return (0);
692 			oaddr = addr;
693 		}
694 
695 		/* offset within the page... kd->argbuf */
696 		addr = (u_long)*argv & (PAGE_SIZE - 1);
697 
698 		/* cp = start of string, cc = count of chars in this chunk */
699 		cp = kd->argbuf + addr;
700 		cc = PAGE_SIZE - addr;
701 
702 		/* dont get more than asked for by user process */
703 		if (maxcnt > 0 && cc > maxcnt - len)
704 			cc = maxcnt - len;
705 
706 		/* pointer to end of string if we found it in this page */
707 		ep = memchr(cp, '\0', cc);
708 		if (ep != 0)
709 			cc = ep - cp + 1;
710 		/*
711 		 * at this point, cc is the count of the chars that we are
712 		 * going to retrieve this time. we may or may not have found
713 		 * the end of it.  (ep points to the null if the end is known)
714 		 */
715 
716 		/* will we exceed the malloc/realloced buffer? */
717 		if (len + cc > kd->arglen) {
718 			int off;
719 			char **pp;
720 			char *op = kd->argspc;
721 
722 			kd->arglen *= 2;
723 			kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
724 							  kd->arglen);
725 			if (kd->argspc == 0)
726 				return (0);
727 			/*
728 			 * Adjust argv pointers in case realloc moved
729 			 * the string space.
730 			 */
731 			off = kd->argspc - op;
732 			for (pp = kd->argv; pp < argv; pp++)
733 				*pp += off;
734 			ap += off;
735 			np += off;
736 		}
737 		/* np = where to put the next part of the string in kd->argspc*/
738 		/* np is kinda redundant.. could use "kd->argspc + len" */
739 		memcpy(np, cp, cc);
740 		np += cc;	/* inc counters */
741 		len += cc;
742 
743 		/*
744 		 * if end of string found, set the *argv pointer to the
745 		 * saved beginning of string, and advance. argv points to
746 		 * somewhere in kd->argv..  This is initially relative
747 		 * to the target process, but when we close it off, we set
748 		 * it to point in our address space.
749 		 */
750 		if (ep != 0) {
751 			*argv++ = ap;
752 			ap = np;
753 		} else {
754 			/* update the address relative to the target process */
755 			*argv += cc;
756 		}
757 
758 		if (maxcnt > 0 && len >= maxcnt) {
759 			/*
760 			 * We're stopping prematurely.  Terminate the
761 			 * current string.
762 			 */
763 			if (ep == 0) {
764 				*np = '\0';
765 				*argv++ = ap;
766 			}
767 			break;
768 		}
769 	}
770 	/* Make sure argv is terminated. */
771 	*argv = 0;
772 	return (kd->argv);
773 }
774 
775 static void
776 ps_str_a(p, addr, n)
777 	struct ps_strings *p;
778 	u_long *addr;
779 	int *n;
780 {
781 	*addr = (u_long)p->ps_argvstr;
782 	*n = p->ps_nargvstr;
783 }
784 
785 static void
786 ps_str_e(p, addr, n)
787 	struct ps_strings *p;
788 	u_long *addr;
789 	int *n;
790 {
791 	*addr = (u_long)p->ps_envstr;
792 	*n = p->ps_nenvstr;
793 }
794 
795 /*
796  * Determine if the proc indicated by p is still active.
797  * This test is not 100% foolproof in theory, but chances of
798  * being wrong are very low.
799  */
800 static int
801 proc_verify(curkp)
802 	struct kinfo_proc *curkp;
803 {
804 	struct kinfo_proc newkp;
805 	int mib[4];
806 	size_t len;
807 
808 	mib[0] = CTL_KERN;
809 	mib[1] = KERN_PROC;
810 	mib[2] = KERN_PROC_PID;
811 	mib[3] = curkp->ki_pid;
812 	len = sizeof(newkp);
813 	if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
814 		return (0);
815 	return (curkp->ki_pid == newkp.ki_pid &&
816 	    (newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
817 }
818 
819 static char **
820 kvm_doargv(kd, kp, nchr, info)
821 	kvm_t *kd;
822 	struct kinfo_proc *kp;
823 	int nchr;
824 	void (*info)(struct ps_strings *, u_long *, int *);
825 {
826 	char **ap;
827 	u_long addr;
828 	int cnt;
829 	static struct ps_strings arginfo;
830 	static u_long ps_strings;
831 	size_t len;
832 
833 	if (ps_strings == 0) {
834 		len = sizeof(ps_strings);
835 		if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
836 		    0) == -1)
837 			ps_strings = PS_STRINGS;
838 	}
839 
840 	/*
841 	 * Pointers are stored at the top of the user stack.
842 	 */
843 	if (kp->ki_stat == SZOMB ||
844 	    kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
845 		      sizeof(arginfo)) != sizeof(arginfo))
846 		return (0);
847 
848 	(*info)(&arginfo, &addr, &cnt);
849 	if (cnt == 0)
850 		return (0);
851 	ap = kvm_argv(kd, kp, addr, cnt, nchr);
852 	/*
853 	 * For live kernels, make sure this process didn't go away.
854 	 */
855 	if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
856 		ap = 0;
857 	return (ap);
858 }
859 
860 /*
861  * Get the command args.  This code is now machine independent.
862  */
863 char **
864 kvm_getargv(kd, kp, nchr)
865 	kvm_t *kd;
866 	const struct kinfo_proc *kp;
867 	int nchr;
868 {
869 	int oid[4];
870 	int i;
871 	size_t bufsz;
872 	static unsigned long buflen;
873 	static char *buf, *p;
874 	static char **bufp;
875 	static int argc;
876 
877 	if (!ISALIVE(kd)) {
878 		_kvm_err(kd, kd->program,
879 		    "cannot read user space from dead kernel");
880 		return (0);
881 	}
882 
883 	if (!buflen) {
884 		bufsz = sizeof(buflen);
885 		i = sysctlbyname("kern.ps_arg_cache_limit",
886 		    &buflen, &bufsz, NULL, 0);
887 		if (i == -1) {
888 			buflen = 0;
889 		} else {
890 			buf = malloc(buflen);
891 			if (buf == NULL)
892 				buflen = 0;
893 			argc = 32;
894 			bufp = malloc(sizeof(char *) * argc);
895 		}
896 	}
897 	if (buf != NULL) {
898 		oid[0] = CTL_KERN;
899 		oid[1] = KERN_PROC;
900 		oid[2] = KERN_PROC_ARGS;
901 		oid[3] = kp->ki_pid;
902 		bufsz = buflen;
903 		i = sysctl(oid, 4, buf, &bufsz, 0, 0);
904 		if (i == 0 && bufsz > 0) {
905 			i = 0;
906 			p = buf;
907 			do {
908 				bufp[i++] = p;
909 				p += strlen(p) + 1;
910 				if (i >= argc) {
911 					argc += argc;
912 					bufp = realloc(bufp,
913 					    sizeof(char *) * argc);
914 				}
915 			} while (p < buf + bufsz);
916 			bufp[i++] = 0;
917 			return (bufp);
918 		}
919 	}
920 	if (kp->ki_flag & P_SYSTEM)
921 		return (NULL);
922 	return (kvm_doargv(kd, kp, nchr, ps_str_a));
923 }
924 
925 char **
926 kvm_getenvv(kd, kp, nchr)
927 	kvm_t *kd;
928 	const struct kinfo_proc *kp;
929 	int nchr;
930 {
931 	return (kvm_doargv(kd, kp, nchr, ps_str_e));
932 }
933 
934 /*
935  * Read from user space.  The user context is given by p.
936  */
937 ssize_t
938 kvm_uread(kd, kp, uva, buf, len)
939 	kvm_t *kd;
940 	struct kinfo_proc *kp;
941 	u_long uva;
942 	char *buf;
943 	size_t len;
944 {
945 	char *cp;
946 	char procfile[MAXPATHLEN];
947 	ssize_t amount;
948 	int fd;
949 
950 	if (!ISALIVE(kd)) {
951 		_kvm_err(kd, kd->program,
952 		    "cannot read user space from dead kernel");
953 		return (0);
954 	}
955 
956 	sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
957 	fd = open(procfile, O_RDONLY, 0);
958 	if (fd < 0) {
959 		_kvm_err(kd, kd->program, "cannot open %s", procfile);
960 		close(fd);
961 		return (0);
962 	}
963 
964 	cp = buf;
965 	while (len > 0) {
966 		errno = 0;
967 		if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
968 			_kvm_err(kd, kd->program, "invalid address (%x) in %s",
969 			    uva, procfile);
970 			break;
971 		}
972 		amount = read(fd, cp, len);
973 		if (amount < 0) {
974 			_kvm_syserr(kd, kd->program, "error reading %s",
975 			    procfile);
976 			break;
977 		}
978 		if (amount == 0) {
979 			_kvm_err(kd, kd->program, "EOF reading %s", procfile);
980 			break;
981 		}
982 		cp += amount;
983 		uva += amount;
984 		len -= amount;
985 	}
986 
987 	close(fd);
988 	return ((ssize_t)(cp - buf));
989 }
990